Computational Fluid Dynamic Modelling of Laser Additive Manufacturing Process and Effect of Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Computational Fluid Dynamic Modelling of Laser Additive Manufacturing Process and Effect of Gravity COMPUTATIONAL FLUID DYNAMIC MODELLING OF LASER ADDITIVE MANUFACTURING PROCESS AND EFFECT OF GRAVITY A thesis submitted to The University of Manchester For the degree of Doctor of Philosophy (PhD) In the Faculty of Science and Engineering 2017 Heng Gu School of Mechanical, Aerospace and Civil Engineering List of contents List of contents List of contents ................................................................................................................ 1 List of figures ................................................................................................................... 6 List of tables ................................................................................................................... 12 Nomenclatures ............................................................................................................... 13 Acronyms ....................................................................................................................... 16 Abstract .......................................................................................................................... 17 Declaration ..................................................................................................................... 18 Copyright statement...................................................................................................... 19 Acknowledgement ......................................................................................................... 20 Chapter 1 Introduction ................................................................................................. 21 1.1 Research rationale ............................................................................................. 21 1.2 Aim and objectives of the project ..................................................................... 23 1.3 Thesis structure ................................................................................................. 24 Chapter 2 Literature review of laser additive manufacturing ................................. 27 2.1 Introduction ....................................................................................................... 27 2.2 Laser basics ....................................................................................................... 27 2.2.1 Spontaneous emission and stimulated emission .................................... 28 2.2.2 Population Inversion .............................................................................. 30 2.2.3 Laser Cavity ........................................................................................... 30 2.3 Laser beam characteristics ................................................................................ 30 2.3.1 Monochromaticity .................................................................................. 31 2.3.2 Coherence ............................................................................................... 31 2.3.3 Directionality.......................................................................................... 32 2.3.4 Brightness ............................................................................................... 32 2.4 Types of lasers................................................................................................... 32 2.4.1 Diode Lasers........................................................................................... 33 2.4.2 Fibre lasers ............................................................................................. 34 1 List of contents 2.4.3 Disk lasers .............................................................................................. 35 2.5 Laser additive manufacturing ............................................................................ 36 2.5.1 Pre-placed wire and powder ................................................................... 37 2.5.2 Powder injection..................................................................................... 38 2.5.3 Wire feeding ........................................................................................... 40 2.5.4 Combined wire and powder ................................................................... 41 2.6 Process Parameters ............................................................................................ 42 2.6.1 Laser power and specific energy ............................................................ 42 2.6.2 Process velocity ...................................................................................... 43 2.6.3 Gas-powder flow rate ............................................................................. 44 2.6.4 Overlap ................................................................................................... 45 2.6.5 Deposition pattern .................................................................................. 47 2.7 Mechanical and thermal behaviour ................................................................... 49 2.7.1 Stress ...................................................................................................... 49 2.7.2 Porosity .................................................................................................. 51 2.7.3 Cracking and distortion .......................................................................... 53 2.7.4 Microstructure ........................................................................................ 54 2.7.5 Surface unevenness ................................................................................ 56 2.7.6 Re-melting .............................................................................................. 60 2.8 Melt pool behaviour .......................................................................................... 62 2.8.1 Marangoni flow ...................................................................................... 62 2.8.2 Gravitational force ................................................................................. 64 2.8.3 Melting and solidification ...................................................................... 68 2.8.4 Overhang ................................................................................................ 72 2.9 Modelling .......................................................................................................... 75 2.9.1 Thermal-mechanical modelling ............................................................. 75 2.9.2 Multi-physical modelling ....................................................................... 80 2.10 Summary and discussion ................................................................................. 90 Chapter 3 Formulation of a CFD model for laser additive manufacturing process ......................................................................................................................................... 92 2 List of contents 3.1 Introduction ....................................................................................................... 92 3.2 Previous work ................................................................................................... 92 3.3 Governing equations ......................................................................................... 96 3.4 VOF model ........................................................................................................ 98 3.5 Surface tension .................................................................................................. 99 3.6 Melting and solidification ............................................................................... 101 3.7 Buoyancy force ............................................................................................... 101 3.8 Numerical implementations ............................................................................ 102 3.9 User-defined energy, mass and momentum sources ....................................... 103 3.9.1 Energy source ....................................................................................... 103 3.9.2 Mass source .......................................................................................... 107 3.9.3 Momentum source ................................................................................ 108 3.10 Boundary conditions ..................................................................................... 109 3.10.1 Internal boundary condition ............................................................... 110 3.10.2 External boundary condition .............................................................. 111 3.11 Temperature gradient and solidification rate ................................................ 111 3.12 Summary ....................................................................................................... 113 Chapter 4 Study and prediction of laser metal deposition with various structures ....................................................................................................................................... 114 4.1 Introduction ..................................................................................................... 114 4.2 Material ........................................................................................................... 114 4.3 Experimental equipment ................................................................................. 115 4.3.1 Laser applied ........................................................................................ 115 4.3.2 Powder delivery system
Recommended publications
  • Thesis Reference
    Thesis On Testing Modified Gravity : with Solar System Experiments and Gravitational Radiation SANCTUARY, Hillary Adrienne Abstract Three theories of gravitation – general relativity, the chameleon and Horava gravity - are confronted with experiment, using standard and adapted post-Newtonian (PN) tools. The laboratory is provided by the Solar System, binary pulsars and future detections at gravitational wave observatories. We test Horava gravity by studying emission of gravitational radiation in the weak-field limit for PN sources using techniques that take full advantage of the parametrized post-Newtonian (PPN) formalism. In particular, we provide a generalization of Einstein’s quadrupole formula and show that a monopole persists even in the limit in which the PPN parameters are identical to those of General Relativity. Based on a technique called non-relativistic General Relativity, we propose a phenomenological way to measure deviations from General Relativity coming from an unknown UV completion. Finally, we systematically show that the self-interacting chameleon at orders three and higher do not jeopardize the chameleon theory for Solar System type objects. Reference SANCTUARY, Hillary Adrienne. On Testing Modified Gravity : with Solar System Experiments and Gravitational Radiation. Thèse de doctorat : Univ. Genève, 2012, no. Sc. 4524 Available at: http://archive-ouverte.unige.ch/unige:28935 Disclaimer: layout of this document may differ from the published version. [ Downloaded 07/04/2015 at 08:06:08 ] 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département de physique théorique Professeur Michele Maggiore On Testing Modified Gravity with Solar System Experiments and Gravitational Radiation THÈSE présentée à la Faculté des Sciences de l’Université de Genève pour obtenir le grade de Docteur ès Sciences, mention Physique par Hillary Sanctuary de Montréal, Canada Thèse No 4524 Genève, juillet 2012 Reprographie EPFL Publications D.
    [Show full text]
  • GRAVITY+: Towards Faint Science, All Sky, High Contrast, Milli-Arcsecond Optical Interferometric Imaging
    GRAVITY+: Towards Faint Science, All Sky, High Contrast, Milli-Arcsecond Optical Interferometric Imaging White Paper and Proposal For the GRAVITY+ Consortium (MPE, LESIA, IPAG, UoC, CENTRA, MPIA, UoS): F. Eisenhauer1 (PI), P. Garcia2,3,4 (CoI), R. Genzel1,5, S. Hönig6 (CoI*), L. Kreidberg7,8 (CoI), J.-B. Le Bouquin9 (CoI), P. Léna10, T. Paumard10 (CoI), C. Straubmeier11 (CoI) Senior Team Members and Associated Partners: A. Amorim2,12, W. Brandner8, M. Carbillet13, V. Cardoso2,14, Y. Clénet10, R. Davies1, D. Defrère15, T. de Zeeuw1,16, G. Duvert9, A. Eckart11,17, S. Esposito18, M. Fabricius1,19, N.M. Förster Schreiber1, P. Gandhi6, E. Gendron10, S. Gillessen1, D. Gratadour10, K.-H. Hofmann17, M. Horrobin11, M. Ireland20, P. Kervella10, S. Kraus21, S. Lacour10, O. Lai22, B. Lopez22, D. Lutz1, F. Martinache22, A. Meilland22, F. Millour22, T. Ott1, R. Oudmaijer23, F. Patru10, K. Perraut9, G. Perrin10, R. Petrov22, S. Quanz24, S. Rabien1, A. Riccardi18, R. Saglia1,19, J. Sánchez Bermúdez8,25, D. Schertl17, J. Schubert1, F. Soulez26, E. Sturm1, L.J. Tacconi1, M. Tallon26, I. Tallon-Bosc26, E. Thiébaut26, F. Vidal10, G. Weigelt17, A. Ziad13 Supporters: O. Absil15, A. Alonso-Herrero27, R. Bender1,19, M. Benisty9,28, J.-P. Berger9, E. Banados8, C. Boisson29, J. Bouvier9, P. Caselli1, A. Cassan30, B. Chazelas31, A. Chiavassa32, F. Combes33, V. Coudé du Foresto10, J. Dexter1,34, C. Dougados9, Th. Henning8, T. Herbst8, J. Kammerer20, M. Kishimoto35, L. Labadie11, A.-M. Lagrange9, A. Marconi36, A. Matter13, Z. Meliani29, F. Ménard9, J. Monnier37, D. Mourard13, H. Netzer38, N. Neumayer8, B. Peterson39,40,41, P.-O. Petrucci9, J.-U. Pott8, H.W.
    [Show full text]
  • The Crystalization of Space
    THE CRYSTALLIZATION OF SPACE Gregory W. Ferris Illustrated with drawings by the author Dedicated to my daughter Anna Kathleen Ferris Second Edition Self published Point South, SC Copyright © 2020 ii Introduction First, I should fess up and say I am neither an astrophysicist nor any kind of scientist. I am a beekeeper! I started keeping bees in the mid-eighties as a hobby while working as a construction contractor. In 1992, I was blessed with an opportunity to turn my beekeeping into a full-time job. My construction partner and I parted ways, and I have never looked back. Beekeeping is an agrarian trade that forces you to slow down. As you work the hives, controlling the bees with your smoker, moving slowly but deliberately to avoid being stung, you have time to observe everything around you. You have time to contemplate your existence. And that is what I have been doing for the last quarter century. There are only two ways to come into existence: We came from nothing, or God made everything. I have listened to Judge Judy say many times, “If it doesn’t make sense, it probably isn’t true.” For me, God falls into that category and raises more questions than answers. What made God? Where did God come from? Has God just existed forever? So here I am, left with “we came from nothing,” which also raises questions, the biggest being: “How could we possibly have come from nothing but empty space?” For this to happen, it has to be simple and logical, but it doesn’t have to happen fast.
    [Show full text]
  • Center for Atomic, Molecular, and Optical Physics 1989 Technical
    C INS^ Of STAND & TECH R I A111Q4 OblbMS NATIONAL INSTITLTTE OF STANDARDS ^ TECHNOLOGY Research Information Center Gaithersburg, MD 20899 !* 5 NIST PUBLICATIONS ' ' ‘ . NISTIR 89-4184 NAT-L INST. OF STAND 4 TECH R.I.C. A111D3 3Sb7E7 Center for Atomic, Molecular, and Optical Physics m 1989 89-4184 . Technical Activities 1989 C.2 NATIONAL INSTITUTE OF STANDARDS & TECIDTOLOGY Research Information Center Gaithersburg, MD 20899 Image of a cloud of laser cooled Be'^ ions confined in a Penning trap. The spherically symmetric cloud (partially illuminated by three laser beams) is arranged in a liquid-crystalline phase of eleven concentric shells. This cloud contains approximately 15,000 ions and is 550 microns in diameter. Transitions from disordered to ordered states are being studied in cooled ion clouds in the Time and Frequency Division of the Center for Atomic, Molecular and Optical Physics. NISTIR 89-4184 Center for Atomic, Molecular, and Optical Physics 1989 Technical Activities December 6-7, 1989 Katharine B. Gebbie, Acting Director Center for Atomic, Molecular, and Optical Physics National Measurement Laboratory U.S. DEPARTMENT OF COMMERCE, Robert A. Mosbacher, Secretary National Institute of Standards and Technology, Raymond G. Kammer, Acting Director f It L I I j» 1 t";,'! »'?***'*' VI. \ • : '.a ^ k “• , * :-v-r" '/r! 5?,. ' ' ^ ' • :'l ' i ® c, \.T'' ' *V ’t • I ’ . ^ '>'•• » 't -''"if-'f , r Vt ...A..;’i ' I'-’ \ iiT-ciofl ' ' J f/fiCiiiysR ,\'i; ^ ... ly !. > . ABSTRACT This report summarizes the research and technical activities
    [Show full text]
  • Influence of Exposure Time of Nd: YAG Laser on Mechanical
    Sudan University of Science and Technology College of Graduate Studies Influence of Exposure Time of Nd: YAG Laser on Mechanical Properties and Particle Size of Zirconium Silicate تأثير وقت التعرض لليزر Nd:YAGعلى الخواص الميكانيكية وحجم جزيئات سيليكات الزركونيوم A Thesis Submitted as the Requirements for the Degree of Doctorate of Philosophy in Physics. By: Alaa Salah Aldin Awad Ala Supervisor: Ahmed Elhassan Elfaky Co-Supervisor: Dr.Ali Abdel Rahman Saeed Marouf October 2020 1 اﻵيــــة قال تعالى: ﭽ ﯛ ﯜ ﯝ ﯞ ﯟ ﯠ ﯡ ﯢ ﯣ ﯤ ﯥ ﯦ ﯧﯨ ﯩ ﯪ ﯫ ﯬ ﯭ ﯮ ﯯ ﯰﯱ ﯲ ﯳ ﯴ ﯵ ﯶ ﯷﯸ ﯹ ﯺ ﯻ ﯼﯽ ﯾ ﯿ ﰀ ﰁ ﰂ ﭼ صدق اهلل العظيم سورة هود/اﻵية: )88( i Dedication I dedicate my dissertation work to my mother and my father for their patience and endless love. I also dedicate this dissertation to my dear husband and to my dear sons. I also dedicate this dissertation to my sister and without her encouragement; this work would not have seen the light. My deepest thank goes to all my family and friends for helping me. ii Acknowledgments First of all, I would like to thanks Allah for giving me the strength to finish this study. Special thanks Dr Ahmed Elhassan Elfaky supervisor of my dissertation for his guidance and assistance throughout the progress of this thesis, I would like to express my gratitude and thanks to Dr. Ali for his full assistance and complete supervision of this thesis and my thanks extend to staff of college of Science -Sudan University of Science and Technology.
    [Show full text]
  • Of the American Physical Society 73Rd Annual Meeting of the Southeastern Section of the APS Thursday - Saturday, November 9 - 11, 2006 Williamsburg, Virginia
    BULLETIN of the American Physical Society 73rd Annual Meeting of the Southeastern Section of the APS Thursday - Saturday, November 9 - 11, 2006 Williamsburg, Virginia Jefferson Lab - Aerial View Sir Christopher Wren Building © 2002 Dr. Ellen K. Rudolph November 2006 Volume 5, No. 8 Meeting Bulletin Sessions Directory SESSION BA Solid State NMR - Invited Session.................6 SESSION GB Biophysics ....................................................27 Thursday, November 9, 2006 8:30 AM - 10:30 AM Friday, November 10, 2006 8:00 AM - 9:48 AM SESSION BB Nuclear Physics I ...........................................7 SESSION GC Poster Session.............................................29 Thursday, November 9, 2006 8:30 AM - 10:30 AM Friday, November 10, 2006 8:00 AM - 10:00 AM SESSION BC Atomic, Molecular, Optical .............................9 SESSION HA Jefferson Lab: Plans for the Future Thursday, November 9, 2006 8:30 AM - 10:30 AM - Invited Session ..........................................34 Friday, November 10, 2006 10:15 AM - 12:03 PM SESSION CA Jefferson Lab: The First Ten Years - Invited Session ..........................................2 SESSION HB Gravity / Astrophysics ..................................35 Thursday, November 9, 2006 10:45 AM - 12:33 PM Friday, November 10, 2006 10:15 AM - 12:03 PM SESSION CB Materials I ....................................................3 SESSION HC Materials II ...................................................36 Thursday, November 9, 2006 10:45 AM - 12:33 PM Friday, November 10, 2006 10:15
    [Show full text]
  • Matter-Wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)
    Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100) Mahiro Abe1, Philip Adamson2, Marcel Borcean2, Daniela Bortoletto8, Kieran Bridges5, Samuel P Carman1, Swapan Chattopadhyay2,7, Jonathon Coleman5, Noah M Curfman2, Kenneth DeRose3, Tejas Deshpande3, Savas Dimopoulos1, Christopher J Foot8, Josef C Frisch9, Benjamin E Garber1, Steve Geer2, Valerie Gibson6, Jonah Glick3, Peter W Graham1, Steve R Hahn2, Roni Harnik2, Leonie Hawkins5, Sam Hindley5, Jason M Hogan1, Yijun Jiang (姜姜姜一一一君君君)1, Mark A Kasevich1, Ronald J Kellett2, Mandy Kiburg2, Tim Kovachy3, Joseph D Lykken2, John March-Russell8, Jeremiah Mitchell6,7, Martin Murphy2, Megan Nantel1, Lucy E Nobrega2, Robert K Plunkett2, Surjeet Rajendran4, Jan Rudolph1, Natasha Sachdeva3, Murtaza Safdari9, James K Santucci2, Ariel G Schwartzman9, Ian Shipsey8, Hunter Swan1, Linda R Valerio2, Arvydas Vasonis2, Yiping Wang3, and Thomas Wilkason1 (The MAGIS-100 Collaboration) 1 Stanford University, Stanford, California 94305, USA 2 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 3 Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA 4 The Johns Hopkins University, Baltimore, MD 21218, USA 5 University of Liverpool, Department of Physics, Liverpool, United Kingdom 6 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 7 Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA 8 Clarendon Laboratory, University of Oxford, Oxford OX1 3PU United Kingdom 9 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA E-mail: [email protected] Abstract. MAGIS-100 is a next-generation quantum sensor under construction at Fermilab that aims to explore fundamental physics with atom interferometry over a 100-meter baseline. This novel detector will search for ultralight dark matter, test quantum mechanics in new regimes, and serve as a technology pathfinder for future gravitational wave detectors in a previously unexplored arXiv:2104.02835v1 [physics.atom-ph] 7 Apr 2021 frequency band.
    [Show full text]