Quantum Mechanics As Quantum Information (And Only a Little More)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Lattice Structure of Quantum Logic
BULL. AUSTRAL. MATH. SOC. MOS 8106, *8IOI, 0242 VOL. I (1969), 333-340 On the lattice structure of quantum logic P. D. Finch A weak logical structure is defined as a set of boolean propositional logics in which one can define common operations of negation and implication. The set union of the boolean components of a weak logical structure is a logic of propositions which is an orthocomplemented poset, where orthocomplementation is interpreted as negation and the partial order as implication. It is shown that if one can define on this logic an operation of logical conjunction which has certain plausible properties, then the logic has the structure of an orthomodular lattice. Conversely, if the logic is an orthomodular lattice then the conjunction operation may be defined on it. 1. Introduction The axiomatic development of non-relativistic quantum mechanics leads to a quantum logic which has the structure of an orthomodular poset. Such a structure can be derived from physical considerations in a number of ways, for example, as in Gunson [7], Mackey [77], Piron [72], Varadarajan [73] and Zierler [74]. Mackey [77] has given heuristic arguments indicating that this quantum logic is, in fact, not just a poset but a lattice and that, in particular, it is isomorphic to the lattice of closed subspaces of a separable infinite dimensional Hilbert space. If one assumes that the quantum logic does have the structure of a lattice, and not just that of a poset, it is not difficult to ascertain what sort of further assumptions lead to a "coordinatisation" of the logic as the lattice of closed subspaces of Hilbert space, details will be found in Jauch [8], Piron [72], Varadarajan [73] and Zierler [74], Received 13 May 1969. -
Relational Quantum Mechanics
Relational Quantum Mechanics Matteo Smerlak† September 17, 2006 †Ecole normale sup´erieure de Lyon, F-69364 Lyon, EU E-mail: [email protected] Abstract In this internship report, we present Carlo Rovelli’s relational interpretation of quantum mechanics, focusing on its historical and conceptual roots. A critical analysis of the Einstein-Podolsky-Rosen argument is then put forward, which suggests that the phenomenon of ‘quantum non-locality’ is an artifact of the orthodox interpretation, and not a physical effect. A speculative discussion of the potential import of the relational view for quantum-logic is finally proposed. Figure 0.1: Composition X, W. Kandinski (1939) 1 Acknowledgements Beyond its strictly scientific value, this Master 1 internship has been rich of encounters. Let me express hereupon my gratitude to the great people I have met. First, and foremost, I want to thank Carlo Rovelli1 for his warm welcome in Marseille, and for the unexpected trust he showed me during these six months. Thanks to his rare openness, I have had the opportunity to humbly but truly take part in active research and, what is more, to glimpse the vivid landscape of scientific creativity. One more thing: I have an immense respect for Carlo’s plainness, unaltered in spite of his renown achievements in physics. I am very grateful to Antony Valentini2, who invited me, together with Frank Hellmann, to the Perimeter Institute for Theoretical Physics, in Canada. We spent there an incredible week, meeting world-class physicists such as Lee Smolin, Jeffrey Bub or John Baez, and enthusiastic postdocs such as Etera Livine or Simone Speziale. -
Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us About the Role of Providence in Nature 247 Bruce L
Journal of Biblical and Theological Studies JBTSVOLUME 2 | ISSUE 2 Christianity and the Philosophy of Science Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature 247 Bruce L. Gordon [JBTS 2.2 (2017): 247-298] Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature1 BRUCE L. GORDON Bruce L. Gordon is Associate Professor of the History and Philosophy of Science at Houston Baptist University and a Senior Fellow of Discovery Institute’s Center for Science and Culture Abstract: Modern science has revealed a world far more exotic and wonder- provoking than our wildest imaginings could have anticipated. It is the purpose of this essay to introduce the reader to the empirical discoveries and scientific concepts that limn our understanding of how reality is structured and interconnected—from the incomprehensibly large to the inconceivably small—and to draw out the metaphysical implications of this picture. What is unveiled is a universe in which Mind plays an indispensable role: from the uncanny life-giving precision inscribed in its initial conditions, mathematical regularities, and natural constants in the distant past, to its material insubstantiality and absolute dependence on transcendent causation for causal closure and phenomenological coherence in the present, the reality we inhabit is one in which divine action is before all things, in all things, and constitutes the very basis on which all things hold together (Colossians 1:17). §1. Introduction: The Intelligible Cosmos For science to be possible there has to be order present in nature and it has to be discoverable by the human mind. -
Arxiv:1911.07386V2 [Quant-Ph] 25 Nov 2019
Ideas Abandoned en Route to QBism Blake C. Stacey1 1Physics Department, University of Massachusetts Boston (Dated: November 26, 2019) The interpretation of quantum mechanics known as QBism developed out of efforts to understand the probabilities arising in quantum physics as Bayesian in character. But this development was neither easy nor without casualties. Many ideas voiced, and even committed to print, during earlier stages of Quantum Bayesianism turn out to be quite fallacious when seen from the vantage point of QBism. If the profession of science history needed a motto, a good candidate would be, “I think you’ll find it’s a bit more complicated than that.” This essay explores a particular application of that catechism, in the generally inconclusive and dubiously reputable area known as quantum foundations. QBism is a research program that can briefly be defined as an interpretation of quantum mechanics in which the ideas of agent and ex- perience are fundamental. A “quantum measurement” is an act that an agent performs on the external world. A “quantum state” is an agent’s encoding of her own personal expectations for what she might experience as a consequence of her actions. Moreover, each measurement outcome is a personal event, an expe- rience specific to the agent who incites it. Subjective judgments thus comprise much of the quantum machinery, but the formalism of the theory establishes the standard to which agents should strive to hold their expectations, and that standard for the relations among beliefs is as objective as any other physical theory [1]. The first use of the term QBism itself in the literature was by Fuchs and Schack in June 2009 [2]. -
Arxiv:1511.01069V1 [Quant-Ph]
To appear in Contemporary Physics Copenhagen Quantum Mechanics Timothy J. Hollowood Department of Physics, Swansea University, Swansea SA2 8PP, U.K. (September 2015) In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950’s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schr¨odinger cat states are the norm rather than curiosities generated in physicists’ laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr’s quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics. -
Why Feynman Path Integration?
Journal of Uncertain Systems Vol.5, No.x, pp.xx-xx, 2011 Online at: www.jus.org.uk Why Feynman Path Integration? Jaime Nava1;∗, Juan Ferret2, Vladik Kreinovich1, Gloria Berumen1, Sandra Griffin1, and Edgar Padilla1 1Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA 2Department of Philosophy, University of Texas at El Paso, El Paso, TX 79968, USA Received 19 December 2009; Revised 23 February 2010 Abstract To describe physics properly, we need to take into account quantum effects. Thus, for every non- quantum physical theory, we must come up with an appropriate quantum theory. A traditional approach is to replace all the scalars in the classical description of this theory by the corresponding operators. The problem with the above approach is that due to non-commutativity of the quantum operators, two math- ematically equivalent formulations of the classical theory can lead to different (non-equivalent) quantum theories. An alternative quantization approach that directly transforms the non-quantum action functional into the appropriate quantum theory, was indeed proposed by the Nobelist Richard Feynman, under the name of path integration. Feynman path integration is not just a foundational idea, it is actually an efficient computing tool (Feynman diagrams). From the pragmatic viewpoint, Feynman path integral is a great success. However, from the founda- tional viewpoint, we still face an important question: why the Feynman's path integration formula? In this paper, we provide a natural explanation for Feynman's path integration formula. ⃝c 2010 World Academic Press, UK. All rights reserved. Keywords: Feynman path integration, independence, foundations of quantum physics 1 Why Feynman Path Integration: Formulation of the Problem Need for quantization. -
Quantum Noise in Quantum Optics: the Stochastic Schr\" Odinger
Quantum Noise in Quantum Optics: the Stochastic Schr¨odinger Equation Peter Zoller † and C. W. Gardiner ∗ † Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria ∗ Department of Physics, Victoria University Wellington, New Zealand February 1, 2008 arXiv:quant-ph/9702030v1 12 Feb 1997 Abstract Lecture Notes for the Les Houches Summer School LXIII on Quantum Fluc- tuations in July 1995: “Quantum Noise in Quantum Optics: the Stochastic Schroedinger Equation” to appear in Elsevier Science Publishers B.V. 1997, edited by E. Giacobino and S. Reynaud. 0.1 Introduction Theoretical quantum optics studies “open systems,” i.e. systems coupled to an “environment” [1, 2, 3, 4]. In quantum optics this environment corresponds to the infinitely many modes of the electromagnetic field. The starting point of a description of quantum noise is a modeling in terms of quantum Markov processes [1]. From a physical point of view, a quantum Markovian description is an approximation where the environment is modeled as a heatbath with a short correlation time and weakly coupled to the system. In the system dynamics the coupling to a bath will introduce damping and fluctuations. The radiative modes of the heatbath also serve as input channels through which the system is driven, and as output channels which allow the continuous observation of the radiated fields. Examples of quantum optical systems are resonance fluorescence, where a radiatively damped atom is driven by laser light (input) and the properties of the emitted fluorescence light (output)are measured, and an optical cavity mode coupled to the outside radiation modes by a partially transmitting mirror. -
Demnächst Auch in Ihrem Laptop?
The Measurement Problem Johannes Kofler Quantum Foundations Seminar Max Planck Institute of Quantum Optics Munich, December 12th 2011 The measurement problem Different aspects: • How does the wavefunction collapse occur? Does it even occur at all? • How does one know whether something is a system or a measurement apparatus? When does one apply the Schrödinger equation (continuous and deterministic evolution) and when the projection postulate (discontinuous and probabilistic)? • How real is the wavefunction? Does the measurement only reveal pre-existing properties or “create reality”? Is quantum randomness reducible or irreducible? • Are there macroscopic superposition states (Schrödinger cats)? Where is the border between quantum mechanics and classical physics? The Kopenhagen interpretation • Wavefunction: mathematical tool, “catalogue of knowledge” (Schrödinger) not a description of objective reality • Measurement: leads to collapse of the wavefunction (Born rule) • Properties: wavefunction: non-realistic randomness: irreducible • “Heisenberg cut” between system and apparatus: “[T]here arises the necessity to draw a clear dividing line in the description of atomic processes, between the measuring apparatus of the observer which is described in classical concepts, and the object under observation, whose behavior is represented by a wave function.” (Heisenberg) • Classical physics as limiting case and as requirement: “It is decisive to recognize that, however far the phenomena transcend the scope of classical physical explanation, the -
Quantum Computation and Complexity Theory
Quantum computation and complexity theory Course given at the Institut fÈurInformationssysteme, Abteilung fÈurDatenbanken und Expertensysteme, University of Technology Vienna, Wintersemester 1994/95 K. Svozil Institut fÈur Theoretische Physik University of Technology Vienna Wiedner Hauptstraûe 8-10/136 A-1040 Vienna, Austria e-mail: [email protected] December 5, 1994 qct.tex Abstract The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applicationsto quantum computing. Standardinterferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed. hep-th/9412047 06 Dec 94 1 Contents 1 The Quantum of action 3 2 Quantum mechanics for the computer scientist 7 2.1 Hilbert space quantum mechanics ..................... 7 2.2 From single to multiple quanta Ð ªsecondº ®eld quantization ...... 15 2.3 Quantum interference ............................ 17 2.4 Hilbert lattices and quantum logic ..................... 22 2.5 Partial algebras ............................... 24 3 Quantum information theory 25 3.1 Information is physical ........................... 25 3.2 Copying and cloning of qbits ........................ 25 3.3 Context dependence of qbits ........................ 26 3.4 Classical versus quantum tautologies .................... 27 4 Elements of quantum computatability and complexity theory 28 4.1 Universal quantum computers ....................... 30 4.2 Universal quantum networks ........................ 31 4.3 Quantum recursion theory ......................... 35 4.4 Factoring .................................. 36 4.5 Travelling salesman ............................. 36 4.6 Will the strong Church-Turing thesis survive? ............... 37 Appendix 39 A Hilbert space 39 B Fundamental constants of physics and their relations 42 B.1 Fundamental constants of physics ..................... 42 B.2 Conversion tables .............................. 43 B.3 Electromagnetic radiation and other wave phenomena ......... -
Quantum Errors and Disturbances: Response to Busch, Lahti and Werner
entropy Article Quantum Errors and Disturbances: Response to Busch, Lahti and Werner David Marcus Appleby Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; [email protected]; Tel.: +44-734-210-5857 Academic Editors: Gregg Jaeger and Andrei Khrennikov Received: 27 February 2016; Accepted: 28 April 2016; Published: 6 May 2016 Abstract: Busch, Lahti and Werner (BLW) have recently criticized the operator approach to the description of quantum errors and disturbances. Their criticisms are justified to the extent that the physical meaning of the operator definitions has not hitherto been adequately explained. We rectify that omission. We then examine BLW’s criticisms in the light of our analysis. We argue that, although the BLW approach favour (based on the Wasserstein two-deviation) has its uses, there are important physical situations where an operator approach is preferable. We also discuss the reason why the error-disturbance relation is still giving rise to controversies almost a century after Heisenberg first stated his microscope argument. We argue that the source of the difficulties is the problem of interpretation, which is not so wholly disconnected from experimental practicalities as is sometimes supposed. Keywords: error disturbance principle; uncertainty principle; quantum measurement; Heisenberg PACS: 03.65.Ta 1. Introduction The error-disturbance principle remains highly controversial almost a century after Heisenberg wrote the paper [1], which originally suggested it. It is remarkable that this should be so, since the disagreements concern what is arguably the most fundamental concept of all, not only in physics, but in empirical science generally: namely, the concept of measurement accuracy. -
Quantum Memories for Continuous Variable States of Light in Atomic Ensembles
Quantum Memories for Continuous Variable States of Light in Atomic Ensembles Gabriel H´etet A thesis submitted for the degree of Doctor of Philosophy at The Australian National University October, 2008 ii Declaration This thesis is an account of research undertaken between March 2005 and June 2008 at the Department of Physics, Faculty of Science, Australian National University (ANU), Can- berra, Australia. This research was supervised by Prof. Ping Koy Lam (ANU), Prof. Hans- Albert Bachor (ANU), Dr. Ben Buchler (ANU) and Dr. Joseph Hope (ANU). Unless otherwise indicated, the work present herein is my own. None of the work presented here has ever been submitted for any degree at this or any other institution of learning. Gabriel H´etet October 2008 iii iv Acknowledgments I would naturally like to start by thanking my principal supervisors. Ping Koy Lam is the person I owe the most. I really appreciated his approachability, tolerance, intuition, knowledge, enthusiasm and many other qualities that made these three years at the ANU a great time. Hans Bachor, for helping making this PhD in Canberra possible and giving me the opportunity to work in this dynamic research environment. I always enjoyed his friendliness and general views and interpretations of physics. Thanks also to both of you for the opportunity you gave me to travel and present my work to international conferences. This thesis has been a rich experience thanks to my other two supervisors : Joseph Hope and Ben Buchler. I would like to thank Joe for invaluable help on the theory and computer side and Ben for the efficient moments he spent improving the set-up and other innumerable tips that polished up the work presented here, including proof reading this thesis. -
Advanced Quantum Theory AMATH473/673, PHYS454
Advanced Quantum Theory AMATH473/673, PHYS454 Achim Kempf Department of Applied Mathematics University of Waterloo Canada c Achim Kempf, September 2017 (Please do not copy: textbook in progress) 2 Contents 1 A brief history of quantum theory 9 1.1 The classical period . 9 1.2 Planck and the \Ultraviolet Catastrophe" . 9 1.3 Discovery of h ................................ 10 1.4 Mounting evidence for the fundamental importance of h . 11 1.5 The discovery of quantum theory . 11 1.6 Relativistic quantum mechanics . 13 1.7 Quantum field theory . 14 1.8 Beyond quantum field theory? . 16 1.9 Experiment and theory . 18 2 Classical mechanics in Hamiltonian form 21 2.1 Newton's laws for classical mechanics cannot be upgraded . 21 2.2 Levels of abstraction . 22 2.3 Classical mechanics in Hamiltonian formulation . 23 2.3.1 The energy function H contains all information . 23 2.3.2 The Poisson bracket . 25 2.3.3 The Hamilton equations . 27 2.3.4 Symmetries and Conservation laws . 29 2.3.5 A representation of the Poisson bracket . 31 2.4 Summary: The laws of classical mechanics . 32 2.5 Classical field theory . 33 3 Quantum mechanics in Hamiltonian form 35 3.1 Reconsidering the nature of observables . 36 3.2 The canonical commutation relations . 37 3.3 From the Hamiltonian to the equations of motion . 40 3.4 From the Hamiltonian to predictions of numbers . 44 3.4.1 Linear maps . 44 3.4.2 Choices of representation . 45 3.4.3 A matrix representation . 46 3 4 CONTENTS 3.4.4 Example: Solving the equations of motion for a free particle with matrix-valued functions .