or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to:
[email protected] ofor Th e The to:
[email protected] Oceanography approval Oceanography correspondence POall Box 1931, portionthe Send Society. Rockville, ofwith any permittedUSA. articleonly photocopy by Society, is MD 20849-1931, of machine, this reposting, means or collective or other redistirbution article has This been published in hands - on O ceanography Oceanography Diffusion at Work , Volume 20, Number 3, a quarterly journal of The Oceanography Society. Copyright 2007 by The Oceanography Society. All rights reserved. Permission is granted to copy this article for use in teaching and research. Republication, systemmatic reproduction, reproduction, Republication, systemmatic research. for this and teaching article copy to use in reserved.by The 2007 is rights ofAll granted journal Copyright Oceanography The Permission 20, NumberOceanography 3, a quarterly Society. Society. , Volume An Interactive Simulation B Y L ee K arp-B oss , E mmanuel B oss , and J ames L oftin PURPOSE OF ACTIVITY or small particles due to their random (Brownian) motion and The goal of this activity is to help students better understand the resultant net migration of material from regions of high the nonintuitive concept of diffusion and introduce them to a concentration to regions of low concentration. Stirring (where variety of diffusion-related processes in the ocean. As part of material gets stretched and folded) expands the area available this activity, students also practice data collection and statisti- for diffusion to occur, resulting in enhanced mixing compared cal analysis (e.g., average, variance, and probability distribution to that due to molecular diffusion alone.