<<

2006-680: THE ROADMAP OF ARITHMETIC: SUMMING IT UP

Andrew Grossfield, Vaughn College of Aeronautics Throughout his career Dr. Grossfield, has combined an interest in engineering design and . He earned a BSEE at the City College of New York. During the early sixties, he obtained an M.S. degree in mathematics at night while working full time during the day, designing circuitry for aerospace/avionics companies. He is licensed in New York as a Professional Engineer and is a member of ASEE, IEEE, SIAM and MAA. [email protected] is his e-mail address. Page 11.1323.1

© American Society for Engineering Education, 2006 TheRoadmapofArithmetic:Summingitup Abstract Noticethisproblemofhumanconsciousness.Ideasandconceptsenterourmindoneatatime. Usuallyteachersandauthorshavetheentirecoursecontentintheirmindsbeforetheybegina courseorwriteatext.However,astudentcanonlyconfrontoneideaatatimeandsothecourse contentisarrangedsequentially,onetopicafteranother,onewordafteranother.Itisthenleftto thestudenttoconstructinhismindthebestarrangementofthematerial.Wemustacceptthat coursesandtextsaresequentiallyordered.Pagesarenumbered.Astudent,whenconfrontedby aparticularlydifficultpartofthetext,maysetthetextasidenevertoseetheofthe course.Theproblemis:whatisthebestarrangementforcoursematerialsothatastudentcan visualizethemajorcomponentsofacourseatthebeginningandsubsequentlyfillinthedetails? Thispaperpresentsaroadmapintheformofatreestructure(Seethechartattheconclusion.) thatwillallowyoungstudentstotreattheirstudyofarithmeticasaresearchproject.The roadmapwillprovideanavigationalaidtoassistintheexplorationoftheworldof. Historically,thediscoveryoftheperiodictableguidedscientistsinthestudyofchemistry, indicatingwhatwasknownandwheregapsexistedandraisingquestionsaboutwhatremainedto beexplored.Theperiodictablehasbeenimmenselyvaluable,eventhoughitsfinalformmay differfromthetablethatwasoriginallyproposed.Thisroadmapwillservestudentssimilarlyin theirstudyofarithmetic. Ineverywellplannedcourse,onlyonethingisstudied.Inarithmetic,thesubjectisnumbersand sotheword'numbers'isplacedatthetopoftheroadmap.Attheendofthecourse,astudent shouldknowthekinds,forms,operations,propertiesandusesofnumbers.Inoursociety,this studytakesafewyearsandisoftendisorganized.Itshouldnotbesurprisingthatayoungstudent mightbecomeconfusedanddisenchanted.Attheendofthecourse,thestrategyshouldbe reviewedsothatthestudentcanseewhathasbeenlearnedaboutnumbersandhownumbersare usedandwhatremainsforfuturestudy. Thisroadmapsuggeststhatincludinginthecoursepresentation,atreestructure,givingequal importancetothekinds,operations,formsandpropertiesofnumbers,hasconceptualadvantages. Thetreestructureseparatestheseconceptsbuthighlightstheirinteractioninthesolutionof quantitativeproblems.Thevisualizationofthetreestructuretogetherwithanunderstandingof theimportantconceptofformsmayaidstudentsinmasteringthesubject. Thestudyofnumbersisunendingandsothisroadmapcannotbeexhaustive.Stillitcanprovide aframeworkforintroducingthestudyofnumbers. Page 11.1323.2 Whatarenumbers? Numbersaresymbols,whichcanconveyinformationaboutsize,orderorposition.Theircrudest useisasidentifierssuchasareseenonthebacksoffootballplayers.Inthisuse,theyarenever added,subtractedorcompared.Numbersusedtoidentifyhousesasstreetaddressesnotonly identifybutalsoprovideinformationabouttheorderofthehousesonthestreetandalsoindicate onwhichsideofthestreethousesaresituated.Numbersarecategorizedbytheiralgebraicor topological(distance)properties. Kindsofnumbers Thenumbers,whichareusedtoindicatethesizeofsetsof discrete (separateanddistinct) objects,arethenaturalor numbers (1,2,3etc).Childrenlearnthecountingnumbers andtheirorderinthesamewaytheylearnthealphabet,bymemorization.Latertheylearnto add,subtractandmultiplythecountingnumbers.Asweknow,inthesetofcountingnumbers,it isnotmeaningfultosubtractalargerfromasmallernumber.Wedescribethissituation bysayingthatthesetofcountingnumbersis closed underandbutisnot closedwithrespectto. Thenumbers,whichindicatenotonlyadiscreteamountbutalsoadirection,arecalled andarethesignedwholenumbers(0, ±1, ±2, ±3etc).Theintegersmaybeadded,multiplied andsubtracted,andtheresultofthewillalwaysyieldanother.Thatis;theset ofintegersisclosedundertheoperationsofaddition,multiplicationandsubtraction.Buttheset ofintegersisnotclosedunder.Forexample,thereisnointegerwhosevalueequalsto5 dividedby3. Therealnumbersystemiscomposedofallthenumbers,eachofwhichcanbeplottedona straightline.Onepointisdesignatedaszero.Thecountingnumbers compriseasubsetofthe realnumbersthatareconventionallyspaceduniformlytotherightofzeroextendingindefinitely. Theintegers areplotteduniformlywiththepositivenumberstowardtherightandthenegative numberstowardtheleft.The realnumbersystem isclosedunderanycombinationofthebasic fourarithmeticoperations;addition,subtraction,multiplicationand/ordivision(exceptfor divisionbyzero).Sometimesthereareadvantagestothinkingofthenumbersaspointsonaline butthereareothertimeswhenthedistinctionbetweennumbersandpointsshouldbemaintained. Thesmallestsubsetoftherealnumbersystem,whichcontainstheintegersandisclosedunder thebasicfouroperations(exceptdivisionbyzero)isthesetof rationalnumbers ;thatis,those m 2 numbers,whichcanbedescribedbytheratio wheremandnrepresentintegers(e.g. ± ).It n 3 canbeshownthataninfinitenumberofrationalnumberscanbefoundbetweenanytwodifferent rationalnumbersandthereforearationalnumberhasnoimmediatepredecessororsuccessor. Therationalnumbersarenotdescribedasdiscrete.Thesetofrationalnumbersisdescribedas dense inthesetofrealnumbers. Page 11.1323.3 Sincetherationalnumbersaredense,atonetimeitwasbelievedthatalltherealnumberswere rational.Butitwasshownnottobeso.Inparticular,thediagonalofasquarewhosesideshave lengthequalto1cannotbeexpressedasaratioofintegersandthereforecannotberational. Polynomialequationsinasinglevariablemayhaverealsolutionsthatarenotrational.The solutionsor roots ofthesepolynomialequationsarecalled algebraic numbers.Thesetofall realalgebraicnumbersisclosedunderthebasicfouroperations(exceptdivisionbyzero).The setofpositivealgebraicnumbersisalsoclosedundertheoperationoftakingroots.Thesetof algebraicnumbers,whichincludestherationalnumbers,isalsodenseinthesetofrealnumbers. Thesetofrationalnumbersisalsoclosedundertheoperationofintegerpowers(exceptwhen theiszero)butnotfractionalpowers(orroots).Examplesarethatwhilethenumbers 1 1 2 2 =4and2 –2= arerational,thevalues2 (1/2) = 2 and2 ( –1/2) = arealgebraic 4 2 numbers. Studentsareusuallyintroducedtoalgebraicnumbers,denotedbyradicals.Comparedtoradical notation,fractionalexponentnotationhasconceptualandcomputationaladvantages.Compare: 5 2 5 32 =3 =9 (2/5) 5 (2/5)*5 2 to (3 ) =3 =3 =9. 2 Themultiplication *5intheexponentproducestheanswernaturally. 5 Mathematicianshaveshownthatthereexistrealnumbersthatareneitherintegers,norrational noralgebraic;thatis,numberswhicharenotthesolutionsofpolynomialequations.Onesuch numberisthenumberthatrepresentstheratioofthecircumferenceofeverycircletoits diameter.Thisnumberiscalled π.Anotheristhenumber,denotedby e,whichappearsinthe descriptionofnaturalgrowthanddecayprocesses.Thesenonalgebraicnumbers,whichare neededtocompletetherealnumberline,arecalledthe transcendental numbers.Insummary, therealnumbersystemcontainsasadensepropersubsetthealgebraicnumbers,whichcontainas adensepropersubsettherationalnumbers,whichinturn,containtheuniformlyspacedintegers, whichcontainthecountingnumbers. Page 11.1323.4 Numbersystem features Countingnumbers closedunderaddition,multiplication,countingnumber exponent Integers aboveoperationsplussubtraction Rationalnumbers aboveoperationsplusintegerexponents,excludingdivision byzero Algebraicnumbers Whilepositivealgebraicnumberscanberepresentedwith rationalexponents,negativenumbersdonothaveeven rootsintherealnumbersystem. Transcendentalnumbers Alloftheremainingrealnumbers. Againnote:Negativenumbersdonothaveevenrootsand divisionbyzeroisalwaysmeaninglessandexcluded. Becausethenumbersthatareseenincommonuseareeitherintegers,ortruncated numbersinformorscientificnotation,someonecouldreasonablyconcludethat transcendentalnumbersarerare.Suchisnotthecase.Whilecomparisonofinfinitesetsisnot obvious,Cantordevisedaconstructionthatshowedthatifanattemptweremadetomatch algebraicnumbersonetoonewiththetranscendentalnumbers,thealgebraicnumberswouldbe depletedwhiletherewerestilltranscendentalnumbersremaining.Inacourseontheof measure,acomparisonofthesetsofthealgebraicandtranscendentalnumbersintheinterval betweenzeroandone;wouldrevealthatthesetofalgebraicnumbershavemeasureequaltozero whilethemeasureofthesetoftranscendentalnumbersisone.Transcendentalnumbersarenot rare.Thetranscendentalnumbersarenotobservedincommonusebecauseitisimpossibleto writethemexactly.Likeπande,theymustbeapproximatedwithrationalnumbers. Propertiesofnumbers Intextbooks,thepropertiesofnumbersaredescribedinthelaws.Thepropertiesofnumbers involvingtheoperationsofaddition,multiplicationandpowersandtheinversesofthese operationsarecalledthe algebraic properties.Thepropertiesofnumbersconcerningthe relations>, ≥,<,and ≤arecalledthe orderproperties.Thepropertiesofnumbersinvolving distancebetweennumbersarecalledthe topological properties.Mathematiciansstudysetsthat strictlyexhibitonlythealgebraicproperties(groupsandfields)ororderproperties(ordertypes andordinalnumbers)ortopologicalproperties.Mathematiciansalsostudysets,whichhave combinationsofproperties;ordered,topological,etc.Intherealnumber systemallofthesepropertiesarecombined.Inthetablebelowthedistancebetweenthepointsa andbisdenotedbyd(a,b)or|b–a|.Thefollowingtablelistssomeofthelawsdescribingthe propertiesofnumbers. Page 11.1323.5 PureLaws Examples Algebraic Commutativeaddition Commutativemultiplication Distributive Multiplicationandaddition andmultiplication Expansion/Factoringidentitiesthatderivefromtheabove Order ifa>bandb>c,thena>c Distance d(x,x)=0 ifx ≠ythend(x,y)>0 d(x,y)=d(y,x) Lawsofcombinations Examples anddistance |a ±b| ≤|a|+|b|. algebraandorder Ifa ≥0andb ≥0thana+b ≥0;x 2 ≥0. orderanddistance Ifa<b<candd(a,b)<d(a,c). Weshouldobservethatallthealgebraicidentitiessuchastheexpansion/factoringequations, {e.g.x 3–8=(x–2)(x 2+2x+4)}canbeviewedasalgebraicpropertiesofnumbers.Itis amazingthatthesespecialequations,theidentities,holdtruefor every numberchosenforx. Formsofnumbers Oneadvantageoftheroadmapisthatithighlightstheimportanceofrepresentationsofnumbers inspecificforms.Whileyoungstudentsmaygrasptheconceptsofthekinds,operationsand propertiesofnumbers,theconceptandconsiderationsofformsmightbemoreelusive.The conceptofformpervadesallofmathematicalthought,yetitisnotpromotedattheK12or collegelevels.Manymathematicalcomputationsandsolutionstrategiesareeasilyexplainedin termsofformsandchangingforms. Themostimportantofnumberformsisthewonderful,compact,positional,decimal representationofnumbersassumsofpowersoften.Thisformallowsaddition,subtractionand multiplicationtobeaccomplishedfairlyeasily.Followingisatabledescribingthedecimal formsforthedifferentkindsofnumbers: Integers: Digitsareneededonlytotheleftofthedecimalpoint Rationalnumbers: Digitstotherightofthedecimalpointeitherterminateorrepeat periodically,unendingly.

Irrationalnumbers: MeanseitheralgebraicortranscendentalnumbersDigitstothe Page 11.1323.6 rightofthedecimalpointneitherterminatenorrepeatperiodically. Thetruncationorroundingoftheunendingsequenceofdigitsinthedecimaldescriptionof irrationalnumberscreatesdifficulties.Acanholdonlysomanydigitsinitsregisters. Thefractionalandroundingapproximationsofirrationalnumberscanconfusestudents.Isπ 3.14,3.14159or22/7?Thesenumbersarealldifferent.Whichnumbershouldastudentuse? Whichnumberwillacalculatorcomputeordisplay? Thebasicdifficultyisthatnoneofthesenumbers,3.14,3.14159or22/7isequaltoπ. Subtractionofdifferentapproximationsofthesameirrationalnumberwillnotproducezero. Whilemoderncalculatingdevicesarepreciseenoughforalmostallsituations,studentsshouldbe awarethattheymightobtainsurprisingresults.Notethatinvolvingrational numbersthatarecomputed(withouttruncation)anddisplayedasfractionalformsprovideexact solutions. Someformsaremotivatedbyspecificneeds.Inordertodescribeverylargeandverysmall numbers,scientificnotationwasdeveloped.Sincetherulesformanipulatingnumberspertainto combinationoflikeforms,thesolutionofproblemsinwhichthenumbersarepresentedin differentformsrequirestheconversionofallthenumbersintothemostsuitableform. CanonicalForms Canonicalformsarethespecialformswherethedescribedobjecthasauniquerepresentationand wherespecialaspectsoftheobjectarehighlighted.Examplesofcanonicalformsaretheprime factorizationformofintegersorthereducedformofrationalnumbers.Theprimefactoredform ofintegersisusefulincomputingleastcommonmultiplesandgreatestcommon.The conceptofcanonicalformspervadesalgebraandadvancedmathematics. NumberOperations Ofcourse,studentsofarithmeticshouldunderstandthenumberoperations:addition,subtraction, multiplication,division,powersandroots.Scientifichavekeysthatperformthese operations.Somecalculatorswillperformtheseoperationsonrationalnumbersenteredin fractionalform.Integersandrationalnumbersexpressedinprimefactoredformcanbedirectly multipliedanddividedbutadditionandsubtractioncanonlybeperformedindirectly. Themechanismofadditionandsubtractionofrationalfractionsiseasilyexplainedwiththe conceptofforms.Ifthefractionshavethesamecommondenominator,addingandsubtracting therespectivenumeratorswhilemaintainingthecommondenominatorcanaccomplishthe .Aproblemarisesifthedenominatorsaredifferent.Thesolutionistoconvertallthe fractionsintoaformwheretheyhaveacommondenominator,CD.Butfirstasuitable denominatormustbefound.Thestrategyofthecomputationistouseanycommonmultipleof thedenominatorsasthedenominator,CD,andexpressallthefractionsintheformwithCDas theirdenominator.Nowthenumeratorscanrespectivelybeaddedandsubtracted. Page 11.1323.7 2 3 4 2 3 4 Asanexample,consider: + − = )1(* + )1(* − )1(* 3 5 7 3 5 7 Usetheappropriateformofone(1)thatproduces 2 35 3 21 4 15 thecommondenominator,3*5*7=105: = * + * − * 3 35 5 21 7 15 Combinethefactorstoobtaintheform suitableforadditionandsubtraction. 2*35 3*21 4*15 = + – 105 105 105 70 + 63 − 60 73 = = 105 105 Summary Wealllearnedarithmeticsequentiallyfromlinearlystructuredtexts.Aquestionfor considerationis:couldatreetopicstructure,inprovidingastrategicoverview,beconceptually advantageousforsomestudentscomparedwithanylinearstructure?Perhapsitcouldhelpa studentmaintainhis/herbearingsduringtheyearsthatarithmeticisbeingstudied.Thisproposed structurecouldbeappliednotonlytoarithmetic,butalsotomanyothermathematicscourses includingalgebra,,linearalgebra,multivariablecalculusandtheory. Ifitisdesirableforstudentstolearntoformulatetheirownstrategiesofsolutionforquantitative problemsandnotjustmemorizecookbookroutines,theywillneedguidessuchasthisroadmap. Withtherightroadmap,astudentwillnotonlyknowwherehestartedandwhereheisgoing,but hemayevenenjoythejourney. References: 1.Grossfield,Andrew"OntheIntrinsicStructureofCalculus"Proceedingsofthe1995ASEEAnnualConference, Session1265(311315) 2.Grossfield,Andrew“WhatisCollegeAlgebra?”ProceedingsoftheFall1998ASEEMiddleAtlanticSection Conference 3.Grossfield,Andrew“MathematicalFormsandStrategies”Proceedingsofthe1999ASEEAnnualConference

4.Grossfield,Andrew“MathematicalDefinitions:Whatisthisthing?”Proceedingsofthe2000ASEEAnnual Page 11.1323.8 Conference

TheRoadmapofArithmetic Numbers

Kinds Properties Forms Operations Relations Objectives

Natural Addition <,=,> Integer Subtraction Rational Multiplication ≤≤≤, ≠≠≠, ≥≥≥ Algebraic Division

Transcendental Exponentiation Page 11.1323.9 Page