Applied Stochastic Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stochastic Differential Equations with Applications
Stochastic Differential Equations with Applications December 4, 2012 2 Contents 1 Stochastic Differential Equations 7 1.1 Introduction . 7 1.1.1 Meaning of Stochastic Differential Equations . 8 1.2 Some applications of SDEs . 10 1.2.1 Asset prices . 10 1.2.2 Population modelling . 10 1.2.3 Multi-species models . 11 2 Continuous Random Variables 13 2.1 The probability density function . 13 2.1.1 Change of independent deviates . 13 2.1.2 Moments of a distribution . 13 2.2 Ubiquitous probability density functions in continuous finance . 14 2.2.1 Normal distribution . 14 2.2.2 Log-normal distribution . 14 2.2.3 Gamma distribution . 14 2.3 Limit Theorems . 15 2.3.1 The central limit results . 17 2.4 The Wiener process . 17 2.4.1 Covariance . 18 2.4.2 Derivative of a Wiener process . 18 2.4.3 Definitions . 18 3 Review of Integration 21 3 4 CONTENTS 3.1 Bounded Variation . 21 3.2 Riemann integration . 23 3.3 Riemann-Stieltjes integration . 24 3.4 Stochastic integration of deterministic functions . 25 4 The Ito and Stratonovich Integrals 27 4.1 A simple stochastic differential equation . 27 4.1.1 Motivation for Ito integral . 28 4.2 Stochastic integrals . 29 4.3 The Ito integral . 31 4.3.1 Application . 33 4.4 The Stratonovich integral . 33 4.4.1 Relationship between the Ito and Stratonovich integrals . 35 4.4.2 Stratonovich integration conforms to the classical rules of integration . 37 4.5 Stratonovich representation on an SDE . 38 5 Differentiation of functions of stochastic variables 41 5.1 Ito's Lemma . -
Selim S. Hacısalihzade Control Engineering and Finance Lecture Notes in Control and Information Sciences
Lecture Notes in Control and Information Sciences 467 Selim S. Hacısalihzade Control Engineering and Finance Lecture Notes in Control and Information Sciences Volume 467 Series editors Frank Allgöwer, Stuttgart, Germany Manfred Morari, Zürich, Switzerland Series Advisory Boards P. Fleming, University of Sheffield, UK P. Kokotovic, University of California, Santa Barbara, CA, USA A.B. Kurzhanski, Moscow State University, Russia H. Kwakernaak, University of Twente, Enschede, The Netherlands A. Rantzer, Lund Institute of Technology, Sweden J.N. Tsitsiklis, MIT, Cambridge, MA, USA About this Series This series aims to report new developments in the fields of control and information sciences—quickly, informally and at a high level. The type of material considered for publication includes: 1. Preliminary drafts of monographs and advanced textbooks 2. Lectures on a new field, or presenting a new angle on a classical field 3. Research reports 4. Reports of meetings, provided they are (a) of exceptional interest and (b) devoted to a specific topic. The timeliness of subject material is very important. More information about this series at http://www.springer.com/series/642 Selim S. Hacısalihzade Control Engineering and Finance 123 Selim S. Hacısalihzade Department of Electrical and Electronics Engineering Boğaziçi University Bebek, Istanbul Turkey ISSN 0170-8643 ISSN 1610-7411 (electronic) Lecture Notes in Control and Information Sciences ISBN 978-3-319-64491-2 ISBN 978-3-319-64492-9 (eBook) https://doi.org/10.1007/978-3-319-64492-9 Library of Congress Control Number: 2017949161 © Springer International Publishing AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. -
Weinan E Princteon University, USA [email protected]
Weinan E Princteon University, USA [email protected] Weinan E received his Ph.D. from UCLA in 1989. After being a visiting member at the Courant Institute of NYU and the Institute for Advanced Study at Princeton, he joined the faculty at NYU in 1994. He is now a professor of mathematics at Princeton University, a position he has held since 1999. He is also a Changjiang professor at the Peking University. Weinan E’s research interest is in multiscale and stochastic modeling. His work covers issues that include mathematical foundation of stochastic and multiscale modeling, design and analysis of of algorithms and applications to problems in various disciplines of science and engineering, with particular emphasis on the modeling of rare events, material sciences and fluid dynamics. Weinan E is the recipient of the Presidential Early Career Awards for Scientists and Engineers (PECASE), the Feng Kang Prize, the SIAM R. E. Kleinman Prize, and the ICIAM Collatz Prize. He is a member of the Chinese Academy of Sciences, a fellow of the American Mathematical Society, a SIAM fellow and a fellow of the Institute of Physics. Mathematical theory of solids: From quantum mechanics to continuum models Abstract The problem of trying to understand solids from microscopic and macroscopic viewpoints goes back to Cauchy and was taken up again by Born. In this talk, I will present the progress that has been made on this Cauchy-Born program. In particular, I will discuss how macroscopic continuum models of solids can be derived from models of quantum mechanics and molecular dynamics. -
WEINAN E Education Ph.D. Mathematics UCLA 1989 M.S
WEINAN E Department of Mathematics and Program in Applied and Computational Mathematics Princeton University, Princeton, NJ 08544 Phone: (609) 258-3683 Fax: (609) 258-1735 [email protected] Education Ph.D. Mathematics UCLA 1989 M.S. Mathematics Chinese Academy of Sciences 1985 B.S. Mathematics University of Science and Technology of China 1982 Academic Positions 9/99- Professor, Department of Mathematics and PACM, Associate Faculty Member of the Department of Operational Research and Financial Engineering, Princeton University 8/15- Director, Beijing Institute of Big Data Research 9/00-8/19 Changjiang Visiting Professor, Peking University 5/14-8/18 Dean, Yuanpei College, Peking University 9/97-8/99 Professor, Courant Institute, New York University 9/94-8/97 Associate Professor, Courant Institute, New York University 9/92-8/94 Long Term Member, Institute for Advanced Study, Princeton 9/91-8/92 Member, Institute for Advanced Study, Princeton 9/89-8/91 Visiting Member, Courant Institute, New York University Awards and Honors 1993 Alfred P. Sloan Foundation Fellowship 1996 Presidential Early Career Award in Science and Engineering 1999 Feng Kang Prize in Scientific Computing 2003 ICIAM Collatz Prize, awarded by the 5th International Council of of Industrial & Applied Math. 2005 Elected Fellow of Institute of Physics 2009 Elected Fellow of Society of Industrial and Applied Mathematics 2009 The Ralph E. Kleinman Prize, Society of Industrial and Applied Mathematics 2011 Elected member of the Chinese Academy of Sciences 2012 Elected Fellow of the American Mathematical Society 2014 Theodore von K´arm´anPrize, Society of Industrial and Applied Mathematics 2019 Peter Henrici Prize, Society of Industrial and Applied Mathematics and ETH Selected Lectures 12/2000 Invited Speaker, Current Developments in Mathematics, Harvard University. -
Lecture 2: Itô Calculus and Stochastic Differential Equations
Lecture 2: Itô Calculus and Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 14, 2013 Simo Särkkä (Aalto) Lecture 2: Itô Calculus and SDEs November 14, 2013 1 / 34 Contents 1 Introduction 2 Stochastic integral of Itô 3 Itô formula 4 Solutions of linear SDEs 5 Non-linear SDE, solution existence, etc. 6 Summary Simo Särkkä (Aalto) Lecture 2: Itô Calculus and SDEs November 14, 2013 2 / 34 SDEs as white noise driven differential equations During the last lecture we treated SDEs as white-noise driven differential equations of the form dx = f(x; t) + L(x; t) w(t); dt For linear equations the approach worked ok. But there is something strange going on: The use of chain rule of calculus led to wrong results. With non-linear differential equations we were completely lost. Picard-Lindelöf theorem did not work at all. The source of all the problems is the everywhere discontinuous white noise w(t). So how should we really formulate SDEs? Simo Särkkä (Aalto) Lecture 2: Itô Calculus and SDEs November 14, 2013 4 / 34 Equivalent integral equation Integrating the differential equation from t0 to t gives: Z t Z t x(t) − x(t0) = f(x(t); t) dt + L(x(t); t) w(t) dt: t0 t0 The first integral is just a normal Riemann/Lebesgue integral. The second integral is the problematic one due to the white noise. This integral cannot be defined as Riemann, Stieltjes or Lebesgue integral as we shall see next. Simo Särkkä (Aalto) Lecture 2: Itô Calculus and SDEs November 14, 2013 6 / 34 Attempt 1: Riemann integral In the Riemannian sense the integral would be defined as Z t X ∗ ∗ ∗ L(x(t); t) w(t) dt = lim L(x(t ); t ) w(t )(tk+1 − tk ); n!1 k k k t0 k ∗ where t0 < t1 < : : : < tn = t and tk 2 [tk ; tk+1]. -
Math Student 2007
ISSN: 0025-5742 THE MATHEMATICS STUDENT Volume 76, Numbers 1 - 4, (2007) copy- Edited by J. R. PATADIA circulation (Issued: October, 2008) Member'sfor not PUBLISHED BY THE INDIAN MATHEMATICAL SOCIETY (In the memory of late Professor M. K. Singal) THE MATHEMATICS STUDENT Edited by J. R. PATADIA In keeping with the current periodical policy, THE MATHEMATICS STUDENT (STUDENT) will seek to publish material of interest not just to mathematicians with specialized interest but to undergraduate and postgraduate students and teachers of mathematics in India. With this in view, it will publish material of the following type: 1. Expository articles and popular (not highly technical) articles. 2. Classroom notes (this can include hints on teaching certain topics or filling vital gaps in the usual treatments of topics to be found in text-books or how some execises can and should be made an integral part of teaching, etc.) 3. Problems and solutions, News and Views. 4. Information on articles of common interest published in other periodicals, 5. Proceedings of IMS Conferences. Expository articles, classroom notes, news and announcements and research papers are invited for publication in THE MATHEMATICS STUDENT. Manuscripts intended for publication should preferably be submitted online in the LaTeX .pdf file or in the standard word processing format (Word or Word Perfect) including figures and tables. In case of hard copy submission, three copies of the manuscripts along with the Compact Disc (CD) copy should be submitted to the Editor Dr. J. R. Patadia, Department of Mathematics, faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (Gujarat),copy- India. -
On Henstock Method to Stratonovich Integral with Respect to Continuous Semimartingale
Hindawi Publishing Corporation International Journal of Stochastic Analysis Volume 2014, Article ID 534864, 7 pages http://dx.doi.org/10.1155/2014/534864 Research Article On Henstock Method to Stratonovich Integral with respect to Continuous Semimartingale Haifeng Yang and Tin Lam Toh National Institute of Education, Nanyang Technological University, Singapore 637616 Correspondence should be addressed to Tin Lam Toh; [email protected] Received 15 September 2014; Revised 26 November 2014; Accepted 26 November 2014; Published 18 December 2014 Academic Editor: Fred Espen Benth Copyright © 2014 H. Yang and T. L. Toh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We will use the Henstock (or generalized Riemann) approach to define the Stratonovich integral with respect to continuous 2 semimartingale in space. Our definition of Stratonovich integral encompasses the classical definition of Stratonovich integral. 1. Introduction Further, to consider continuous local martingale as an integrator, we will show that a (, )-fine belated partial Classically, it has been emphasized that defining stochastic stochastic division ={(,)}=1 of [0, ] in [12, 16]isalso integrals using Riemann approach is impossible [1,p.40], a (, )-fine belated partial stochastic division of [0, ∧ ], since the integrators have paths of unbounded variation. where is a stopping time. Moreover, the integrands are usually highly oscillatory [1– Lastly, the definition of the Stratonovich integral with 3]. The uniform mesh in classical Riemann setting is unable respect to continuous semimartingale will be further refined. to handle highly oscillatory integrators and integrands. -
Fall 2011 Contents
FALL 2011 Contents n TRADE 1 n NATURAL HISTORy 24 n ACADEMIC TRADE 31 n PAPERBACKS 43 n RELIGION 72 n EUROPEAN HISTORy 75 n HISTORY 76 n AMERICAN HISTORy 80 n ANCIENT HISTORy 81 n CLASSICs 82 n LITERATURe 82 n CHINESE LANGUAGE 85 n ART 88 n MUSIC 89 n PHILOSOPHy 90 n LAW 92 n POLITICS 93 n POLITICAL SCIENCE 95 n ANTHROPOLOGY 100 n SOCIOLOGY 103 n SOCIAL SCIENCE 107 n ECONOMICS 107 n MATHEMATICs 112 n ENGINEERINg 114 n PHYSICs 115 n EARTH SCIENCe 117 n BIOLOGY 118 n ECOLOGY 120 n RECENT & BEST-sELLING TITLES 121 n AUTHOR / TITLE INDEx 124 n ORDER INFORMATION Trade 1 The Darwin Economy Liberty, Competition, and the Common Good WHAT CHARLES DARWIN CAN TEACH US ABOUT BUILDING A FAIRER SOCIETY Robert H. Frank Who was the greater economist—Adam Smith or Charles Darwin? The question seems absurd. Darwin, after all, was a naturalist, not an economist. But Robert Frank, New York Times economics columnist and best-selling author of The Economic Naturalist, predicts that within the next century Darwin will un- seat Smith as the intellectual founder of economics. The reason, Frank argues, is that Darwin’s understanding of competition describes economic reality far more accurately than Smith’s. And the consequences of this fact are profound. Indeed, the failure to recognize that we live in Darwin’s world rather than Smith’s is putting us all at risk by preventing us from seeing that competition alone will not solve our problems. Smith’s theory of the invisible hand, which says that competition channels self-interest for the common good, is probably the most widely cited argument today in favor of unbridled competition—and against regulation, taxation, and even government itself. -
Stratonovich Representation of Semimartingale Rank Processes
Stratonovich representation of semimartingale rank processes Robert Fernholz1 September 18, 2018 Abstract Suppose that X1,...,Xn are continuous semimartingales that are reversible and have nondegenerate crossings. Then the corresponding rank processes can be represented by generalized Stratonovich inte- grals, and this representation can be used to decompose the relative log-return of portfolios generated by functions of ranked market weights. Introduction For n ≥ 2, consider a family of continuous semimartingales X1,...,Xn defined on [0,T ] under the usual FX filtration t , with quadratic variation processes hXii. Let rt(i) be the rank of Xi(t), with rt(i) < rt(j) if Xi(t) >Xj(t) or if Xi(t)= Xj (t) and i < j. The corresponding rank processes X(1),...,X(n) are defined by X(rt(i))(t)= Xi(t). We shall show that if the Xi are reversible and have nondegenerate crossings, then the rank processes can be represented by n dX(k)(t)= ½{Xi(t)=X(k) (t)} ◦ dXi(t), a.s., (1) Xi=1 where ◦ d is the generalized Stratonovich integral developed by Russo and Vallois (2007). An Atlas model is a family of positive continuous semimartingales X1,...,Xn defined as an Itˆointegral on [0,T ] by d log Xi(t)= − g + ng ½{rt(i)=n} dt + σ dWi(t), (2) where g and σ are positive constants and (W1,...,Wn) is a Brownian motion (see Fernholz (2002)). Here the Xi represent the capitalizations of the companies in a stock market, and d log Xi represents the log-return of the ith stock. We shall show the representation (1) is valid for the Atlas rank processes log X(k). -
Numerical Integration of Sdes: a Short Tutorial
Numerical Integration of SDEs: A Short Tutorial Thomas Schaffter January 19, 2010 1 Introduction 1.1 It^oand Stratonovich SDEs 1-dimensional stochastic differentiable equation (SDE) is given by [6,7] dX t = f(X ; t)dt + g(X ; t)dW (1) dt t t t where Xt = X(t) is the realization of a stochastic process or random variable. f(Xt; t) is called the drift coefficient, that is the deterministic part of the SDE characterizing the local trend. g(Xt; t) denotes the diffusion coefficient, that is the stochastic part which influences the average size of the fluctuations of X. The fluctuations themselves originate from the stochastic process Wt called Wiener process and introduced in Section 1.2. Interpreted as an integral, one gets Z t Z t Xt = Xt0 + f(Xs; s)ds + g(Xs; s)dWs (2) t0 t0 where the first integral is an ordinary Riemann integral. As the sample paths of a Wiener process are not differentiable, the Japanese mathematician K. It^odefined in 1940s a new type of integral called It^ostochastic integral. In 1960s, the Russian physicist R. L. Stratonovich proposed an other kind of stochastic integral called Stratonovich stochastic integral and used the symbol \◦" to distinct it from the former It^ointegral. (3) and (4) are the Stratonovich equivalents of (1) and (2)[1,6]. dX t = f(X ; t)dt + g(X ; t) ◦ dW (3) dt t t t Z t Z t Xt = Xt0 + f(Xs; s)ds + g(Xs; s) ◦ dWs (4) t0 t0 The second integral in (2) and (4) can be written in a general form as [8] m−1 Z t X g(Xs; s)dWs = lim g(Xτ ; τk)(W (tk+1) − W (tk)) (5) h!0 k t0 k=0 1 where h = (tk+1 − tk) with intermediary points τk = (1 − λ)tk − λtk+1, 8k 2 f0; 1; :::; m − 1g, λ 2 [0; 1]. -
Approximative Theorem of Incomplete Riemann-Stieltjes Sum Of
Approximative Theorem of Incomplete Riemann-Stieltjes Sum of Stochastic Integral Jingwei Liu∗ ( School of Mathematics and System Sciences, Beihang University, Beijing,100083,P.R.China) March 14,2018 Abstract: The approximative theorems of incomplete Riemann-Stieltjes sums of Ito stochastic integral, mean square integral and Stratonovich stochas- tic integral with respect to Brownian motion are investigated. Some sufficient conditions of incomplete Riemann-Stieltjes sums approaching stochastic inte- gral are developed, which establish the alternative ways to converge stochas- tic integral. And, Two simulation examples of incomplete Riemann-Stieltjes sums about Ito stochastic integral and Stratonovich stochastic integral are given for demonstration. Keywords: Ito stochastic integral; Stratonovich stochastic integral; Mean square integral; Definite integral; Brownian motion ;Riemann-Stieltjes sum; Convergence in mean square; Convergence in probability 1 Introduction Ito stochastic integral and Stratonovich stochastic integral take important arXiv:1803.05182v2 [math.PR] 17 Mar 2018 roles in stochastic calculus and stochastic differential equation. Both of them can be expressed in the limit of Riemann-Stieltjes sum [1-4], though they can be modeled by martingale and semimartingale theory[5-13]. [14] pro- poses the deleting item Riemann-Stieltjes sum theorem of definite integral, which can also be called incomplete Riemann-Stieltjes sum. As definitions of martingale and semimartingale are still relative to integral including defi- nite integral, and -
Stochastic Differential Equations: a SAD Primer
Stochastic Differential Equations: A SAD Primer Adam Monahan July 8, 1998 1 The Wiener Process The stochastic process Wt is a Wiener Process if its increments are normally distributed: Wt − Ws ∼ N (0, t − s) (1) and are independent if non-overlapping: {( − )( − )}= ( , ) ∩ ( , ) =∅ E Wt1 Ws1 Wt2 Ws2 0if s1 t1 s2 t2 (2) In particular, we have E{Wt − Ws }=0(3) 2 E{(Wt − Ws ) }=t − s (4) Furthermore, if we fix the initial value of the process to be zero, W0 = 0(5) then we obtain E{Wt }=0(6) 2 E{(Wt ) }=t (7) E{Wt Ws }=min(t, s) (8) where the third of these equations follows from (2) by noting that if t > s ,then Wt = (Wt − Ws ) + Ws (9) so E{Wt Ws }=E{((Wt − Ws ) + Ws )Ws } (10) 2 = E{(Wt − Ws )Ws }+E{(Ws) } (11) = 0 + s (12) by linearity of the expectation operator. Realisations of the Wiener process are a.s. continuous, ie, P(lim Xs = Xt ) = 1 (13) s→t but are nowhere differentiable. This latter result can be understood to arise from the fact that W + − W 1 t h t ∼ N 0, (14) h h which distribution has divergent variance in the limit h → 0. 1 We can actually sort of make sense of the above result if we indulge in a little “physics math” (PM) ... define the process ξt , which we’ll call Gaussian White Noise, as the distribution with moments: E{ξt }=0 (15) {ξ ξ }=δ( − ) E t1 t2 t1 t2 (16) {ξ ξ ξ }= E t1 t2 t3 0 (17) {ξ ξ ξ ξ }=δ( − )δ( − ) E t1 t2 t3 t4 t1 t2 t3 t4 +δ(t2 − t3)δ(t4 − t1) + δ(t2 − t4)δ(t1 − t3) (18) and so on for all the higher moments of ξt .