Temperature Affects the Diffusion of Small Molecules Through Cytosol of Fish Muscle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sanitization: Concentration, Temperature, and Exposure Time
Sanitization: Concentration, Temperature, and Exposure Time Did you know? According to the CDC, contaminated equipment is one of the top five risk factors that contribute to foodborne illnesses. Food contact surfaces in your establishment must be cleaned and sanitized. This can be done either by heating an object to a high enough temperature to kill harmful micro-organisms or it can be treated with a chemical sanitizing compound. 1. Heat Sanitization: Allowing a food contact surface to be exposed to high heat for a designated period of time will sanitize the surface. An acceptable method of hot water sanitizing is by utilizing the three compartment sink. The final step of the wash, rinse, and sanitizing procedure is immersion of the object in water with a temperature of at least 170°F for no less than 30 seconds. The most common method of hot water sanitizing takes place in the final rinse cycle of dishwashing machines. Water temperature must be at least 180°F, but not greater than 200°F. At temperatures greater than 200°F, water vaporizes into steam before sanitization can occur. It is important to note that the surface temperature of the object being sanitized must be at 160°F for a long enough time to kill the bacteria. 2. Chemical Sanitization: Sanitizing is also achieved through the use of chemical compounds capable of destroying disease causing bacteria. Common sanitizers are chlorine (bleach), iodine, and quaternary ammonium. Chemical sanitizers have found widespread acceptance in the food service industry. These compounds are regulated by the U.S. Environmental Protection Agency and consequently require labeling with the word “Sanitizer.” The labeling should also include what concentration to use, data on minimum effective uses and warnings of possible health hazards. -
The Effect of Carbon Monoxide Sources and Meteorologic Changes in Carbon Monoxide Intoxication: a Retrospective Study
Cilt: 3 Sayı: 1 Şubat 2020 / Vol: 3 Issue: 1 February 2020 https://dergipark.org.tr/tr/pub/actamednicomedia Research Article | Araştırma Makalesi THE EFFECT OF CARBON MONOXIDE SOURCES AND METEOROLOGIC CHANGES IN CARBON MONOXIDE INTOXICATION: A RETROSPECTIVE STUDY KARBONMONOKSİT KAYNAKLARININ VE METEOROLOJİK DEĞİŞİKLİKLERİN KARBONMONOKSİT ZEHİRLENMELERİNE ETKİSİ: RETROSPEKTİF ÇALIŞMA Duygu Yılmaz1, Umut Yücel Çavuş2, Sinan Yıldırım3, Bahar Gülcay Çat Bakır4*, Gözde Besi Tetik5, Onur Evren Yılmaz6, Mehtap Kaynakçı Bayram7 1Manisa Turgutlu State Hospital, Department of Emergency Medicine, Manisa, Turkey. 2Ankara Education and Research Hospital, Department of Emergency Medicine, Ankara, Turkey. 3Çanakkale State Hospital, Department of Emergency Medicine, Çanakkale,Turkey. 4Mersin City Education and Research Hospital, Department of Emergency Medicine, Mersin, Turkey. 5Gaziantep Şehitkamil State Hospital, Department of Emergency Medicine, Gaziantep, Turkey. 6Medical Park Hospital, Department of Plastic and Reconstructive Surgery, İzmir, Turkey. 7Kayseri City Education and Research Hospital, Department of Emergency Medicine, Kayseri, Turkey. ABSTRACT ÖZ Objective: Carbon monoxide (CO) poisoning is frequently seen in Amaç: Karbonmonoksit (CO) zehirlenmelerine, özellikle soğuk emergency departments (ED) especially in cold weather. We havalarda olmak üzere acil servis birimlerinde sıklıkla karşılaşılır. investigated the relationship of some of the meteorological factors Çalışmamızda, bazı meteorolojik faktörlerin CO zehirlenmesinin with the sources -
Sea Surface Temperatures on the Great Barrier Reef: a Contribution to the Study of Coral Bleaching
GREAT BARRIER REEF MARINE PARK AUTHORITY RESEARCH PUBLICATION No. 57 Sea Surface Temperatures on the Great Barrier Reef: a Contribution to the Study of Coral Bleaching JM Lough 551.460 109943 1999 RESEARCH PUBLICATION No. 57 Sea Surface Temperatures on the Great Barrier Reef: a Contribution to the Study of Coral Bleaching JM Lough Australian Institute of Marine Science AUSTRALIAN INSTITUTE GREAT BARRIER REEF OF MARINE SCIENCE MARINE PARK AUTHORITY A REPORT TO THE GREAT BARRIER REEF MARINE PARK AUTHORITY O Great Barrier Reef Marine Park Authority, Australian Institute of Marine Science 1999 ISSN 1037-1508 ISBN 0 642 23069 2 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Great Barrier Reef Marine Park Authority and the Australian Institute of Marine Science. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Information Support Group, Great Barrier Reef Marine Park Authority, PO Box 1379, Townsville Qld 4810. The opinions expressed in this document are not necessarily those of the Great Barrier Reef Marine Park Authority. Accuracy in calculations, figures, tables, names, quotations, references etc. is the complete responsibility of the author. National Library of Australia Cataloguing-in-Publication data: Lough, J. M. Sea surface temperatures on the Great Barrier Reef : a contribution to the study of coral bleaching. Bibliography. ISBN 0 642 23069 2. 1. Ocean temperature - Queensland - Great Barrier Reef. 2. Corals - Queensland - Great Barrier Reef - Effect of temperature on. 3. Coral reef ecology - Australia - Great Barrier Reef (Qld.) - Effect of temperature on. -
Air-Sea Gas Exchange
Air-Sea Gas Exchange OCN 623 – Chemical Oceanography 17 March 2015 Readings: Libes, Chapter 6 – pp. 158 -168 Wanninkhof et al. (2009) Advances in quantifying air-sea gas exchange and environmental forcing, Annual Reviews of Marine Science © 2015 David Ho and Frank Sansone Overview • Introduction • Theory/models of gas exchange • Mechanisms/lab studies of gas exchange • Field measurements • Parameterizations Why do we care about air-water gas exchange? . Globally, to understand cycling of biogeochemically important trace gases (e.g., CO2, DMS, CH4, N2O, CH3Br) . Regionally and locally . To understand indicators of water quality (e.g., dissolved O2) . To predict evasion rates of volatile pollutants (e.g., VOCs, PAHs, PCBs) Factors Influencing Air-water Transfer of Mass, Momentum, Heat From SOLAS Science Plan and Implementation Strategy Basic flux equation Concentration gradient Flux (mol cm-3) (mol cm-2 s-1) “driving force” Gas transfer velocity (cm s-1) “resistance” k: Gas transfer velocity, piston velocity, gas exchange coefficient Cw: Concentration in water near the surface Ca: Concentration in air near the surface α: Ostwald solubility coefficient (temp-compensated Bunsen coeff) Basic conceptual model Turbulent atmosphere C Atmosphere a Laminar Stagnant Cas Boundary Layer zFilm Cws (transport by Ocean molecular diffusion) Cw Turbulent bulk liquid F = k(Cw-αCa) Air/water side resistance Magnitude of typical Ostwald solubility coefficients He ≈ 0.01 Water-side resistance O2 ≈ 0.03 CO2 ≈ 0.7 DMS ≈ 10 Air- and water-side resistance CH3Br -
Part Two Physical Processes in Oceanography
Part Two Physical Processes in Oceanography 8 8.1 Introduction Small-Scale Forty years ago, the detailed physical mechanisms re- Mixing Processes sponsible for the mixing of heat, salt, and other prop- erties in the ocean had hardly been considered. Using profiles obtained from water-bottle measurements, and J. S. Turner their variations in time and space, it was deduced that mixing must be taking place at rates much greater than could be accounted for by molecular diffusion. It was taken for granted that the ocean (because of its large scale) must be everywhere turbulent, and this was sup- ported by the observation that the major constituents are reasonably well mixed. It seemed a natural step to define eddy viscosities and eddy conductivities, or mix- ing coefficients, to relate the deduced fluxes of mo- mentum or heat (or salt) to the mean smoothed gra- dients of corresponding properties. Extensive tables of these mixing coefficients, KM for momentum, KH for heat, and Ks for salinity, and their variation with po- sition and other parameters, were published about that time [see, e.g., Sverdrup, Johnson, and Fleming (1942, p. 482)]. Much mathematical modeling of oceanic flows on various scales was (and still is) based on simple assumptions about the eddy viscosity, which is often taken to have a constant value, chosen to give the best agreement with the observations. This approach to the theory is well summarized in Proudman (1953), and more recent extensions of the method are described in the conference proceedings edited by Nihoul 1975). Though the preoccupation with finding numerical values of these parameters was not in retrospect always helpful, certain features of those results contained the seeds of many later developments in this subject. -
Modes of Mass Transfer Chapter Objectives
MODES OF MASS TRANSFER CHAPTER OBJECTIVES - After you have studied this chapter, you should be able to: 1. Explain the process of molecular diffusion and its dependence on molecular mobility. 2. Explain the process of capillary diffusion 3. Explain the process of dispersion in a fluid or in a porous solid. 4. Understand the process of convective mass transfer as due to bulk flow added to diffusion or dispersion. 5. Explain saturated flow and unsaturated capillary flow in a porous solid 6. Have an idea of the relative rates of the different modes of mass transfer. 7. Explain osmotic flow. KEY TERMS diffusion, diffusivity, and. diffusion coefficient dispersion and dispersion coefficient hydraulic conductivity capillarity osmotic flow mass and molar flux Fick's law Darcy's law 1. A Primer on Porous Media Flow Physical Interpretation of Hydraulic Conductivity K and Permeability k Figure 1. Idealization of a porous media as bundle of tubes of varying diameter and tortuosity. Capillarity and Unsaturated Flow in a Porous Media Figure 2.Capillary attraction between the tube walls and the fluid causes the fluid to rise. Osmotic Flow in a Porous Media Figure 3.Osmotic flow from a dilute to a concentrated solution through a semi-permeable membrane. 2. Molecular Diffusion • In a material with two or more mass species whose concentrations vary within the material, there is tendency for mass to move. Diffusive mass transfer is the transport of one mass component from a region of higher concentration to a region of lower concentration. Physical interpretation of diffusivity Figure 4. Concentration profiles at different times from an instantaneous source placed at zero distance. -
Temperature Relationships of Great Lakes Fishes: By
Temperature Relationships of Great Lakes Fishes: A Data Compilation by Donald A. Wismer ’ and Alan E. Christie Great Lakes Fishery Commission Special Publication No. 87-3 Citation: Wismer, D.A. and A.E. Christie. 1987. Temperature Relationships of Great Lakes Fishes: A Data Compilation. Great Lakes Fish. Comm. Spec. Pub. 87-3. 165 p. GREAT LAKES FISHERY COMMISSION 1451 Green Road Ann Arbor, Ml48105 USA July, 1987 1 Environmental Studies & Assessments Dept. Ontario Hydro 700 University Avenue, Location H10 F2 Toronto, Ontario M5G 1X6 Canada TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Purpose 1.2 Summary 1.3 Literature Review 1.4 Database Advantages and Limitations 2.0 METHODS 2 2.1 Species List 2 2.2 Database Design Considerations 2 2.3 Definition of Terms 3 3.0 DATABASE SUMMARY 9 3.1 Organization 9 3.2 Content 10 4.0 REFERENCES 18 5.0 FISH TEMPERATURE DATABASE 29 5.1 Abbreviations 29 LIST OF TABLES Page Great Lakes Fish Species and Types of Temperature Data 11 Alphabetical Listing of Reviewed Fish Species by 15 Common Name LIST OF FIGURES Page Diagram Showing Temperature Relations of Fish 5 1.0 INTRODUCTION 1.1 Purpose The purpose of this report is to compile a temperature database for Great Lakes fishes. The database was prepared to provide a basis for preliminary decisions concerning the siting, design, and environ- mental performance standards of new generating stations and appropriate mitigative approaches to resolve undesirable fish community interactions at existing generating stations. The contents of this document should also be useful to fisheries research and management agencies in the Great Lakes Basin. -
Visualizing Molecular Diffusion Through Passive Permeability
COCHBI-1072; NO. OF PAGES 9 Available online at www.sciencedirect.com Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches 1 1 1,2 1,3 Yu-Chun Lin , Siew Cheng Phua , Benjamin Lin and Takanari Inoue Diffusion barriers are universal solutions for cells to achieve exist at a variety of cellular structures, including the distinct organizations, compositions, and activities within a nuclear envelope, the annulus of spermatozoa, the lead- limited space. The influence of diffusion barriers on the ing edge of migrating cells, the cleavage furrow of divid- spatiotemporal dynamics of signaling molecules often ing cells, and the budding neck of yeast, as well as in determines cellular physiology and functions. Over the years, cellular extensions such as primary cilia, dendritic spines, the passive permeability barriers in various subcellular locales and the initial segment of the neuronal axon [1 ,6 ,7]. have been characterized using elaborate analytical techniques. While some diffusion barriers exist constitutively in cells, In this review, we will summarize the current state of knowledge others are highly dynamic. The importance of diffusion on the various passive permeability barriers present in barriers is further underscored by the various human mammalian cells. We will conclude with a description of several diseases which result from their dysfunction [3,6 ,8,9]. conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing Diffusion barriers can be categorized into two major permeable barriers. classes based on the substrates they affect: lateral diffu- Addresses sion barriers and permeability barriers. Lateral diffusion 1 Department of Cell Biology, Center for Cell Dynamics, School of barriers localize in membranes and restrict the movement Medicine, Johns Hopkins University, United States 2 of molecules within the membrane plane such as trans- Department of Biomedical Engineering, Johns Hopkins University, membrane proteins and membrane lipids [1 ]. -
INFLUENCE of TEMPERATURE on DIFFUSION and SORPTION of 237Np(V) THROUGH BENTONITE ENGINEERED BARRIERS
Clemson University TigerPrints All Theses Theses 5-2017 Influence of emperT ature on Diffusion and Sorption of 237Np(V) through Bentonite Engineered Barriers Rachel Nicole Pope Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Pope, Rachel Nicole, "Influence of emperT ature on Diffusion and Sorption of 237Np(V) through Bentonite Engineered Barriers" (2017). All Theses. 2666. https://tigerprints.clemson.edu/all_theses/2666 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. INFLUENCE OF TEMPERATURE ON DIFFUSION AND SORPTION OF 237Np(V) THROUGH BENTONITE ENGINEERED BARRIERS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Environmental Engineering and Earth Sciences by Rachel Nicole Pope May 2017 Accepted by: Dr. Brian A. Powell, Committee Chair Dr. Mark Schlautman Dr. Lindsay Shuller‐Nickles ABSTRACT Diffusion rates of 237Np(V), 3H, and 22Na through Na‐montmorillonite were studied under variable dry bulk density and temperature. Distribution coefficients were extrapolated for conservative tracers. Two sampling methods were implemented, and effects of each sampling method were compared. The first focused on an exchange of the lower concentration reservoir frequently while the second kept the lower concentration reservoir consistent. In both sampling methods, tritium diffusion coefficients decreased with an increase in dry bulk density and increased with an increase in temperature. Sodium diffusion rates followed the same trends as tritium with the exception of sorption phenomena. -
Diffusion at Work
or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] ofor Th e The to: [email protected] Oceanography approval Oceanography correspondence POall Box 1931, portionthe Send Society. Rockville, ofwith any permittedUSA. articleonly photocopy by Society, is MD 20849-1931, of machine, this reposting, means or collective or other redistirbution article has This been published in hands - on O ceanography Oceanography Diffusion at Work , Volume 20, Number 3, a quarterly journal of The Oceanography Society. Copyright 2007 by The Oceanography Society. All rights reserved. Permission is granted to copy this article for use in teaching and research. Republication, systemmatic reproduction, reproduction, Republication, systemmatic research. for this and teaching article copy to use in reserved.by The 2007 is rights ofAll granted journal Copyright Oceanography The Permission 20, NumberOceanography 3, a quarterly Society. Society. , Volume An Interactive Simulation B Y L ee K arp-B oss , E mmanuel B oss , and J ames L oftin PURPOSE OF ACTIVITY or small particles due to their random (Brownian) motion and The goal of this activity is to help students better understand the resultant net migration of material from regions of high the nonintuitive concept of diffusion and introduce them to a concentration to regions of low concentration. Stirring (where variety of diffusion-related processes in the ocean. As part of material gets stretched and folded) expands the area available this activity, students also practice data collection and statisti- for diffusion to occur, resulting in enhanced mixing compared cal analysis (e.g., average, variance, and probability distribution to that due to molecular diffusion alone. -
The Application of Temperature And/Or Pressure Correction Factors in Gas Measurement COMBINED BOYLE’S – CHARLES’ GAS LAWS
The Application of Temperature and/or Pressure Correction Factors in Gas Measurement COMBINED BOYLE’S – CHARLES’ GAS LAWS To convert measured volume at metered pressure and temperature to selling volume at agreed base P1 V1 P2 V2 pressure and temperature = T1 T2 Temperatures & Pressures vary at Meter Readings must be converted to Standard conditions for billing Application of Correction Factors for Pressure and/or Temperature Introduction: Most gas meters measure the volume of gas at existing line conditions of pressure and temperature. This volume is usually referred to as displaced volume or actual volume (VA). The value of the gas (i.e., heat content) is referred to in gas measurement as the standard volume (VS) or volume at standard conditions of pressure and temperature. Since gases are compressible fluids, a meter that is measuring gas at two (2) atmospheres will have twice the capacity that it would have if the gas is being measured at one (1) atmosphere. (Note: One atmosphere is the pressure exerted by the air around us. This value is normally 14.696 psi absolute pressure at sea level, or 29.92 inches of mercury.) This fact is referred to as Boyle’s Law which states, “Under constant tempera- ture conditions, the volume of gas is inversely proportional to the ratio of the change in absolute pressures”. This can be expressed mathematically as: * P1 V1 = P2 V2 or P1 = V2 P2 V1 Charles’ Law states that, “Under constant pressure conditions, the volume of gas is directly proportional to the ratio of the change in absolute temperature”. Or mathematically, * V1 = V2 or V1 T2 = V2 T1 T1 T2 Gas meters are normally rated in terms of displaced cubic feet per hour. -
What Is the Difference Between Osmosis and Diffusion?
What is the difference between osmosis and diffusion? Students are often asked to explain the similarities and differences between osmosis and diffusion or to compare and contrast the two forms of transport. To answer the question, you need to know the definitions of osmosis and diffusion and really understand what they mean. Osmosis And Diffusion Definitions Osmosis: Osmosis is the movement of solvent particles across a semipermeable membrane from a dilute solution into a concentrated solution. The solvent moves to dilute the concentrated solution and equalize the concentration on both sides of the membrane. Diffusion: Diffusion is the movement of particles from an area of higher concentration to lower concentration. The overall effect is to equalize concentration throughout the medium. Osmosis And Diffusion Examples Examples of Osmosis: Examples of osmosis include red blood cells swelling up when exposed to fresh water and plant root hairs taking up water. To see an easy demonstration of osmosis, soak gummy candies in water. The gel of the candies acts as a semipermeable membrane. Examples of Diffusion: Examples of diffusion include perfume filling a whole room and the movement of small molecules across a cell membrane. One of the simplest demonstrations of diffusion is adding a drop of food coloring to water. Although other transport processes do occur, diffusion is the key player. Osmosis And Diffusion Similarities Osmosis and diffusion are related processes that display similarities. Both osmosis and diffusion equalize the concentration of two solutions. Both diffusion and osmosis are passive transport processes, which means they do not require any input of extra energy to occur.