TAAR1-Dependent and -Independent Actions of Tyramine in Interaction with Glutamate Underlie Central Effects of Monoamine Oxidase Inhibition

Total Page:16

File Type:pdf, Size:1020Kb

TAAR1-Dependent and -Independent Actions of Tyramine in Interaction with Glutamate Underlie Central Effects of Monoamine Oxidase Inhibition Biological Psychiatry Archival Report TAAR1-Dependent and -Independent Actions of Tyramine in Interaction With Glutamate Underlie Central Effects of Monoamine Oxidase Inhibition Ioannis Mantas, Theodosia Vallianatou, Yunting Yang, Mohammadreza Shariatgorji, Maria Kalomoiri, Elva Fridjonsdottir, Mark J. Millan, Xiaoqun Zhang, Per E. Andrén, and Per Svenningsson ABSTRACT BACKGROUND: Monoamine oxidase inhibitors (MAOIs) exert therapeutic actions by elevating extracellular levels of monoamines in the brain. Irreversible MAOIs cause serious hypertensive crises owing to peripheral accumulation of tyramine, but the role of tyramine in the central effects of MAOIs remains elusive, an issue addressed herein. To achieve robust inhibition of MAOA/B, the clinically used antidepressant tranylcypromine (TCP) was employed. METHODS: Behavioral, histological, mass spectrometry imaging, and biosensor-mediated measures of glutamate were conducted with MAOIs in wild-type and TAAR1-knockout (KO) mice. RESULTS: Both antidepressant and locomotion responses to TCP were enhanced in TAAR1-KO mice. A recently developed fluoromethylpyridinium-based mass spectrometry imaging method revealed robust accumulation of striatal tyramine on TCP administration. Furthermore, tyramine accumulation was higher in TAAR1-KO versus wild- type mice, suggesting a negative feedback mechanism for TAAR1 in sensing tyramine levels. Combined histoenzymological and immunohistological studies revealed hitherto unknown TAAR1 localization in brain areas projecting to the substantia nigra/ventral tegmental area. Using an enzyme-based biosensor technology, we found that both TCP and tyramine reduced glutamate release in the substantia nigra in wild-type but not in TAAR1-KO mice. Moreover, glutamate measures in freely moving animals treated with TCP demonstrated that TAAR1 prevents glutamate accumulation in the substantia nigra during hyperlocomotive states. CONCLUSIONS: These observations suggest that tyramine, in interaction with glutamate, is involved in centrally mediated behavioral, transcriptional, and neurochemical effects of MAOIs. https://doi.org/10.1016/j.biopsych.2020.12.008 Monoamine oxidase (MAO) is a mitochondrial enzyme that to induce monoamine release in an amphetamine-like manner plays a pivotal role in the intracellular inactivation of throughaninteractionwithVMAT2(7,10–12). Tyramine is gener- monoaminergic neurotransmitters. MAO inhibitors (MAOIs) ated by the AADC (aromatic L-amino acid decarboxylase)– have long been used for the treatment of Parkinson’sdis- mediated decarboxylation of tyrosine and is mainly colocalized ease, major depressive disorder, and anxiety (1,2). In with DA in nigrostriatal neurons (6,7,12). Tyramine can be addition, polymorphisms in MAO genes have been associ- degraded by both MAO isoforms, but MAOB predominates in ated with schizophrenia and personality disorders (3–5). dopaminergic pathways. The literature focuses on the fact that There are two MAO enzyme isoforms, MAOA and MAOB, MAOI-induced elevations of tyramine mediate severe peripheral which differ in their substrate specificity: serotonin (5-HT) side effects (13). The so-called tyramine syndrome in MAOI- and norepinephrine (NE) are primarily broken down by treated patients is characterized by a life-threatening elevation of MAOA, while dopamine (DA) is degraded by both MAOA blood pressure after the ingestion of tyramine-rich foods (13). and MAOB (2). MAO inhibition results in the accumulation Specifically, the monoamine-releasing properties of tyramine of 5-HT, NE, and DA along with trace amines (TAs), such cause an NE efflux from the postganglionic sympathetic nerve as tyramine (2). terminals (13). There is comparatively sparse knowledge on the TAs have low concentration in biological fluids compared with regulation and role of tyramine in modulating effects of MAOIs in classical monoamines. Parkinson’s disease is associated with the brain. high tyramine plasma levels, while major depressive disorder TAARs are GPCRs (G protein–coupled receptors) that displays low urine levels of the same TA (6–9). Tyramine is known belong to the rhodopsin subclass A of the GPCR superfamily SEE COMMENTARY ON PAGE 2 16 ª 2020 Society of Biological Psychiatry. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Biological Psychiatry July 1, 2021; 90:16–27 www.sobp.org/journal ISSN: 0006-3223 Biological Tyramine, TAAR1, and MAO Psychiatry (14,15). There is evidence that TAARs display Gs,Gq, and G13 METHODS AND MATERIALS coupling; interestingly, this can occur with the TA localized intracellularly rather than on the surface membrane (16–19). In Animals addition to binding TAs, such as tyramine, TAAR1 is activated Adult male and female WT and TAAR1-KO animals (29) were by several classes of psychoactive agents employed for both housed in temperature- and humidity-controlled rooms (20C, therapeutic and recreational purposes, notably amphetamine, 53% humidity) with a 12-hour light/dark cycle and access to methamphetamine, and MDMA (methylenedioxymethamphet- food pellets and water ad libitum. amine) (6,20–22). TAAR1 is expressed in the stomach, pancreas, and, along with TAAR5, in limbic and periventricular Behavioral Tests areas of the brain (7,14,23). TAAR1 is enriched in mono- aminergic perikarya, such as the ventral tegmental area (VTA), Adult male and female mice were randomized according to substantia nigra pars compacta (SNc), dorsal raphe nucleus, genotype and treatment and tested by videotracking in the fi and the nucleus of the solitary tract; it is also present in the open eld test and forced swim test. All behavioral tests were prefrontal cortex, entorhinal cortex, hypothalamus, and performed during the light cycle by experimenters blinded to amygdala (24,25). VTA and dorsal raphe neurons show a the genotype and treatment. The equipment and detailed robust increase of spontaneous firing after application of the protocols are described in the Supplement. TAAR1 selective antagonist EPPTB and in TAAR1-knockout (KO) mice compared with wild-type (WT) mice, suggesting Drugs that TAAR1 exerts an inhibitory tone on the activity of dopa- TCP, clorgiline, and rasagiline mesylate were dissolved in saline – minergic and serotonergic neurons (26 28). Accordingly, solution. Desipramine and pargyline were dissolved in 10% TAAR1-KO mice display behavioral hypersensitivity and more dimethyl sulfoxide solution. These chemicals were purchased pronounced increases in extracellular levels of monoamines from Sigma-Aldrich (St. Louis, MO). Drugs were administered in projection regions such as the nucleus accumbens, stria- intraperitoneally (i.p.). EPPTB and tyramine (Sigma-Aldrich) were tum, and cortex on exposure to psychostimulants (24,27,29). administered locally during fast analytical sensing technology Conversely, agonist stimulation of TAAR1 blunts actions of (FAST) recordings of glutamate neurotransmission. psychostimulants (27). The above observations underpin in- terest in TAAR1 as a potential target for novel classes of medication treating depression (antagonists) or psychotic Intrastriatal 6-Hydroxydopamine Lesioning disorders (agonists). Many compounds, both selective and To selectively denervate nigrostriatal DA neurons, but to pro- multitarget, have been generated to this end (30), and tect NE neurons, mice were pretreated with 25 mg/kg desi- encouraging observations have been acquired in experi- pramine (i.p.; Sigma-Aldrich) and 5 mg/kg pargyline (i.p.; mental and clinical studies (31). Most recently, the combined Sigma-Aldrich), anesthetized, placed in a stereotaxic frame, TAAR1/5-HT1A receptor agonist SEP-363856 showed anti- and injected with 1 mL of 6-hydroxydopamine (6-OHDA) solu- psychotic activity in patients with schizophrenia (31,32). tion into the striatum of the right hemisphere. The detailed Should these observations be corroborated in larger trials, procedure is described in the Supplement. SEP-363856 would become the first non–dopamine D2 re- ceptor antagonist available for the treatment of schizophrenia MAO Activity Assay (31,32). Despite the abovementioned observations supporting Fresh-frozen forebrain tissue was homogenized and used for the physiological, etiological, and therapeutic significance isolation of crude mitochondrial fraction. The isolated mito- of tyramine and TAAR1s, knowledge remains limited. chondrial fraction was used for MAOA and MAOB activity fi Previous studies have examined the role of TAAR1 under quanti cation using an Amplex Red Monoamine Oxidase fi conditions in which the synthesis and metabolism of Assay Kit (Thermo Fisher Scienti c, Waltham, MA), as detailed tyramine have not been directly perturbed. Here, we in the Supplement. decided to examine effects of tyramine and TAAR1 under conditions in which the levels of tyramine are elevated by MALDI–Mass Spectrometry Imaging of means of MAO inhibition. Taking advantage of a recently Neurotransmitters and Metabolites fl developed uoromethylpyridinium-based matrix assisted Fresh-frozen brain tissue sections collected for MALDI–mass laser desorption/ionization (MALDI) imaging method (33), spectrometry imaging (MSI) were thaw-mounted on indium tin fi we visualized and quanti ed tyramine, along with other oxide–coated glass slides (Bruker Daltonics GmbH, Bremen, monoamines and metabolites, in the striatum of both WT Germany). For MALDI-MSI of neurotransmitters and metabolites, and TAAR1-KO mice, following MAO inhibition. Mice were on-tissue derivatization was performed
Recommended publications
  • Rutamarin: Efficient Liquid–Liquid Chromatographic Isolation from Ruta Graveolens L
    molecules Article Rutamarin: Efficient Liquid–Liquid Chromatographic Isolation from Ruta graveolens L. and Evaluation of Its In Vitro and In Silico MAO-B Inhibitory Activity Ewelina Kozioł 1, Simon Vlad Luca 2,3, Hale Gamze A˘galar 4 , Begüm Nurpelin Sa˘glık 4 , Fatih Demirci 4,5, Laurence Marcourt 6 , Jean-Luc Wolfender 6 , Krzysztof Jó´zwiak 7 and Krystyna Skalicka-Wo´zniak 1,* 1 Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 2 Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; [email protected] 3 Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany 4 Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; [email protected] (H.G.A.); [email protected] (B.N.S.); [email protected] (F.D.) 5 Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, Cyprus 6 Institute of Pharmaceutical Sciences of Western Switzerland, IPSWS, University of Geneva, CMU, 1211 Geneva 4, Switzerland; [email protected] (L.M.); [email protected] (J.-L.W.) 7 Department of Biopharmacy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] * Correspondence: [email protected] Academic Editors: Tomasz Tuzimski and James Barker Received: 29 April 2020; Accepted: 5 June 2020; Published: 9 June 2020 Abstract: Naturally occurring coumarins are a group of compounds with many documented central nervous system (CNS) activities. However, dihydrofuranocoumarins have been infrequently investigated for their bioactivities at CNS level.
    [Show full text]
  • The Antidepressant-Like Effect of Flavonoids from Trigonella Foenum-Graecum Seeds in Chronic Restraint Stress Mice Via Modulation of Monoamine Regulatory Pathways
    molecules Article The Antidepressant-like Effect of Flavonoids from Trigonella Foenum-Graecum Seeds in Chronic Restraint Stress Mice via Modulation of Monoamine Regulatory Pathways Jiancheng Wang, Cuilin Cheng *, Chao Xin and Zhenyu Wang * Harbin Institute of Technology, 92 West Dazhi Street, Nangang District, Harbin 150001, China; [email protected] (J.W.); [email protected] (C.X.) * Correspondence: [email protected] (C.C.); [email protected] (Z.W.); Tel.: +86-1884-578-1315 (C.C.); +86-1303-996-0001 (Z.W.) Academic Editor: Thomas Efferth Received: 27 February 2019; Accepted: 19 March 2019; Published: 20 March 2019 Abstract: Fenugreek (Trigonella Foenum-Graecum) seeds flavonoids (FSF) have diverse biological activities, while the antidepressant-like effect of FSF has been seldom explored. The aim of this study was to evaluate the antidepressant-like effect of FSF and to identify the potential molecular mechanisms. LC-MS/MS was used for the determination of FSF. Chronic restraint stress (CRS) was used to establish the animal model of depression. Observation of exploratory behavior in the forced swimming test (FST), tail suspension test (TST) and sucrose preference test (SPT) indicated the stress level. The serum corticosterone (CORT) level was measured. The monoamine neurotransmitters (5-HT, NE and DA) and their metabolites, as well as monoamine oxidase A (MAO-A) enzyme activity in the prefrontal cortex, hippocampus and striatum, were evaluated. The protein expression levels of KLF11, SIRT1, MAO-A were also determined by western blot analysis. The results showed that FSF treatment significantly reversed the CRS-induced behavioral abnormalities, including reduced sucrose preference and increased immobility time.
    [Show full text]
  • Regulation of Neuronal Communication by G Protein-Coupled Receptors ⇑ Yunhong Huang, Amantha Thathiah
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 589 (2015) 1607–1619 journal homepage: www.FEBSLetters.org Review Regulation of neuronal communication by G protein-coupled receptors ⇑ Yunhong Huang, Amantha Thathiah VIB Center for the Biology of Disease, Leuven, Belgium Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium article info abstract Article history: Neuronal communication plays an essential role in the propagation of information in the brain and Received 31 March 2015 requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mech- Revised 5 May 2015 anism through which neurons communicate with each other. It is a strictly regulated process which Accepted 5 May 2015 involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release Available online 14 May 2015 from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G Edited by Wilhelm Just protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the func- tion of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in reg- Keywords: G protein-coupled receptors ulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of G-proteins astrocytic GPCRs in the regulation of neuronal communication. Neuronal communication Ó 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Synaptic transmission Signaling Astrocytes Neurons Autoreceptors Neurotransmitters 1.
    [Show full text]
  • The Serotonin Syndrome
    The new england journal of medicine review article current concepts The Serotonin Syndrome Edward W. Boyer, M.D., Ph.D., and Michael Shannon, M.D., M.P.H. From the Division of Medical Toxicology, he serotonin syndrome is a potentially life-threatening ad- Department of Emergency Medicine, verse drug reaction that results from therapeutic drug use, intentional self-poi- University of Massachusetts, Worcester t (E.W.B.); and the Program in Medical Tox- soning, or inadvertent interactions between drugs. Three features of the sero- icology, Division of Emergency Medicine, tonin syndrome are critical to an understanding of the disorder. First, the serotonin Children’s Hospital, Boston (E.W.B., M.S.). syndrome is not an idiopathic drug reaction; it is a predictable consequence of excess Address reprint requests to Dr. Boyer at IC Smith Bldg., Children’s Hospital, 300 serotonergic agonism of central nervous system (CNS) receptors and peripheral sero- 1,2 Longwood Ave., Boston, MA 02115, or at tonergic receptors. Second, excess serotonin produces a spectrum of clinical find- [email protected]. edu. ings.3 Third, clinical manifestations of the serotonin syndrome range from barely per- This article (10.1056/NEJMra041867) was ceptible to lethal. The death of an 18-year-old patient named Libby Zion in New York updated on October 21, 2009 at NEJM.org. City more than 20 years ago, which resulted from coadminstration of meperidine and phenelzine, remains the most widely recognized and dramatic example of this prevent- N Engl J Med 2005;352:1112-20. 4 Copyright © 2005 Massachusetts Medical Society. able condition.
    [Show full text]
  • Pharmaceutical Appendix to the Harmonized Tariff Schedule
    Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Theories of Depression by Richard H
    Theories of Depression by Richard H. Hall, 1998 Monamine/5-HT Hypothesis Just as with schizophrenia, the most popular neurophysiological theory of depression follows from the drugs that are used to treat it. The evolution of antidepressant drugs has, in some ways, been the systematic narrowing down of monoamines to Serotonin. MAO inhibitors are Dopamine-Epinephrine-Norephinephrine-Seratonin agonists. Tricyclic Antidepressants are Norepinephrine-Serotonin agonists, and, finally SSRIs act as Serotonin (5-HT) agonists. Thus, the monoamine hypothesis has evolved in the same way, so that today one popular theory of depression, the Monoamine Hypothesis, is that depression is the result of underactivity of monoamines, especially 5-HT. Besides the fact that antidepression drugs are all monoamine agonists, there is other evidence that supports the theory. First, Reserpine, a monoamine antagonist, which was used to treat things like high blood pressure, is rarely used at the present time due to the fact that depression is a common side effect. Thus, not only can monoamine agonists decrease depression, but monoamine antagonists (Reserpine) can induce depression. Another piece of evidence in support of the Monoamine Hypothesis is that levels of 5-HT, as measured by its metabolites, seem to be correlated with depression. For example, patients who have low levels of a 5-HT metabolite were found to be more likely to have committed suicide. It often takes two to three weeks for antidepressant drugs to effectively treat depression. This is a difficult phenomenon to explain within the context of the monoamine hypothesis. Presumably, in response to monoamine agonists these neurotransmitter levels increase right away, and, if depression is caused by low levels of the neurotransmitter, then depression should decrease as the levels of monoamines increase.
    [Show full text]
  • Sustained Administration of Pramipexole Modifies the Spontaneous Firing of Dopamine, Norepinephrine, and Serotonin Neurons in the Rat Brain
    Neuropsychopharmacology (2009) 34, 651–661 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $32.00 www.neuropsychopharmacology.org Sustained Administration of Pramipexole Modifies the Spontaneous Firing of Dopamine, Norepinephrine, and Serotonin Neurons in the Rat Brain ,1 1 1,2 O Chernoloz* , M El Mansari and P Blier 1 2 Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada Pramipexole (PPX) is a D2/D3 receptor agonist that has been shown to be effective in the treatment of depression. Serotonin (5-HT), norepinephrine (NE) and dopamine (DA) systems are known to be involved in the pathophysiology and treatment of depression. Due to reciprocal interactions between these neuronal systems, drugs selectively targeting one system-specific receptor can indirectly modify the firing activity of neurons that contribute to firing patterns in systems that operate via different neurotransmitters. It was thus hypothesized that PPX would alter the firing rate of DA, NE and 5-HT neurons. To test this hypothesis, electrophysiological experiments were carried out in anesthetized rats. Subcutaneously implanted osmotic minipumps delivered PPX at a dose of 1 mg/kg per day for 2 or 14 days. After a 2-day treatment with PPX the spontaneous neuronal firing of DA neurons was decreased by 40%, NE neuronal firing by 33% and the firing rate of 5-HT neurons remained unaltered. After 14 days of PPX treatment, the firing rate of DA had recovered as well as that of NE, whereas the firing rate of 5-HT neurons was increased by 38%.
    [Show full text]
  • Drugs, the Brain, and Behavior
    Drugs, The Brain, and Behavior John Nyby Department of Biological Sciences Lehigh University What is a drug? Difficult to define Know it when you see it Neuroactive vs Non-Neuroactive drugs Two major categories of neuroactive drugs: Therapeutic Drugs Recreational Drugs (Drugs of Abuse) Both types of neuroactive drugs affect neural functioning and behavior How does a drug affect behavior Drug Behavioral (Antidepressant) Outcome (Capable of positive emotions) Different Levels at which drug effects in the brain can be studied Molecular Cellular Organismal events Events Events “Good” Therapeutic Drugs vs “Bad” Addictive drugs No clear boundary! All “good” drugs have undesirable side effects Many “good” drugs can be addictive (i.e. “bad”) under the right circumstances (i.e. Rush Limbaugh and oxycontin) How does Drug Enforcement Administration (DEA) decide whether a drug is a “good” therapeutic drug or a “bad” illegal drug. A “bad” drug in the US can be a good drug in other countries Neuroactive Drugs Work by Altering Chemical Signaling in the Brain Two Classes of Chemical Signals in the brain Neurotransmitters Neurohormones Two Ways a Drug Affects Neural Signaling Agonist for chemical signal Antagonist for chemical Signal In order to understand drug action must have a good understanding of chemical signaling in brain Neuronal communication Three Ways that information is transmitted in a Neuron Synapse Neuron Most neuroactive drugs act by altering synaptic transmission Generalized Synapse (Major Drug Events) Most neurotransmitters are either AA, modified AA, or peptides Neurotransmitter Agonists Peptide Neurotransmitter Antagonists in vesicle 1. serve as precursors AA 1. block synthetic enzymes 2. block degradative enzymes in cytoplasm 2.
    [Show full text]
  • Noradrenergic Function and Clinical Outcome in Antidepressant Pharmacotherapy Helen L
    Noradrenergic Function and Clinical Outcome in Antidepressant Pharmacotherapy Helen L. Miller, M.D., R. David Ekstrom, M.A., M.P.H., George A. Mason, Ph.D., R. Bruce Lydiard, M.D., Ph.D., and Robert N. Golden, M.D. Controversy remains regarding the role of noradrenergic and at the conclusion of the treatment trial. Changes in systems in determining clinical response to antidepressant urinary excretion of 6-sulfatoxymelatonin distinguished pharmacotherapy. Pineal gland production of melatonin can antidepressant responders from nonresponders, with a serve as a physiologic index of noradrenergic function. The significant increase observed in the former group and a aim of this study was to examine the effects of significant decrease in the latter. The degree of clinical antidepressant treatment on 24-hour urinary excretion of response was correlated with the change in the principle metabolite of melatonin, 6-sulfatoxymelatonin 6-sulfatoxymelatonin excretion. These results suggest that in treatment responders and nonresponders. Twenty-four enhanced noradrenergic function may play an important outpatients meeting DSM-III-R criteria for Major role in determining clinical response to Depression received treatment with either fluvoxamine or antidepressant pharmacotherapy. imipramine for 6 weeks while participating in a placebo- [Neuropsychopharmacology 24:617–623, 2001] controlled double-blind clinical trial. Twenty-four hour © 2001 American College of Neuropsychopharmacology. excretion of 6-sulfatoxymelatonin was measured at baseline Published by Elsevier Science Inc. KEY WORDS: Antidepressants; Melatonin; Norepinephrine; a substantial minority do not, and insights regarding Pineal gland; Depression the necessary psychobiologic components of treatment response could help predict, and perhaps prevent, The introduction of effective antidepressant pharmaco- some cases of treatment failure.
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • Are Nicotinic Acetylcholine Receptors Coupled to G Proteins?
    Insights & Perspectives Hypotheses Are nicotinic acetylcholine receptors coupled to G proteins? Nadine Kabbani1)*, Jacob C. Nordman1), Brian A. Corgiat1), Daniel P. Veltri2), Amarda Shehu2), Victoria A. Seymour3) and David J. Adams3) It was, until recently, accepted that the two classes of acetylcholine (ACh) synaptic plasticity [2, 3]. Mutations receptors are distinct in an important sense: muscarinic ACh receptors within nAChR genes are implicated signal via heterotrimeric GTP binding proteins (G proteins), whereas in a number of human disorders þ 2þ þ including drug addiction and schizo- nicotinic ACh receptors (nAChRs) open to allow flux of Na ,Ca ,andK phrenia [4]. ions into the cell after activation. Here we present evidence of direct coupling Nicotinic receptors belong to an between G proteins and nAChRs in neurons. Based on proteomic, evolutionarily conserved class of cys- biophysical, and functional evidence, we hypothesize that binding to G loop containing receptor channels that proteins modulates the activity and signaling of nAChRs in cells. It is includes GABAA,glycine,and5HT3 important to note that while this hypothesis is new for the nAChR, it is receptorsaswellastwonewlydiscovered channels: a zinc-activated channel and consistent with known interactions between G proteins and structurally an invertebrate GABA-gated cation chan- related ligand-gated ion channels. Therefore, it underscores an evolution- nel [5]. In mammals, genes encoding arily conserved metabotropic mechanism of G protein signaling via nAChR neuronal nAChR subunits have been channels. identified and labeled a (a1–a10) and b (b1–b4). Functional nAChRs are derived Keywords: from an arrangement of five subunits into .acetylcholine; G protein coupling; intracellular loop; ligand-gated ion channel; heteromeric or homomeric receptors [6] loop modeling; protein interaction; signal transduction (Fig.
    [Show full text]
  • 3 Serotonin Syndrome
    PEDIATRIC PHARMACOTHERAPY A Monthly Newsletter for Health Care Professionals from the University of Virginia Children’s Hospital Volume 1 2 Number 3 March 2006 Serotoni n Syndrome: Pediatric and Neonatal Considerations Marcia L. Buck, Pharm.D., FCCP oxicity resulting from excessive serotonin is typically rapid . In a recent r eview of 41 cases T activity, referred to as serotonin syndrome, documented since 1995, 61.5% of patients was first described by Oates and Sjoerdsma in present ed within 6 hours of drug initiation, 1960. Since that time, over 100 cases have been dosage change, or overdose. 1 reported .1 Over the past decade, the diagnosis of serotonin syndrome has become more Mild cases may present with mydriasis, frequent, as the use of drugs which raise serum diaphoresis, tachycardia, shivering, clonus, serotonin concentrations has increased .1,2 The hyperreflexia, and tremor . A fever may or may syndrome may result from normal therapeutic use not be present. Clonus, hyperreflexia , and of d rugs which increase serotonin concentrations, tremor are typically more prominent in the lower but is more commonly associated with drug extremities. Moderate cases may present with overdose or interactions between two drug the symptoms previously described, as well as therapies. This issue of Pediatric hypertension, hyperthermia (a core temperature Pharmacotherapy will provide a brief review of up to 40 º C) , horizontal ocular clonus, nausea, serotonin syndrome, as well as some example s vomiting, hyperactive bowel sounds , and from the pediatric literature. diarrhea . Patients often have changes in mental status, including agitation, hypervigilance, and Mechanism pressured speech. 1-3 Serotonin (5 -hydroxytryptamine or 5 -HT) is produced in presynaptic neurons from L - Severe cases may present with profound tryptophan.
    [Show full text]