Prediction and Postdiction

Total Page:16

File Type:pdf, Size:1020Kb

Prediction and Postdiction BEHAVIORAL AND BRAIN SCIENCES (2008) 31, 179–239 Printed in the United States of America doi: 10.1017/S0140525X08003804 Visual prediction: Psychophysics and neurophysiology of compensation for time delays Romi Nijhawan Department of Psychology, University of Sussex, Falmer, East Sussex, BN1 9QH, United Kingdom [email protected] http://www.sussex.ac.uk/psychology/profile116415.html Abstract: A necessary consequence of the nature of neural transmission systems is that as change in the physical state of a time-varying event takes place, delays produce error between the instantaneous registered state and the external state. Another source of delay is the transmission of internal motor commands to muscles and the inertia of the musculoskeletal system. How does the central nervous system compensate for these pervasive delays? Although it has been argued that delay compensation occurs late in the motor planning stages, even the earliest visual processes, such as phototransduction, contribute significantly to delays. I argue that compensation is not an exclusive property of the motor system, but rather, is a pervasive feature of the central nervous system (CNS) organization. Although the motor planning system may contain a highly flexible compensation mechanism, accounting not just for delays but also variability in delays (e.g., those resulting from variations in luminance contrast, internal body temperature, muscle fatigue, etc.), visual mechanisms also contribute to compensation. Previous suggestions of this notion of “visual prediction” led to a lively debate producing re-examination of previous arguments, new analyses, and review of the experiments presented here. Understanding visual prediction will inform our theories of sensory processes and visual perception, and will impact our notion of visual awareness. Keywords: biased competition; compensation; coordinate transformation; feedforward control; flash-lag; internal models; lateral interactions; neural representation; reference frames; time delays; visual awareness 1. Introduction Visual processing occurs in a series of hierarchical steps involving photoreceptors, retinal bipolar cells, ganglion 1.1. Time delays in the nervous system cells, the lateral geniculate nucleus (LGN), the primary Time delays are intrinsic to all neural processes. visual cortex (V1), and beyond. Neural delays have been Helmholtz, an eminent physicist and neurophysiologist extensively investigated at various levels within the visual of the nineteenth century, was among the first scientists system. For example, in response to retinal stimulation, to provide a clear measure of the speed of signal trans- significant neural delays (.10 msec) have been measured mission within the nervous system. Using a nerve– within the retina and at the optic nerve (Dreher et al. muscle preparation, he electrically stimulated the motor 1976; Kaplan & Shapley 1982; Ratliff & Hartline 1959). nerve at two different points and noted the time of con- Schiller and Malpeli (1978) electrically stimulated axons traction of the connected muscle. The distance between of the optic nerve at the optic chiasm and measured the the stimulated points divided by the time difference with delay (2–3 msec) in the response of cells in the which the muscle responded, gave the speed of neural magno- and parvo-cellular layers of the LGN. Many transmission along the given section of the motor nerve. Before this seminal experiment in 1850, many well- ROMI NIJHAWAN is a Reader (Associate Professor) known scientists including Johannes Mu¨ ller had specu- in Psychology at the University of Sussex, England. lated that transmission of neural signals would be too He received his Ph.D. in 1990 from Rutgers Univer- fast to allow experimental measurement. However, to sity–New Brunswick. During his post-doctorate at the surprise of the scientific community, the experiment the University of California–Berkeley, Nijhawan revealed not only that the speed of neural conduction “re-discovered” what he termed as the flash-lag effect was measurable, but also that it was an order of magnitude and subsequently published a brief paper on it (in slower than the speed of sound through air! In this article, Nature, 1994). This paper provocatively introduced I focus on visual delays, the problem of measurement of the notion of prediction in sensory pathways, giving visual delays, and the effect these delays have on neural rise both to active empirical research on the flash-lag phenomenon, and to a spirited debate regarding the representations of change – such as those that result existence and nature of visual prediction. Since then, from visual motion – and on perception and behavior. In Nijhawan has published multiple papers in the area addition, the focus is on potential mechanisms that of sensory prediction. might compensate for visual delays. # 2008 Cambridge University Press 0140-525X/08 $40.00 179 Nijhawan: Visual prediction studies on the macaque have recorded the delay with (CNS), the types of the intervening synapses, the strength which neurons in the primary visual cortex (V1) respond of stimulation, and to an extent certain qualitative aspects to retinal stimulation (Raiguel et al. 1989; Maunsell & of the stimulus. Gibson 1992; Schmolesky et al. 1998). An estimate based Several investigators have directly studied the relation- on a large database yields an average delay of approxi- ship between neuronal latency and reaction time. In mately 72 msec of V1 neurons (Lamme & Roelfsema measurements of reaction time, presentation of a discrete 2000). However, there is usually a range of delays with stimulus starts a time-counter, which the subject’s overt which neurons in a given area of the cortex respond. motor response stops. In measurements of neuronal Different neurons in the macaque inferotemporal cortex, latency, however, discerning the neural event used to for example, respond to complex visual information with stop the time-counter can be more challenging. In one delays ranging from 100 to 200 msec (Nakamura et al. study, researchers recorded from single neurons in the 1994). monkey motor cortex while the animal performed a learned flexion/extension arm movement in response to a visual, somatosensory, or auditory stimulus (Lamarre 1.2. Neuronal and behavioral delays for discrete stimuli et al. 1983). They reported a constant delay between the Discreteness of stimulation is key to defining time delays change in the firing rate of the motor cortical neuron for both neural responses and in behavioral tasks. For and arm movement, irrespective of the stochastic and visual neurons, time delays are typically measured in modality contingent variation in reaction times. Whether response to light flashes, light onsets/offsets, or short elec- change in a neuron’s spike rate following the stimulus, trical pulses applied to some point in the visual pathway. on a single trial, can be used in the measurement of neur- Neural delay is defined as the time interval between the onal latency (i.e., to stop the time-counter) is debatable. discrete change in stimulation and change in neural Individual spikes provide a sparse sample of the activity at the target site. The onset time of a discrete assumed underlying rate function of the neuron. Thus, stimulus is easily determined. However, the definition of even if one were to assume a step change in the underlying neural delays becomes more complex for time-varying rate function triggered by a discrete stimulus, the variance stimuli that are a continuous function of time. For such in spike times dictates averaging over many trials to deter- stimuli, neural delay can only be defined with respect to mine the precise time of the “true” change in the firing an instantaneous value of the stimulus. rate triggered by sensory stimulation (DiCarlo & Maunsell Discreteness of stimulation is central also to defining 2005). behavioral delays. The paradigm that formed the corner- stone of experimental psychology in the latter half of the 1.3. Neuronal and behavioral delays for continuous nineteenth century with the work of Helmholtz, Donders, stimuli Wundt, and Cattell, involved measurement of simple reaction times (Meyer et al. 1988). In simple reaction- Animals encounter both discrete and continuous environ- time tasks, the participant produces a prespecified overt mental events. At one extreme are discrete stimuli result- response – for example a button press – in response to a ing from unexpected events in nature (Walls 1942). At the discrete suprathreshold stimulus such as a flash of light, opposite extreme are stationary stimuli, for example, a sound burst, or a tactile stimulus. The stimulus–response nearby objects such as trees, that can be just as behavio- interval for the light stimulus is 200–250 msec, whereas for rally relevant as changing stimuli, but for which the issue sound or touch it is about 150 msec. The minimum latency of neural delays arises only when the animal itself moves for a voluntary learned motor response appears to be (see further on). Between the two extremes of the around 100–120 msec (Woodworth & Schlosberg 1954, discrete–continuous continuum, there are a multitude of p 9). Simple reaction time is directly related to input– time-varying stimuli unfolding as smooth functions with output delays of single neurons and of neural chains (see, respect to time. Consider the role of neural delays in a situ- e.g.,DiCarlo&Maunsell2005).Neuraldelaysvarysub- ation where a potential prey confronts a predator who has stantially across cell
Recommended publications
  • Keith A. Schneider Orcid.Org/0000-0001-7120-3380 [email protected] | (302) 300–7043 77 E
    Keith A. Schneider orcid.org/0000-0001-7120-3380 [email protected] | (302) 300–7043 77 E. Delaware Ave., Room 233, Newark, DE 19716 Education PhD Brain & Cognitive Sciences, University of Rochester, Rochester, NY 2002 MA Brain & Cognitive Sciences, University of Rochester, Rochester, NY 2000 MA Astronomy, Boston University, Boston, MA 1996 BS Physics, California Institute of Technology, Pasadena, CA 1994 Positions Professor, Department of Psychological & Brain Sciences, University of 2020– Delaware, Newark, DE Director, Center for Biomedical & Brain Imaging, University of Delaware, 2016– Newark DE Associate Professor, Department of Psychological & Brain Sciences, 2016–2020 University of Delaware, Newark, DE Director, York MRI Facility, York University, Toronto, ON, Canada 2010–2016 Associate Professor, Department of Biology and Centre for Vision 2010–2016 Research, York University, Toronto, ON, Canada Assistant Professor, Department of Psychological Sciences, University of 2009–2010 Missouri, Columbia, MO Assistant Professor (Research), Rochester Center for Brain Imaging and 2005–2008 Center for Visual Science, University of Rochester, Rochester, NY Postdoctoral Fellow, Princeton University, Princeton, NJ 2002–2005 Postdoctoral Fellow, University of Rochester, Rochester, NY 2002 Funding NIH/NEI 1R01EY028266. 2018–2023. “Directly testing the magnocellular hypothesis of dyslexia”. $1,912,669. PI. NIH COBRE 2P20GM103653-06. 2017–2022. “Renewal of Delaware Center for Neuroscience Research”. $3,372,118. Co-PI (Core Director). NVIDIA GPU Grant. 2016. Titan X Pascal hardware. $1200. PI. NSERC Discovery Grant (Canada). 2012–2016. “Structural and functional imaging of the human thalamus”. $135,000. PI. Schneider 1 NSERC CREATE (Canada). 2011–2016. “Vision Science and Applications”. $1,650,000. One of nine co-PIs.
    [Show full text]
  • The Flash-Lag Effect and Related Mislocalizations: Findings, Properties, and Theories
    Psychological Bulletin © 2013 American Psychological Association 2014, Vol. 140, No. 1, 308–338 0033-2909/14/$12.00 DOI: 10.1037/a0032899 The Flash-Lag Effect and Related Mislocalizations: Findings, Properties, and Theories Timothy L. Hubbard Texas Christian University If an observer sees a flashed (briefly presented) object that is aligned with a moving target, the perceived position of the flashed object usually lags the perceived position of the moving target. This has been referred to as the flash-lag effect, and the flash-lag effect has been suggested to reflect how an observer compensates for delays in perception that are due to neural processing times and is thus able to interact with dynamic stimuli in real time. Characteristics of the stimulus and of the observer that influence the flash-lag effect are reviewed, and the sensitivity or robustness of the flash-lag effect to numerous variables is discussed. Properties of the flash-lag effect and how the flash-lag effect might be related to several other perceptual and cognitive processes and phenomena are considered. Unresolved empirical issues are noted. Theories of the flash-lag effect are reviewed, and evidence inconsistent with each theory is noted. The flash-lag effect appears to involve low-level perceptual processes and high-level cognitive processes, reflects the operation of multiple mechanisms, occurs in numerous stimulus dimensions, and occurs within and across multiple modalities. It is suggested that the flash-lag effect derives from more basic mislocalizations of the moving target or flashed object and that understanding and analysis of the flash-lag effect should focus on these more basic mislocalizations rather than on the relationship between the moving target and the flashed object.
    [Show full text]
  • Shimojo's C.V
    Curriculum Vitae of Shinsuke Shimojo October 2, 2020 Name: Shinsuke Shimojo, Ph.D. Address: 837 San Rafael Terrace, Pasadena, CA 91105 Phone: (626) 403-7417 (home) (626) 395-3324 (office) Fax: (626) 792-8583 (office) E-Mail: [email protected] Birthplace: Tokyo Birthdate: April 1, 1955 Nationality: Japanese Education: Degree Year Field of Study University of Tokyo B.A. 1978 University of Tokyo M.A. 1980 Experimental Psychology Massachusetts Institute Ph.D. 1985 Experimental of Technology Psychology Professional Experience: 1981-1982 Visiting Scholar, Department of Psychology, Massachusetts Institute of Technology, Cambridge, MA. 1982-1983 Research Affiliate, Department of Psychology, Massachusetts Institute of Technology, Cambridge, MA. 1983-1985 Teaching Assistant, Department of Psychology, Massachusetts Institute of Technology, Cambridge, MA. 1986-1987 Postdoctoral Fellow, Department of Ophthalmology, Nagoya University, Nagoya, Japan. 1986-1989 Postdoctoral Fellow Smith-Kettlewell Eye Research Institute, San Francisco, CA. 1989-1997 Associate Professor, Department of Psychology / Department of Life Sciences (Psychology), Graduate School of Arts & Sciences, University of Tokyo, Tokyo, Japan. 1989-1993 Fellow, Department of Psychology, Harvard University, Cambridge, MA. Shimojo, page 2 of 55 Professional Experience (con’t.): 1993-1994 Visiting Scientist, Dept. of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA. 1997-1998 Associate Professor, Division of Biology / Computation & Neural Systems, California
    [Show full text]
  • Poster Session 1
    Part IX Poster Session 1 99 SCALING DEPRESSION WITH PSYCHOPHYSICAL SCALING: A R COMPARISON BETWEEN THE BORG CR SCALE⃝ (CR100, R CENTIMAX⃝) AND PHQ-9 ON A NON-CLINICAL SAMPLE Elisabet Borg and Jessica Sundell Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden <[email protected]> Abstract A non-clinical sample (n =71) answered an online survey containing the Patient Health Questionnaire-9 (PHQ-9), that rates the frequency of symptoms of depression (DSM-IV). R R The questions were also adapted for the Borg CR Scale⃝ (CR100, centiMax⃝) (0–100), a general intensity scale with verbal anchors from a minimal to a maximal intensity placed in agreement with a numerical scale to give ratio data). The cut-off score of PHQ-9 10 was found to correspond to 29cM. Cronbach’s alpha for both scales was high (0.87)≥ and ≥ the correlation between the scales was r =0.78 (rs =0.69). Despite restriction of range, the cM- scale works well for scaling depression with added possibilities for valuable data analysis. According to the World Health Organisation (2016), depression is a growing health prob- lem around the globe. Since it is one of the most prevalent emotional disorders, can cause considerable impairment in an individual’s capacity to deal with his or her regular duties, and at its worst is a major risk factor for suicide attempt and suicide, correct and early diagnosis and treatment is very important (e.g., APA, 2013, Ferrari et al., 2013; Richards, 2011). Major depressive disorder (MDD) is characterized by distinct episodes of at least two weeks duration involving changes in affects, in cognition and neurovegetative func- tions, and described as being characterized by sadness, loss of pleasure or interest, fatigue, low self- esteem and self-blame, disturbed appetite and sleep, in addition to poor concen- tration (DSM- V, APA, 2013; WHO, 2016).
    [Show full text]
  • Motion Extrapolation in Visual Processing: Lessons from 25 Years of Flash-Lag Debate
    5698 • The Journal of Neuroscience, July 22, 2020 • 40(30):5698–5705 Viewpoints Motion Extrapolation in Visual Processing: Lessons from 25 Years of Flash-Lag Debate Hinze Hogendoorn Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, 3010 Victoria, Australia Because of the delays inherent in neural transmission, the brain needs time to process incoming visual information. If these delays were not somehow compensated, we would consistently mislocalize moving objects behind their physical positions. Twenty-five years ago, Nijhawan used a perceptual illusion he called the flash-lag effect (FLE) to argue that the brain’s visual system solves this computational challenge by extrapolating the position of moving objects (Nijhawan, 1994). Although motion extrapolation had been proposed a decade earlier (e.g., Finke et al., 1986), the proposal that it caused the FLE and functioned to compensate for computational delays was hotly debated in the years that followed, with several alternative interpretations put forth to explain the effect. Here, I argue, 25 years later, that evidence from behavioral, computational, and particularly recent functional neuroimaging studies converges to support the existence of motion extrapolation mecha- nisms in the visual system, as well as their causal involvement in the FLE. First, findings that were initially argued to chal- lenge the motion extrapolation model of the FLE have since been explained, and those explanations have been tested and corroborated by more recent findings. Second, motion extrapolation explains the spatial shifts observed in several FLE condi- tions that cannot be explained by alternative (temporal) models of the FLE. Finally, neural mechanisms that actually perform motion extrapolation have been identified at multiple levels of the visual system, in multiple species, and with multiple dif- ferent methods.
    [Show full text]
  • 54 Motion Perception: Human Psychophysics
    PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY 54 Motion Perception: Human Psychophysics David Burr Perceiving motion is a fundamental skill of any visual are combined by “quadrature pairing,” a technique that system: to analyze the form and velocity of moving produces direction selectivity (C). The outputs of the objects; to avoid collision with moving masses; to navi- two classes of filters (sine and cosine) are then squared gate through our environment; to analyze the three- and summed together (C), to yield a smooth response, dimensional structure of the world we move through; selective for direction and also weakly selective for and much more. Much progress has been made over speed. Figure 54.1D shows the resulting frequency the past few decades to learn how humans and other response, clearly selective to a specific range of animals analyze visual signals of objects in motion. This velocities. chapter concentrates primarily on advances in human This model describes perception of real motion and psychophysics. For an excellent review of imaging also accounts for many other phenomena, including studies of human and nonhuman primates—and the apparent or sampled motion, previously thought to reflect homologies between them—the interested reader is separate processes (e.g., Kolers, 1972): The integration referred to the excellent chapter (chapter 55) by Orban in space and in time causes the discrete motion sequence and Jastorff. to become continuous. It also explains some motion Over the last few decades many important conceptual illusions, including the “fluted square wave” illusion and empirical advances have enormously expanded our (Adelson & Bergen, 1985) and the reverse-phi illusion understanding of the principles behind motion percep- of Anstis (1970).
    [Show full text]
  • When Predictions Fail: Correction for Extrapolation in the Flash-Grab Effect
    Journal of Vision (2019) 19(2):3, 1–11 1 When predictions fail: Correction for extrapolation in the flash-grab effect Melbourne School of Psychological Sciences, Tessel Blom University of Melbourne, Melbourne, Australia $ Melbourne School of Psychological Sciences, Qianchen Liang University of Melbourne, Melbourne, Australia $ Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia Helmholtz Institute, Department of Experimental # Hinze Hogendoorn Psychology, Utrecht University, Utrecht, The Netherlands $ Motion-induced position shifts constitute a broad class of visual illusions in which motion and position signals Introduction interact in the human visual pathway. In such illusions, the presence of visual motion distorts the perceived A broad class of visual illusions demonstrate that positions of objects in nearby space. Predictive motion and position signals interact in the human mechanisms, which could contribute to compensating visual pathway. In such illusions, the presence of visual for processing delays due to neural transmission, have motion distorts the perceived positions of objects in been given as an explanation. However, such nearby space, causing motion-induced position shifts. mechanisms have struggled to explain why we do not The most-studied illusion in this category is probably usually perceive objects extrapolated beyond the end of their trajectory. Advocates of this interpretation have the flash-lag effect (Nijhawan, 1994), in which a proposed a ‘‘correction-for-extrapolation’’ mechanism to stimulus is flashed next to (and aligned with) a moving explain this: When the object motion ends abruptly, this object. The result is that the flash appears to lag behind mechanism corrects the overextrapolation by shifting the position of the moving object.
    [Show full text]
  • Predictive Feedback to the Primary Visual Cortex During Saccades
    Edwards, Grace (2014) Predictive feedback to the primary visual cortex during saccades. PhD thesis. http://theses.gla.ac.uk/5861/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Predictive feedback to the primary visual cortex during saccades Grace Edwards THESIS SUBMITTED TO THE UNIVERSITY OF GLASGOW FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OCTOBER 2014 Contains studies performed in the: Centre for Cognitive Neuroimaging, Department of Psychology, University of Glasgow, Glasgow, G12 8QB © Grace Edwards 2014 2 For Granddad 3 Abstract Perception of our sensory environment is actively constructed from sensory input and prior expectations. These expectations are created from knowledge of the world through semantic memories, spatial and temporal contexts, and learning. Multiple frameworks have been created to conceptualise this active perception, these frameworks will be further referred to as inference models. There are three elements of inference models which have prevailed in these frameworks. Firstly, the presence of internal generative models for the visual environment, secondly feedback connections which project prediction signals of the model to lower cortical processing areas to interact with sensory input, and thirdly prediction errors which are produced when the sensory input is not predicted by feedback signals.
    [Show full text]
  • Neuronal Latencies and the Position of Moving Objects
    Review TRENDS in Neurosciences Vol.24 No.6 June 2001 335 Neuronal latencies and the position of moving objects Bart Krekelberg and Markus Lappe Neuronal latencies delay the registration of the visual signal from a moving flashed object, either because it does not move, or object. By the time the visual input reaches brain structures that encode its because its duration is too short to initiate position, the object has already moved on. Do we perceive the position of a extrapolation mechanisms. Hence, the flash is seen at moving object with a delay because of neuronal latencies? Or is there a brain its true position, but the moving object is seen at an mechanism that compensates for latencies such that we perceive the true extrapolated position (Fig. 2b). This extrapolated position of a moving object in real time? This question has been intensely position is the position the moving object occupies debated in the context of the flash-lag illusion: a moving object and an object ‘now’, not the position it occupied when the flash hit flashed in alignment with it appear to occupy different positions. The moving the retina: hence, the flash will appear to lag behind. object is seen ahead of the flash. Does this show that the visual system If motion extrapolation compensates for neuronal extrapolates the position of moving objects into the future to compensate for latencies, the magnitude of the lag-effect should neuronal latencies? Alternative accounts propose that it simply shows that depend on the actual latency of the moving object. moving and flashed objects are processed with different delays, or that it Hence, a crucial test manipulates the latency of the reflects temporal integration in brain areas that encode position and motion.
    [Show full text]
  • Smooth Anticipatory Eye Movements Alter the Memorized Position of Flashed Targets
    Journal of Vision (2003) 3, 761-770 http://journalofvision.org/3/11/10/ 761 Smooth anticipatory eye movements alter the memorized position of flashed targets Center for Systems Engineering and Applied Mechanics and Laboratory of Neurophysiology, Université catholique Gunnar Blohm de Louvain, Louvain-la-Neuve, Belgium Laboratory of Neurophysiology, Université catholique de Marcus Missal Louvain, Brussels, Belgium Center for Systems Engineering and Applied Mechanics and Laboratory of Neurophysiology, Université catholique Philippe Lefèvre de Louvain, Louvain-la-Neuve, Belgium Briefly flashed visual stimuli presented during smooth object- or self-motion are systematically mislocalized. This phenomenon is called the “flash-lag effect” (Nijhawan, 1994). All previous studies had one common characteristic, the subject’s sense of motion. Here we asked whether motion perception is a necessary condition for the flash-lag effect to occur. In our first experiment, we briefly flashed a target during smooth anticipatory eye movements in darkness and subjects had to orient their gaze toward the perceived flash position. Subjects reported to have no sense of eye motion during anticipatory movements. In our second experiment, subjects had to adjust a cursor on the perceived position of the flash. As a result, we show that gaze orientation reflects the actual perceived flash position. Furthermore, a flash-lag effect is present despite the absence of motion perception. Moreover, the time course of gaze orientation shows that the flash- lag effect appeared immediately after the egocentric to allocentric reference frame transformation. Keywords: anticipation, smooth pursuit, saccades, localization, flash perception, flash-lag effect One condition in which localization errors happen is Introduction during smooth object- or self-motion.
    [Show full text]
  • Motion Extrapolation in Visual Processing: Lessons from 25 Years of Flash-Lag Debate
    5698 • The Journal of Neuroscience, July 22, 2020 • 40(30):5698–5705 Viewpoints Motion Extrapolation in Visual Processing: Lessons from 25 Years of Flash-Lag Debate Hinze Hogendoorn Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, 3010 Victoria, Australia Because of the delays inherent in neural transmission, the brain needs time to process incoming visual information. If these delays were not somehow compensated, we would consistently mislocalize moving objects behind their physical positions. Twenty-five years ago, Nijhawan used a perceptual illusion he called the flash-lag effect (FLE) to argue that the brain’s visual system solves this computational challenge by extrapolating the position of moving objects (Nijhawan, 1994). Although motion extrapolation had been proposed a decade earlier (e.g., Finke et al., 1986), the proposal that it caused the FLE and functioned to compensate for computational delays was hotly debated in the years that followed, with several alternative interpretations put forth to explain the effect. Here, I argue, 25 years later, that evidence from behavioral, computational, and particularly recent functional neuroimaging studies converges to support the existence of motion extrapolation mecha- nisms in the visual system, as well as their causal involvement in the FLE. First, findings that were initially argued to chal- lenge the motion extrapolation model of the FLE have since been explained, and those explanations have been tested and corroborated by more recent findings. Second, motion extrapolation explains the spatial shifts observed in several FLE condi- tions that cannot be explained by alternative (temporal) models of the FLE. Finally, neural mechanisms that actually perform motion extrapolation have been identified at multiple levels of the visual system, in multiple species, and with multiple dif- ferent methods.
    [Show full text]
  • Psychophysics and Neurophysiology of Compensation for Time Delays
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE BEHAVIORAL AND BRAIN SCIENCES (2008) 31, 179–239 provided by RERO DOC Digital Library Printed in the United States of America doi: 10.1017/S0140525X08003804 Visual prediction: Psychophysics and neurophysiology of compensation for time delays Romi Nijhawan Department of Psychology, University of Sussex, Falmer, East Sussex, BN1 9QH, United Kingdom [email protected] http://www.sussex.ac.uk/psychology/profile116415.html Abstract: A necessary consequence of the nature of neural transmission systems is that as change in the physical state of a time-varying event takes place, delays produce error between the instantaneous registered state and the external state. Another source of delay is the transmission of internal motor commands to muscles and the inertia of the musculoskeletal system. How does the central nervous system compensate for these pervasive delays? Although it has been argued that delay compensation occurs late in the motor planning stages, even the earliest visual processes, such as phototransduction, contribute significantly to delays. I argue that compensation is not an exclusive property of the motor system, but rather, is a pervasive feature of the central nervous system (CNS) organization. Although the motor planning system may contain a highly flexible compensation mechanism, accounting not just for delays but also variability in delays (e.g., those resulting from variations in luminance contrast, internal body temperature, muscle fatigue, etc.), visual mechanisms also contribute to compensation. Previous suggestions of this notion of “visual prediction” led to a lively debate producing re-examination of previous arguments, new analyses, and review of the experiments presented here.
    [Show full text]