A Convexity Primer

Total Page:16

File Type:pdf, Size:1020Kb

A Convexity Primer A Convexity Primer Ashwin Trisal & Micah Pedrick September 7, 2019 Credit: Much of this comes from Kadison-Ringrose's text Fundamentals of the Theory of Operator Algebras and Bollob´as' Linear Analysis. This primer was intended for use alongside Chuck Akemann's 201 course homeworks, but should serve in any discussion of basic convexity theory as applied to function spaces. The authors can be contacted at [email protected] and [email protected], respectively. Contents 1 Convex Sets 2 2 Locally Convex Topological Vector Spaces 6 3 Krein-Milman 11 4 Convex Spaces and Convex Functions 12 5 Krein-Milman in Dual Spaces 13 6 The Pettis Integral 15 A Nets 16 B Initial Topologies 17 C Seminorm Topologies 18 1 1 Convex Sets The convexity theory requires real linearity and not complex linearity, even though complex spaces are preferable for spectral theory. Therefore, although we will consider real linear combinations throughout the following section, it is important to bear in mind the results are equally applicable in real and complex vector spaces. Let V be such a vector space. Definition 1.1. A set K ⊆ V is called convex if for every x; y 2 K and t 2 (0; 1), we have tx + (1 − t)y 2 K. That is, a convex set is closed under convex combinations. You may have a lot of intuition about convexity from the finite-dimensional case; this is valuable, but relies heavily on the local compactness of these spaces. As a result, this structure has not been helpful in developing intuition for the setting that we most care about—infinite-dimensional function spaces. Lemma 1.1. Let K ⊆ V be convex. Then for each x1; : : : ; xn 2 K and t1; : : : ; tn 2 [0; 1] P with ti = 1, we have X tixi 2 K: That is, K is closed under arbitrary finite convex combinations. Proof. This follows by induction. It's trivially true for n = 1 (unlike in most algebraic contexts, we do not let the empty sum denote 0 here; we don't know that 0 is in our set, so we leave it undefined). Assume it is true for n = k; then, given x1; : : : ; xk+1 2 K and Pk+1 t1; : : : ; tk+1 2 [0; 1], we show that i=1 tixi 2 K. If tk+1 = 0 or 1, we're done; if not, note that k X ti = 1 − tk+1 i=1 and therefore that k k 1 X X ti t = = 1: 1 − t i 1 − t k+1 i=1 i=1 k+1 Pk ti In particular, xi = x 2 K by the inductive hypothesis. i=1 1−tk+1 Now we see that k+1 k X X ti t x =(1 − t ) x + t x i i k+1 1 − t i k+1 k+1 i=1 i=1 k+1 =(1 − tk+1)x + tk+1xk+1; which is therefore in K by definition. So by induction, K contains all of its finite convex combinations. 2 An infinite convex combination can be made sense of, but requires some analytic structure we currently lack. T Lemma 1.2. If fKαg is a family of convex sets, then K = α Kα is convex. Proof. This is immediate: if for all α we have x; y 2 Kα, then by convexity tx+(1−t)y 2 Kα for t 2 (0; 1). S Lemma 1.3. If fKng is a family of convex sets with K0 ⊆ K1 ⊆ · · · , then K = n Kn is convex. Proof. This is also immediate: suppose x; y 2 K. Then for some N we have x; y 2 KN , and may apply convexity there to conclude tx + (1 − t)y 2 KN ⊆ K. In fact, we didn't need countability above, just a totally ordered indexing set with Kα ⊆ Kβ whenever α ≤ β. Definition 1.2. The convex hull of a set E, denoted co E, is the smallest convex set con- taining E. As with most notions of closures or hulls, it is obtained as the intersection of all convex supersets of E. Equivalently, co E is the set of all convex combinations of elements of E. Definition 1.3. A face of a convex set K is a convex subset F ⊆ K with the property that if for x; y 2 K and t 2 (0; 1), tx + (1 − t)y 2 F , then x; y 2 F . An extreme point of K is a face that has only one point. Faces are inaccessible convex subsets: they cannot be entered via nontrivial convex com- binations of elements of K n F . It is reasonable to imagine proper faces (F ⊂ K) as lying on the boundary of K. Lemma 1.4. If G is a face of F , and F is a face of K, then G is a face of K. Proof. Let x; y 2 K and t 2 (0; 1) be such that tx + (1 − t)y 2 G. Then tx + (1 − t)y 2 F , because G ⊆ F ; F being a face of K then implies that x; y 2 F . But G is a face of F , so also x; y 2 G. Hence, G is a face of K. In particular, this gives us a natural partial order (by inclusion) on the faces of K. Definition 1.4. The dimension of a convex set K is the dimension of the subspace of V generated by fx − y0 j x 2 Kg for any y0 in K. Definition 1.5. A point x 2 K is said to be internal if for every y 2 V there is some c > 0 such that for each 0 ≤ t < c, x + ty 2 K. Note the order of the quantifiers here: in the familiar case V is equipped with a norm, this is weaker than the statement that x is an interior point. In infinite dimensions, this may be strict. 3 1 1 1 Example 1.1. Let V = ` (N) and K = (an) 2 ` (N) j 8k 2 N; jakj ≤ k . This is convex, as 1 jta + (1 − t)b j ≤ t ja j + (1 − t) jb j ≤ k k k k k 1 if jakj ; jbkj ≤ k and t 2 [0; 1]. 1 1 We have (0) internal to K: if (bn) 2 ` (N), then only finitely many terms may exceed k , else the series would not converge. Thus, supk k jbkj < 1, and dividing (bn) by this amount 1 lands in K. However, B((0)) contains the sequences 2 δk for all k 2 N (in particular, for k 1 1 such that 2 > k ), so clearly no -neighborhood of 0 is contained in K. We conclude with more examples of computing the faces of convex sets representative of those we're interested in. Example 1.2. Denote by I the unit interval [0; 1] ⊆ R. Then the faces of I are f0g, f1g, and I itself. First, we show that f0g is a face. Assume that for some x; y 2 I and t 2 (0; 1) we have tx + (1 − t)y = 0. Without loss of generality, suppose x > 0 (we are uninterested in the case x = y = 0). But then y ≥ 0 implies tx + (1 − t)y ≥ tx > 0: a contradiction. Similarly, f1g is a face: without loss of generality, suppose x < 1 in the setting above. Then tx < t implies tx + (1 − t)y < t + (1 − t)y ≤ t + (1 − t) = 1. Finally, any convex set is trivially a face of itself. Conversely, assume that F ⊆ I is a face of I. If F = f0g or F = f1g, we're done. If F contains both 0 and 1, it contains their convex hull; as t1 + (1 − t)0 = t for t 2 [0; 1], said hull is cof0; 1g = I. Otherwise, let c 2 F n f0; 1g ⊆ (0; 1). We can write c = (1 − c)0 + c1 to conclude that 0 and 1 are both in F by the definition of a face. By the argument above, then, F = I. Thus, the faces are exactly as claimed. Example 1.3. Denote by I the unit interval [0; 1] in R, and consider In ⊆ Rn. Then, considering Rn as the space of functions ff : f1; : : : ; ng ! Rg, the faces of In are exactly of the following form: n KA0;A1 = ff 2 R j 8a0 2 A0; f(a0) = 0; 8a1 2 A1; f(a1) = 1; A0 t A1 ⊆ f1; : : : ; ngg : This requires some work. First, that all such sets are faces: it is straightforward to show n that they are convex. For the face property, assume that g1; g2 2 R and t 2 (0; 1) are such that tg1 + (1 − t)g2 2 KA0;A1 . Then for each a0 2 A0, tg1(a0) + (1 − t)g2(a0) = 0, so g1(a0) + g2(a0) = 0 by nonnegativity. Similarly, for each a1 2 A1, g1(a1) = g2(a1) = 1. So g1; g2 2 KA0;A1 , so it is a face. For the other direction, let K be a face of In. Define A0 = fa0 2 f1; : : : ; ng j 8f 2 K; f(a0) = 0g ; and A1 similarly. Then K ⊆ KA0;A1 . Let f 2 KA0;A1 . We show that there is an element of K which agrees with f at every point|that is, that f 2 K. Let x 2 f1; : : : ; ng n (A0 t A1). Then there exists g 2 K such that g(x) 2 (0; 1): x2 = A0, so there is some function with g(x) 6= 0, and x2 = A1, so there is some function with g(x) 6= 1; 4 if these functions have values 1 and 0 respectively, any nontrivial convex combination has g(x) 2 (0; 1).
Recommended publications
  • On Quasi Norm Attaining Operators Between Banach Spaces
    ON QUASI NORM ATTAINING OPERATORS BETWEEN BANACH SPACES GEUNSU CHOI, YUN SUNG CHOI, MINGU JUNG, AND MIGUEL MART´IN Abstract. We provide a characterization of the Radon-Nikod´ymproperty in terms of the denseness of bounded linear operators which attain their norm in a weak sense, which complement the one given by Bourgain and Huff in the 1970's. To this end, we introduce the following notion: an operator T : X ÝÑ Y between the Banach spaces X and Y is quasi norm attaining if there is a sequence pxnq of norm one elements in X such that pT xnq converges to some u P Y with }u}“}T }. Norm attaining operators in the usual (or strong) sense (i.e. operators for which there is a point in the unit ball where the norm of its image equals the norm of the operator) and also compact operators satisfy this definition. We prove that strong Radon-Nikod´ymoperators can be approximated by quasi norm attaining operators, a result which does not hold for norm attaining operators in the strong sense. This shows that this new notion of quasi norm attainment allows to characterize the Radon-Nikod´ymproperty in terms of denseness of quasi norm attaining operators for both domain and range spaces, completing thus a characterization by Bourgain and Huff in terms of norm attaining operators which is only valid for domain spaces and it is actually false for range spaces (due to a celebrated example by Gowers of 1990). A number of other related results are also included in the paper: we give some positive results on the denseness of norm attaining Lipschitz maps, norm attaining multilinear maps and norm attaining polynomials, characterize both finite dimensionality and reflexivity in terms of quasi norm attaining operators, discuss conditions to obtain that quasi norm attaining operators are actually norm attaining, study the relationship with the norm attainment of the adjoint operator and, finally, present some stability results.
    [Show full text]
  • POLARS and DUAL CONES 1. Convex Sets
    POLARS AND DUAL CONES VERA ROSHCHINA Abstract. The goal of this note is to remind the basic definitions of convex sets and their polars. For more details see the classic references [1, 2] and [3] for polytopes. 1. Convex sets and convex hulls A convex set has no indentations, i.e. it contains all line segments connecting points of this set. Definition 1 (Convex set). A set C ⊆ Rn is called convex if for any x; y 2 C the point λx+(1−λ)y also belongs to C for any λ 2 [0; 1]. The sets shown in Fig. 1 are convex: the first set has a smooth boundary, the second set is a Figure 1. Convex sets convex polygon. Singletons and lines are also convex sets, and linear subspaces are convex. Some nonconvex sets are shown in Fig. 2. Figure 2. Nonconvex sets A line segment connecting two points x; y 2 Rn is denoted by [x; y], so we have [x; y] = f(1 − α)x + αy; α 2 [0; 1]g: Likewise, we can consider open line segments (x; y) = f(1 − α)x + αy; α 2 (0; 1)g: and half open segments such as [x; y) and (x; y]. Clearly any line segment is a convex set. The notion of a line segment connecting two points can be generalised to an arbitrary finite set n n by means of a convex combination. Given a finite set fx1; x2; : : : ; xpg ⊂ R , a point x 2 R is the convex combination of x1; x2; : : : ; xp if it can be represented as p p X X x = αixi; αi ≥ 0 8i = 1; : : : ; p; αi = 1: i=1 i=1 Given an arbitrary set S ⊆ Rn, we can consider all possible finite convex combinations of points from this set.
    [Show full text]
  • The Nonstandard Theory of Topological Vector Spaces
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 172, October 1972 THE NONSTANDARDTHEORY OF TOPOLOGICAL VECTOR SPACES BY C. WARD HENSON AND L. C. MOORE, JR. ABSTRACT. In this paper the nonstandard theory of topological vector spaces is developed, with three main objectives: (1) creation of the basic nonstandard concepts and tools; (2) use of these tools to give nonstandard treatments of some major standard theorems ; (3) construction of the nonstandard hull of an arbitrary topological vector space, and the beginning of the study of the class of spaces which tesults. Introduction. Let Ml be a set theoretical structure and let *JR be an enlarge- ment of M. Let (E, 0) be a topological vector space in M. §§1 and 2 of this paper are devoted to the elementary nonstandard theory of (F, 0). In particular, in §1 the concept of 0-finiteness for elements of *E is introduced and the nonstandard hull of (E, 0) (relative to *3R) is defined. §2 introduces the concept of 0-bounded- ness for elements of *E. In §5 the elementary nonstandard theory of locally convex spaces is developed by investigating the mapping in *JK which corresponds to a given pairing. In §§6 and 7 we make use of this theory by providing nonstandard treatments of two aspects of the existing standard theory. In §6, Luxemburg's characterization of the pre-nearstandard elements of *E for a normed space (E, p) is extended to Hausdorff locally convex spaces (E, 8). This characterization is used to prove the theorem of Grothendieck which gives a criterion for the completeness of a Hausdorff locally convex space.
    [Show full text]
  • Locally Solid Riesz Spaces with Applications to Economics / Charalambos D
    http://dx.doi.org/10.1090/surv/105 alambos D. Alipr Lie University \ Burkinshaw na University-Purdue EDITORIAL COMMITTEE Jerry L. Bona Michael P. Loss Peter S. Landweber, Chair Tudor Stefan Ratiu J. T. Stafford 2000 Mathematics Subject Classification. Primary 46A40, 46B40, 47B60, 47B65, 91B50; Secondary 28A33. Selected excerpts in this Second Edition are reprinted with the permissions of Cambridge University Press, the Canadian Mathematical Bulletin, Elsevier Science/Academic Press, and the Illinois Journal of Mathematics. For additional information and updates on this book, visit www.ams.org/bookpages/surv-105 Library of Congress Cataloging-in-Publication Data Aliprantis, Charalambos D. Locally solid Riesz spaces with applications to economics / Charalambos D. Aliprantis, Owen Burkinshaw.—2nd ed. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 105) Rev. ed. of: Locally solid Riesz spaces. 1978. Includes bibliographical references and index. ISBN 0-8218-3408-8 (alk. paper) 1. Riesz spaces. 2. Economics, Mathematical. I. Burkinshaw, Owen. II. Aliprantis, Char­ alambos D. III. Locally solid Riesz spaces. IV. Title. V. Mathematical surveys and mono­ graphs ; no. 105. QA322 .A39 2003 bib'.73—dc22 2003057948 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • On the Ekeland Variational Principle with Applications and Detours
    Lectures on The Ekeland Variational Principle with Applications and Detours By D. G. De Figueiredo Tata Institute of Fundamental Research, Bombay 1989 Author D. G. De Figueiredo Departmento de Mathematica Universidade de Brasilia 70.910 – Brasilia-DF BRAZIL c Tata Institute of Fundamental Research, 1989 ISBN 3-540- 51179-2-Springer-Verlag, Berlin, Heidelberg. New York. Tokyo ISBN 0-387- 51179-2-Springer-Verlag, New York. Heidelberg. Berlin. Tokyo No part of this book may be reproduced in any form by print, microfilm or any other means with- out written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 400 005 Printed by INSDOC Regional Centre, Indian Institute of Science Campus, Bangalore 560012 and published by H. Goetze, Springer-Verlag, Heidelberg, West Germany PRINTED IN INDIA Preface Since its appearance in 1972 the variational principle of Ekeland has found many applications in different fields in Analysis. The best refer- ences for those are by Ekeland himself: his survey article [23] and his book with J.-P. Aubin [2]. Not all material presented here appears in those places. Some are scattered around and there lies my motivation in writing these notes. Since they are intended to students I included a lot of related material. Those are the detours. A chapter on Nemyt- skii mappings may sound strange. However I believe it is useful, since their properties so often used are seldom proved. We always say to the students: go and look in Krasnoselskii or Vainberg! I think some of the proofs presented here are more straightforward. There are two chapters on applications to PDE.
    [Show full text]
  • A Topology for Operator Modules Over W*-Algebras Bojan Magajna
    Journal of Functional AnalysisFU3203 journal of functional analysis 154, 1741 (1998) article no. FU973203 A Topology for Operator Modules over W*-Algebras Bojan Magajna Department of Mathematics, University of Ljubljana, Jadranska 19, Ljubljana 1000, Slovenia E-mail: Bojan.MagajnaÄuni-lj.si Received July 23, 1996; revised February 11, 1997; accepted August 18, 1997 dedicated to professor ivan vidav in honor of his eightieth birthday Given a von Neumann algebra R on a Hilbert space H, the so-called R-topology is introduced into B(H), which is weaker than the norm and stronger than the COREultrastrong operator topology. A right R-submodule X of B(H) is closed in the Metadata, citation and similar papers at core.ac.uk Provided byR Elsevier-topology - Publisher if and Connector only if for each b #B(H) the right ideal, consisting of all a # R such that ba # X, is weak* closed in R. Equivalently, X is closed in the R-topology if and only if for each b #B(H) and each orthogonal family of projections ei in R with the sum 1 the condition bei # X for all i implies that b # X. 1998 Academic Press 1. INTRODUCTION Given a C*-algebra R on a Hilbert space H, a concrete operator right R-module is a subspace X of B(H) (the algebra of all bounded linear operators on H) such that XRX. Such modules can be characterized abstractly as L -matricially normed spaces in the sense of Ruan [21], [11] which are equipped with a completely contractive R-module multi- plication (see [6] and [9]).
    [Show full text]
  • 7.3 Topological Vector Spaces, the Weak and Weak⇤ Topology on Banach Spaces
    138 CHAPTER 7. ELEMENTS OF FUNCTIONAL ANALYSIS 7.3 Topological Vector spaces, the weak and weak⇤ topology on Banach spaces The following generalizes normed Vector space. Definition 7.3.1. Let X be a vector space over K, K = C, or K = R, and assume that is a topology on X. we say that X is a topological vector T space (with respect to ), if (X X and K X are endowed with the T ⇥ ⇥ respective product topology) +:X X X, (x, y) x + y is continuous ⇥ ! 7! : K X (λ, x) λ x is continuous. · ⇥ 7! · A topological vector space X is called locally convex,ifeveryx X has a 2 neighborhood basis consisting of convex sets, where a set A X is called ⇢ convex if for all x, y A, and 0 <t<1, it follows that tx +1 t)y A. 2 − 2 In order to define a topology on a vector space E which turns E into a topological vector space we (only) need to define an appropriate neighbor- hood basis of 0. Proposition 7.3.2. Assume that (E, ) is a topological vector space. And T let = U , 0 U . U0 { 2T 2 } Then a) For all x E, x + = x + U : U is a neighborhood basis of x, 2 U0 { 2U0} b) for all U there is a V so that V + V U, 2U0 2U0 ⇢ c) for all U and all R>0 there is a V ,sothat 2U0 2U0 λ K : λ <R V U, { 2 | | }· ⇢ d) for all U and x E there is an ">0,sothatλx U,forall 2U0 2 2 λ K with λ <", 2 | | e) if (E, ) is Hausdor↵, then for every x E, x =0, there is a U T 2 6 2U0 with x U, 62 f) if E is locally convex, then for all U there is a convex V , 2U0 2T with V U.
    [Show full text]
  • Approximation Boundedness Surjectivity
    APPROXIMATION BOUNDEDNESS SURJECTIVITY Olav Kristian Nygaard Dr. scient. thesis, University of Bergen, 2001 Approximation, Boundedness, Surjectivity Olav Kr. Nygaard, 2001 ISBN 82-92-160-08-6 Contents 1Theframework 9 1.1 Separability, bases and the approximation property ....... 13 1.2Thecompletenessassumption................... 16 1.3Theoryofclosed,convexsets................... 19 2 Factorization of weakly compact operators and the approximation property 25 2.1Introduction............................. 25 2.2 Criteria of the approximation property in terms of the Davis- Figiel-Johnson-Pe'lczy´nskifactorization.............. 27 2.3Uniformisometricfactorization.................. 33 2.4 The approximation property and ideals of finite rank operators 36 2.5 The compact approximation property and ideals of compact operators.............................. 39 2.6 From approximation properties to metric approximation prop- erties................................. 41 3 Boundedness and surjectivity 49 3.1Introduction............................. 49 3.2Somemorepreliminaries...................... 52 3.3 The boundedness property in normed spaces . ....... 57 3.4ThesurjectivitypropertyinBanachspaces........... 59 3.5 The Seever property and the Nikod´ymproperty......... 63 3.6 Some results on thickness in L(X, Y )∗ .............. 63 3.7Somequestionsandremarks.................... 65 4 Slices in the unit ball of a uniform algebra 69 4.1Introduction............................. 69 4.2Thesliceshavediameter2..................... 70 4.3Someremarks...........................
    [Show full text]
  • A Note on Bi-Contractive Projections on Spaces of Vector Valued Continuous
    Concr. Oper. 2018; 5: 42–49 Concrete Operators Research Article Fernanda Botelho* and T.S.S.R.K. Rao A note on bi-contractive projections on spaces of vector valued continuous functions https://doi.org/10.1515/conop-2018-0005 Received October 10, 2018; accepted December 12, 2018. Abstract: This paper concerns the analysis of the structure of bi-contractive projections on spaces of vector valued continuous functions and presents results that extend the characterization of bi-contractive projec- tions given by the rst author. It also includes a partial generalization of these results to ane and vector valued continuous functions from a Choquet simplex into a Hilbert space. Keywords: Contractive projections, Bi-contractive projections, Vector measures, Spaces of vector valued functions MSC: 47B38, 46B04, 46E40 1 Introduction We denote by C(Ω, E) the space of all continuous functions dened on a compact Hausdor topological space Ω with values in a Banach space E, endowed with the norm YfY∞ = maxx∈Ω Yf(x)YE. The continuity of a function f ∈ C(Ω, E) is understood to be “in the strong sense", meaning that for every w0 ∈ Ω and > 0 there exists O, an open subset of Ω, containing w0 such that Yf (w) − f(w0)YE < , for every w ∈ O, see [9] or [16]. A contractive projection P ∶ C(Ω, E) → C(Ω, E) is an idempotent bounded linear operator of norm 1. ⊥ A contractive projection is called bi-contractive if its complementary projection P (= I − P) is contractive. In this paper, we extend the characterization given in [6], of bi-contractive projections on C(Ω, E), with Ω a compact metric space, E a Hilbert space that satisfy an additional support disjointness property.
    [Show full text]
  • Dentability and Extreme Points in Banach Spaces*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF FUNCTIONAL ANALYSIS 16, 78-90 (1974) Dentability and Extreme Points in Banach Spaces* R. R. PHELPS University of Washington, Seattle, Washington 98195 Communicated by R. Phillips Received November 20, 1973 It is shown that a Banach space E has the Radon-Nikodym property (equivalently, every bounded subset of E is dentable) if and only if every bounded closed convex subset of E is the closed convex hull of its strongly exposed points. Using recent work of Namioka, some analogous results are obtained concerning weak* strongly exposed points of weak* compact convex subsets of certain dual Banach spaces. The notion of a dentable subset of a Banach space was introduced by Rieffel[16] in conjunction with a Radon-Nikodym theorem for Banach space-valued measures. Subsequent work by Maynard [12] and by Davis and Phelps [6] (also by Huff [S]) has shown that those Banach spaces in which Rieffel’s Radon-Nikodym theorem is valid are precisely the ones in which every bounded closed convex set is dentable (definition below). Diestel [7] observed that the classes of spaces (e.g., reflexive spaces, separable conjugate spaces) which are known to have this property (the “Radon-Nikodym property”) appear to coincide with those which are known to have the property that every bounded closed convex subset is the closed convex hull of its extreme points (the “Krein-Milman property”) and he raised the question as to whether the two properties are equivalent.
    [Show full text]
  • The Ekeland Variational Principle, the Bishop-Phelps Theorem, and The
    The Ekeland Variational Principle, the Bishop-Phelps Theorem, and the Brøndsted-Rockafellar Theorem Our aim is to prove the Ekeland Variational Principle which is an abstract result that found numerous applications in various fields of Mathematics. As its application to Convex Analysis, we provide a proof of the famous Bishop- Phelps Theorem and some related results. Let us recall that the epigraph and the hypograph of a function f : X ! [−∞; +1] (where X is a set) are the following subsets of X × R: epi f = f(x; t) 2 X × R : t ≥ f(x)g ; hyp f = f(x; t) 2 X × R : t ≤ f(x)g : Notice that, if f > −∞ on X then epi f 6= ; if and only if f is proper, that is, f is finite at at least one point. 0.1. The Ekeland Variational Principle. In what follows, (X; d) is a metric space. Given λ > 0 and (x; t) 2 X × R, we define the set Kλ(x; t) = f(y; s): s ≤ t − λd(x; y)g = f(y; s): λd(x; y) ≤ t − sg ⊂ X × R: Notice that Kλ(x; t) = hyp[t − λ(x; ·)]. Let us state some useful properties of these sets. Lemma 0.1. (a) Kλ(x; t) is closed and contains (x; t). (b) If (¯x; t¯) 2 Kλ(x; t) then Kλ(¯x; t¯) ⊂ Kλ(x; t). (c) If (xn; tn) ! (x; t) and (xn+1; tn+1) 2 Kλ(xn; tn) (n 2 N), then \ Kλ(x; t) = Kλ(xn; tn) : n2N Proof. (a) is quite easy.
    [Show full text]
  • Chapter 5 Convex Optimization in Function Space 5.1 Foundations of Convex Analysis
    Chapter 5 Convex Optimization in Function Space 5.1 Foundations of Convex Analysis Let V be a vector space over lR and k ¢ k : V ! lR be a norm on V . We recall that (V; k ¢ k) is called a Banach space, if it is complete, i.e., if any Cauchy sequence fvkglN of elements vk 2 V; k 2 lN; converges to an element v 2 V (kvk ¡ vk ! 0 as k ! 1). Examples: Let ­ be a domain in lRd; d 2 lN. Then, the space C(­) of continuous functions on ­ is a Banach space with the norm kukC(­) := sup ju(x)j : x2­ The spaces Lp(­); 1 · p < 1; of (in the Lebesgue sense) p-integrable functions are Banach spaces with the norms Z ³ ´1=p p kukLp(­) := ju(x)j dx : ­ The space L1(­) of essentially bounded functions on ­ is a Banach space with the norm kukL1(­) := ess sup ju(x)j : x2­ The (topologically and algebraically) dual space V ¤ is the space of all bounded linear functionals ¹ : V ! lR. Given ¹ 2 V ¤, for ¹(v) we often write h¹; vi with h¢; ¢i denoting the dual product between V ¤ and V . We note that V ¤ is a Banach space equipped with the norm j h¹; vi j k¹k := sup : v2V nf0g kvk Examples: The dual of C(­) is the space M(­) of Radon measures ¹ with Z h¹; vi := v d¹ ; v 2 C(­) : ­ The dual of L1(­) is the space L1(­). The dual of Lp(­); 1 < p < 1; is the space Lq(­) with q being conjugate to p, i.e., 1=p + 1=q = 1.
    [Show full text]