Patching on Berkovich Spaces and the Local-Global Principle Vlere Mehmeti
Total Page:16
File Type:pdf, Size:1020Kb
Patching on Berkovich Spaces and the Local-Global Principle Vlere Mehmeti To cite this version: Vlere Mehmeti. Patching on Berkovich Spaces and the Local-Global Principle. Algebraic Geometry [math.AG]. Normandie Université, 2019. English. NNT : 2019NORMC240. tel-02499757 HAL Id: tel-02499757 https://tel.archives-ouvertes.fr/tel-02499757 Submitted on 5 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le diplôme de doctorat Spécialité MATHEMATIQUES Préparée au sein de l'Université de Caen Normandie Ρatching οn Βerkοvich Spaces and the Lοcal-Glοbal Ρrinciple Présentée et soutenue par Vlere MEHMETI Thèse soutenue publiquement le 04/12/2019 devant le jury composé de M. DAVID HARARI Professeur des universités, Université Paris 11 Paris-Sud Rapporteur du jury Mme ANNETTE WERNER Professeur des universités, Goethe-Universität Rapporteur du jury M. ANTOINE DUCROS Professeur des universités, universités Sorbonne regroupées Membre du jury M. PHILIPPE GILLE Directeur de recherche, Université Lyon 1 Claude Bernard Membre du jury M. DAVID HARBATER Professeur, UNIVERSITY OF PENNSYLVANIA Membre du jury M. JÉRÔME POINEAU Professeur des universités, Université Caen Normandie Directeur de thèse Thèse dirigée par JÉRÔME POINEAU, Laboratoire de Mathématiques 'Nicolas Oresme' (Caen) Patching on Berkovich Spaces and the Local-Global Principle Vler¨eMehmeti Acknowledgements I would like to start by a heartfelt thank you to J´erˆome Poineau, without whom this thesis would not have been possible. I am very grateful for all the time that he has dedicated into introducing me to the world of research and preparing me to be a mathematician. J´erˆome’s support and guidance have been most precious to me during all this time, and have ceaselessly encouraged me to continue with my work, even at moments of demoralization from my part. My profound gratitude goes to both David Harari and Annette Werner for having accepted to be the referees of this thesis, as well as part of its defense committee. In particular, many thanks to David for his support and recommendations about the next step after Caen. A very big thanks to Antoine Ducros for his support and for accepting to participate in the defense committee. His enthousiasm and curiosity for my work even in its earlier stages have been highly motivating and have made me feel welcome in the domain of Berkovich spaces. The quality of this manuscript has benefited greatly from Antoine’s remarks. My sincere gratitude also goes to Philippe Gille and David Harbater for accepting to be part of my thesis committee and for expressing interest in my work. I am especially grateful to David Harbater and Julia Hartmann for a research visit they invited me to at the University of Philadelphia, and the thought-provoking discussions we had on that occasion. A very special thanks to Q¨endrim Gashi, one of my first professors (fortunately for me) at the University of Prishtina. His unwavering support has played a big role in shaping both my ambitions and the path to a PhD in mathematics. Shum¨efaleminderit p¨er mb¨eshtetjen, Q¨endrim! Upon my first trip to France, Q¨endrim put me in contact with Martin Andler. I am very thankful to Martin for his support which started then and continues to this day. It is, in part, what influenced my decision to come to France for my master’s studies. Whenever I had somewhat non-specific mathematical questions, there was always the very curious and enthousiastic Philippe Satg´eI could address them to, and who would always take his time to try and give me an answer. Merci de ton soutien, Philippe ! I am very happy to have been part of the LMNO for the previous three years. There is a great work environement, and I have learnt a lot from the many workshops organized here during this time. Many thanks to all of the members of the LMNO. Upon my arrival to the LMNO, the great atmosphere among the PhD students and postdocs made my integration here easy and my days very enjoyable. Many thanks for that to: Loulou, Sarra, Pablo, C´esar, Georges, Frank and Arnaud. The moments we shared during “les pauses caf´es” and “les soir´ees” are among the highlights of my stay in Caen. I am also very grateful for the wonderful three years in the company of: Emilie,´ Daniele, Julien, Stavroula, Guillaume, Etienne,´ Nacer, Angelot, Rub´en, Coumba, Tiphaine, Thien, Dorian, Tin, Hung and Gilberto. I wish we had spent more time together! I am very thankful to Mariagiulia for injecting to my life some (much needed) quirki- ness! She made my transition from Preshev¨eto Palaiseau much easier. A very special thanks to my friend, Sudarshan Arthur Shinde, the amicus omnibus. Many of my years in France would have been simply unbearable without our “irish” moments, long talks, and little trips. Shum¨efaleminderit nan¨es e babit p¨er p¨erkrahjen e tyre t¨evazhdueshme gjat¨et¨er¨e jet¨es time! Kjo doktoratur¨enuk do t¨ekishte qen¨ee mundur pa juve. Faleminderit q¨ekeni ardhur prej Presheve ve¸can¨erisht p¨er mbrojtjen time t¨edoktoratur¨es. Shpresoj se do t¨e g¨ezojm¨eedhe plot momente t¨etjera t¨elumtura bashk¨e. A very heartfelt thanks to my parents for their support for over 27 years now and for coming to my PhD defense. I am beyond happy that all of the choices I have made brought me to Caen. I would like to thank my partner, L´eonard, for all of his support and the great moments we have spent together. I look forward to all the ones that are to come. Abstract. Field patching, introduced by Harbater and Hartmann in [33], and extended by the aforementioned authors and Krashen in [34], has recently seen numerous appli- cations. We present an extension of this technique to the setting of Berkovich analytic geometry and applications to the local-global principle. In particular, we show that this adaptation of patching can be applied to Berkovich analytic curves, and as a consequence obtain local-global principles over function fields of curves defined over complete ultrametric fields. Because of the connection between the points of a Berkovich analytic curve and the valuations that its function field can be endowed with, one of these local-global principles is given with respect to completions, thus evoking some similarity with more classical versions. As an application, we obtain local-global principles for quadratic forms and results on the u-invariant. These findings generalize those of [34]. As a starting point for higher-dimensional patching in the Berkovich setting, we show that this technique is applicable around certain fibers of a relative Berkovich analytic curve. As a consequence, we prove a local-global principle over the germs of meromorphic functions on said fibers. By showing that said germs of meromorphic functions are algebraic, we also obtain local-global principles over function fields of algebraic curves defined over a larger class of ultrametric fields. Resum´ e.´ Recollement sur les espaces de Berkovich et principe local-global. Le recollement sur les corps, introduit par Harbater et Hartmann dans [33], et ´etendu par ces auteurs et Krashen dans [34], a r´ecemment trouv´ede nombreuses applications. Nous pr´esentons ici une extension de cette technique au cadre de la g´eom´etrie analytique de Berkovich et des applications au principe local-global. Nous montrons que cette adaptation du recollement peut s’appliquer aux courbes analytiques de Berkovich, et par cons´equent obtenons des principes locaux-globaux sur les corps de fonctions de courbes d´efinies sur des corps ultram´etriques complets. Grˆace `ala connexion entre les points d’une courbe analytique de Berkovich et les valuations dont on peut munir son corps de fonctions, nous obtenons un principe local-global par rapport `ades compl´et´es du corps de fonctions consid´er´e, ce qui pr´esente une ressemblance avec des versions plus classiques. En application, nous ´etablissons des principes locaux- globaux dans le cas plus pr´ecis des formes quadratiques et en d´eduisons des bornes sur l’u-invariant de certains corps. Nos r´esultats g´en´eralisent ceux de [34]. Comme point de d´epart pour le recollement en dimension sup´erieure dans un cadre d’espaces de Berkovich, nous montrons que cette technique peut s’appliquer autour de certaines fibres d’une courbe analytique relative. Nous l’utilisons ensuite pour d´emontrer un principe local-global sur les germes des fonctions m´eromorphes sur ces fibres. En montrant que ces germes de fonctions m´eromorphes sont alg´ebriques, nous obtenons aussi des principes locaux-globaux sur les corps de fonctions des courbes alg´ebriques d´efinies sur une famille plus vaste de corps ultram´etriques. Contents Introduction i Presentation of the major directions i Organization of the manuscript iv Introduction (in French) xiii Pr´esentation des directions majeures xiii Organisation du manuscrit xvi Chapter 1. Introduction to Berkovich Spaces 1 1.1. Banach rings and the Berkovich spectrum 2 1.1.1. Valued Fields 2 1.1.2. Semi-normed rings 4 1.1.3. The spectral radius 5 1.1.4. Semi-normed modules 6 1.1.5.