C&O Wickelfalz.Indd

Total Page:16

File Type:pdf, Size:1020Kb

C&O Wickelfalz.Indd einander liegende Punkte unterschiedliche Ergebnisse. Daraus lassen sich in der komplexen Zahlenebene sehr anmutige Bilder 1. Satz - Form 3. Satz – Algorithmus berechnen. Die Abbildung zeigt das Bild zu f(z) = z³-1. Der Koordinaten-Ursprung liegt in der Bildmitte. Wie bei der Man- Gitterwürfel Belousov-Zhabotinsky-Zellautomat delbrot-Menge werden die Punkte je nach der Geschwindigkeit Statisches Array aus Würfeln Evolutionäre Kunst ihrer Konvergenz eingefärbt (dunkel = schnelle Konvergenz). Symmetrie: Kaleidoskop 3D Diffusionsbegrenztes Wachstum Charakteristisch für die Newton-Fraktale sind Schnüre aus Voronoi-Diagramm Gekoppelter Zellautomat schleifenförmigen Mustern; eine Ausschnittvergrößerung Platonische Körper: Zykloid zeigt, dass die „Schnüre“ aus ähnlichen Schleifen bestehen. Hexaeder 2D Diffusionsbegrenztes Wachstum Tetraeder Das vorangegangene untere Bild zeigt einen Ausschnitt mit Rabinovich-Fabrikant-Gleichung Oktaeder 30facher Vergrößerung aus dem Oberen, an der Stelle zwischen Ikosaeder Reaktionsdiffusionssystem: den beiden oberen Nullstellen berechnet. Es erinnert an die Dodekaeder Ginzburg-Landau-Modell Stützrippen in gotischen Gewölben. Dynamisches Array aus geodätischen Reaktionsdiffusionssystem: Kugeln Turing-Modell Menger-Schwamm Dynamisches Array aus Würfeln Lorenz-Attraktor Das Objekt wurde 1926 von dem öster- Borromäischer Knoten aus 5 Ringen reichischen Mathematiker Karl Menger Geodätische Kugel (1902 – 1985) beschrieben, als er sich mit Gyroidfläche dem Problem der Festlegung eines Dimen- Spiralfläche sionsbegriffs für mathematische Mengen Clebsch-Fläche beschäftigte. Die Entstehung des Schwamms wird durch ein iteratives Ver- fahren (wiederholte Anwendung) beschrieben: Ausgehend von 2. Satz – Simulation einem massiven Würfel wird aus jeder der 6 Oberflächen nach 4. Satz – Fraktal einer Teilung der Kanten in d = 3 Teile der mittlere Würfel ent- Partikel-Gravitationssimulation and fernt, auch in der unsichtbaren Mitte des Würfels. Dadurch ent- Strukturbildung im Universum Mandelbrot-Menge steht ein Körper, der aus N(d) = 8 · 2 + 4 = 20 einzelnen massi- Dynamik starrer Körper Secant-Fraktal ven, kleineren Würfeln besteht. Die Oberfläche ist nach diesem Dynamik von Flüssigkeiten Escape-Fraktal chaos Schritt vergrößert und das Volumen verkleinert. Die Wiederho- Boids-Schwarmsimulationen Iteriertes Funktionensystem: lung dieser Bearbeitung auf jeden dieser kleineren Würfel führt Boids-Flugbahnen „recursive fractal flames“ nach vielen Wiederholungen dieser Prozedur zu einem Körper Viskoelastische Flüssigkeit Mandelbulb-Fraktal mit sehr großer Oberfläche und sehr kleinem Volumen in dem Thermodynamik Mandelbox-Fraktal Raumbereich, den der Ausgangswürfel eingenommen hatte. „gravity set“-Simulation Newton-Fraktal „light gravity“-Simulation Menger-Schwamm Partikelsimulation „Galaxy-Collision“ order Die Hausdorff-Dimension D (benannt nach dem deutschen Mathematiker Felix Hausdorff, 1868 – 1942) wird berechnet durch D = log(N(d)) / log(d). Dabei ist N(d) die Zahl der Zahl der im Iterationsschritt aus einem Objekt neu entstehenden Objekte (die kleineren Würfel im mittleren Bild) und d der Faktor A Mathematic Symphony der Verkleinerung der Kantenlänge bei der Iteration. Impressum Die Hausdorff-Dimension des Volumens für den Menger- Sacherschließung: Prof. Dr. Ulrich Sowada Schwamm ist D = log(20) / log(3) = 2,73. Dieser Zahlenwert ist Bildmaterial: Rocco Helmchen & Prof. Dr. Ulrich Sowada nicht ganzzahlig; deshalb hat Mandelbrot den Begriff „fraktal“ Gestaltung: Frieder Klotz für die Dimension eingeführt. Erstellt am Zentrum für Kultur- und Wissenschaftskommunikation der Fachhochschule Kiel Aus denselben Anfangsbedingungen ent- Chaos und Ordnung Zweiter Satz: Simulation stehen bei jeder Versuchsdurchführung Galaxien-Haufen andere Endresultate, weil Diffusion ein Neuere astronomische Beobachtungen lassen erkennen, dass statistischer Vorgang ist. Dies lässt sich Erster Satz: Form die Galaxien im Kosmos nicht gleichmäßig verteilt sind, sondern mit Computern modellhaft berechnen. Kaleidoskop sich zu Galaxienhaufen zusammen ballen. Bewegungen inner- Durch die Kombination eines statistischen Bei diesem Gerät handelt es sich um ein Rohr halb dieser Haufen sind wegen der großen Abstände innerhalb Vorganges (Diffusion) mit einem determnistischen (chemische mit 3- oder 4-seitigem Querschnitt, das in- eines Menschenlebens nicht zu beobachten, aber sie können Reaktion) entstehen bei Wiederholung andere Formen; die nen verspiegelt ist und um die Längsachse rechnerisch nachgebildet werden. Formen haben aber Ähnlichkeit miteinander. gedreht werden kann. Wenn man hindurch ein Objekt betrachtet, sieht man das Objekt Fluid-Dynamik Vierter Satz: Fraktale direkt, aber auch einfach oder mehrfach ge- Die Berechnung von Flüssigkeitsbewegungen beinhaltet außer Der Begriff des Fraktals wurde durch den französisch- spiegelt. Die zu sehenden Bilder lassen sich auch durch Computer Trägheits- und Gravitationskräften auch Viskosität und Oberflä- amerikanischen Mathematiker Benoit Mandelbrot (1924 – 2010) berechnen, weil die optischen Vorgänge sehr einfach sind. chenspannung. Diese Kraft wirkt der Vergrößerung der Oberfläche eingeführt. Damit wird es möglich, der Rauheit in der Natur entgegen und lässt Flüssigkeitstropfen kugelförmig werden, wenn eine Maßzahl zu geben; denn ein Berg ist kein Kegel. Eine oft Voronoi-Diagramm keine weiteren Kräfte wirksam sind. Tanzende Flüssigkeiten ent- beobachtete Eigenschaft von Fraktalen ist die Selbstähnlich- Ausgehend von gegebenen Punkten stehen durch Wechselwirkung der verschiedenen Energieformen keit: Bei Vergrößerungen eines Bildausschnitts werden Formen wird der Raum (oder die Ebene) in Zellen (kinetische, potentielle, Strömungs- und Oberflächen-Energie). sichtbar, die dem Ausgangsobjekt ähneln. um jeden dieser gesetzten Punkte ein- geteilt. Alle Punkte innerhalb einer Zelle Kollidierende Galaxien Mandelbrot-Menge haben zu dem gegebenen Punkt einen Zwei Körper im Raum, die aufeinander Gra- Die komplexen Zahlen c (c = a + i * b) kleineren Abstand als zu allen ande- vitation ausüben, bewegen sich nach Kepler werden repräsentiert durch die Punkte ren. In der Ebene werden die Wände der auf geschlossenen Bahnen. Der französische der Ebene, in der entlang der x-Achse Zellen gebildet aus den Mittelsenkrech- Mathematiker Henry Poincaré (1854 – 1912) die reellen (a) und entlang der y-Achse ten zu den Verbindungslinien zwischen hat berechnet, dass die zeitliche Entwicklung die imaginären Zahlen (b) aufgetra- den gesetzten Punkten. Die Formen der von mehr als zwei Körpern nicht mehr exakt in alle Zukunft vor- gen werden. Es wird z0 = 0 gesetzt und Zellen variieren mit der Lage der gesetz- ausgesagt werden kann: Das Ergebnis kann drastisch anders aus- auf jeden Punkt c dieser Ebene der 2 ten Punkte. Bei einer Vergrößerung der sehen als eine rechnerische Vorhersage, wenn ein Ort oder eine Algorithmus zn = zn-1 + c (n = 1, 2, …) angewendet. Wenn der Anzahl dieser Punkte bilden sich neue Geschwindigkeit zu Beginn unmerkbar anders eingesetzt wird. Betrag von zn einen Wert (z. B. 2) übersteigt, wird die Iterati- Formen. Im südlichen Sternbild Rabe gibt es zwei Galaxien, die offenbar on (=Wiederholung dieser Berechnung) abgebrochen und der miteinander kollidieren. Die Kräfte auf jeden einzelnen Stern ver- Punkt in der komplexen Ebene entsprechend dem dann ent- Platonische Körper ändern die Sternenbahnen; beim Zusammenspiel von Gravitation standenen Wert von n eingefärbt. Die Mandelbrot-Menge (nach Aus den regulären Vielecken der Ebe- und Trägheit entstehen Gezeitenkräfte, die einzelne Sterne aus Benoit Mandelbrot, 1924 – 2010) wird von denjenigen Punkten ne (Dreieck, Viereck, Fünfeck) werden den Galaxien heraus schleudern. der komplexen Ebene gebildet, die auch nach vielen Iteratio- diejenigen räumlichen Gebilde kons- nen diese Abbruchbedingung nicht erreichen. truiert, deren Oberflächen einzig aus Dritter Satz: Algorithmen diesen Vielecken bestehen. Davon gibt Rabinovitch-Fabrikant-Gleichung Newton-Fraktal es nur fünf: Tetraeder, Hexaeder (= Würfel), Oktaeder, Dodeka- Diese beiden Forscher veröffentlichten 1979 drei gekoppelte Für Gleichungen, deren Nullstellen sich eder und Ikosaeder. Wenn zur Bildung der Oberfläche nicht nur gewöhnliche, nichtlineare Differentialgleichungen (unabhängi- nicht exakt berechnen lassen, gibt es ein ein Typ von Vieleck zugelassen wird, entstehen weitere Formen ge Variable: Zeit t). Die Lösungen zeigen die für mathematisches Näherungsverfahren. Dieses Verfahren (Fußball, Fullerene). An diese Objekte erinnern die im Film Chaos typische Verhaltensweise: Die Kurvenverläufe hängen stark liefert unter geeigneten Bedingungen gezeigten „geodätischen Kugeln“. vom Wert der Koeffizienten ab. gegenüber einem Schätzwert ein verbes- sertes Ergebnis. Eine wiederholte An- Reaktions-Diffusions-System (Turing-Modell) wendung kann zu einem befriedigenden Die zeitliche Veränderung der Konzentration einer Substanz hängt numerischen Ergebnis führen. Wenn der davon ab, wie viel durch Diffusion aus dem betrachteten Volumen Schätzwert in der Nähe eines Extremwer- austritt und wie viel durch chemische Reaktion umgebildet wird. tes liegt, erhält man für sehr dicht neben-.
Recommended publications
  • Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Introduction to Ultra Fractal
    Introduction to Ultra Fractal Text and images © 2001 Kerry Mitchell Table of Contents Introduction ..................................................................................................................................... 2 Assumptions ........................................................................................................................ 2 Conventions ........................................................................................................................ 2 What Are Fractals? ......................................................................................................................... 3 Shapes with Infinite Detail .................................................................................................. 3 Defined By Iteration ........................................................................................................... 4 Approximating Infinity ....................................................................................................... 4 Using Ultra Fractal .......................................................................................................................... 6 Starting Ultra Fractal ........................................................................................................... 6 Formula ............................................................................................................................... 6 Size .....................................................................................................................................
    [Show full text]
  • Rendering Hypercomplex Fractals Anthony Atella [email protected]
    Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2018 Rendering Hypercomplex Fractals Anthony Atella [email protected] Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects Part of the Computer Sciences Commons, and the Other Mathematics Commons Recommended Citation Atella, Anthony, "Rendering Hypercomplex Fractals" (2018). Honors Projects Overview. 136. https://digitalcommons.ric.edu/honors_projects/136 This Honors is brought to you for free and open access by the Honors Projects at Digital Commons @ RIC. It has been accepted for inclusion in Honors Projects Overview by an authorized administrator of Digital Commons @ RIC. For more information, please contact [email protected]. Rendering Hypercomplex Fractals by Anthony Atella An Honors Project Submitted in Partial Fulfillment of the Requirements for Honors in The Department of Mathematics and Computer Science The School of Arts and Sciences Rhode Island College 2018 Abstract Fractal mathematics and geometry are useful for applications in science, engineering, and art, but acquiring the tools to explore and graph fractals can be frustrating. Tools available online have limited fractals, rendering methods, and shaders. They often fail to abstract these concepts in a reusable way. This means that multiple programs and interfaces must be learned and used to fully explore the topic. Chaos is an abstract fractal geometry rendering program created to solve this problem. This application builds off previous work done by myself and others [1] to create an extensible, abstract solution to rendering fractals. This paper covers what fractals are, how they are rendered and colored, implementation, issues that were encountered, and finally planned future improvements.
    [Show full text]
  • Lecture 9: Newton Method 9.1 Motivation 9.2 History
    10-725: Convex Optimization Fall 2013 Lecture 9: Newton Method Lecturer: Barnabas Poczos/Ryan Tibshirani Scribes: Wen-Sheng Chu, Shu-Hao Yu Note: LaTeX template courtesy of UC Berkeley EECS dept. 9.1 Motivation Newton method is originally developed for finding a root of a function. It is also known as Newton- Raphson method. The problem can be formulated as, given a function f : R ! R, finding the point x? such that f(x?) = 0. Figure 9.1 illustrates another motivation of Newton method. Given a function f, we want to approximate it at point x with a quadratic function fb(x). We move our the next step determined by the optimum of fb. Figure 9.1: Motivation for quadratic approximation of a function. 9.2 History Babylonian people first applied the Newton method to find the square root of a positive number S 2 R+. The problem can be posed as solving the equation f(x) = x2 − S = 0. They realized the solution can be achieved by applying the iterative update rule: 2 1 S f(xk) xk − S xn+1 = (xk + ) = xk − 0 = xk − : (9.1) 2 xk f (xk) 2xk This update rule converges to the square root of S, which turns out to be a special case of Newton method. This could be the first application of Newton method. The starting point affects the convergence of the Babylonian's method for finding the square root. Figure 9.2 shows an example of solving the square root for S = 100. x- and y-axes represent the number of iterations and the variable, respectively.
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • Generating Fractals Using Complex Functions
    Generating Fractals Using Complex Functions Avery Wengler and Eric Wasser What is a Fractal? ● Fractals are infinitely complex patterns that are self-similar across different scales. ● Created by repeating simple processes over and over in a feedback loop. ● Often represented on the complex plane as 2-dimensional images Where do we find fractals? Fractals in Nature Lungs Neurons from the Oak Tree human cortex Regardless of scale, these patterns are all formed by repeating a simple branching process. Geometric Fractals “A rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole.” Mandelbrot (1983) The Sierpinski Triangle Algebraic Fractals ● Fractals created by repeatedly calculating a simple equation over and over. ● Were discovered later because computers were needed to explore them ● Examples: ○ Mandelbrot Set ○ Julia Set ○ Burning Ship Fractal Mandelbrot Set ● Benoit Mandelbrot discovered this set in 1980, shortly after the invention of the personal computer 2 ● zn+1=zn + c ● That is, a complex number c is part of the Mandelbrot set if, when starting with z0 = 0 and applying the iteration repeatedly, the absolute value of zn remains bounded however large n gets. Animation based on a static number of iterations per pixel. The Mandelbrot set is the complex numbers c for which the sequence ( c, c² + c, (c²+c)² + c, ((c²+c)²+c)² + c, (((c²+c)²+c)²+c)² + c, ...) does not approach infinity. Julia Set ● Closely related to the Mandelbrot fractal ● Complementary to the Fatou Set Featherino Fractal Newton’s method for the roots of a real valued function Burning Ship Fractal z2 Mandelbrot Render Generic Mandelbrot set.
    [Show full text]
  • Newton's Mathematical Physics
    Isaac Newton A new era in science Waseda University, SILS, Introduction to History and Philosophy of Science LE201, History and Philosophy of Science Newton . Newton’s Legacy Newton brought to a close the astronomical revolution begun by Copernicus. He combined the dynamic research of Galileo with the astronomical work of Kepler. He produced an entirely new cosmology and a new way of thinking about the world, based on the interaction between matter and mathematically determinate forces. He joined the mathematical and experimental methods: the hypothetico-deductive method. His work became the model for rational mechanics as it was later practiced by mathematicians, particularly during the Enlightenment. LE201, History and Philosophy of Science Newton . William Blake’s Newton (1795) LE201, History and Philosophy of Science Newton LE201, History and Philosophy of Science Newton . Newton’s De Motu coporum in gyrum Edmond Halley (of the comet) visited Cambridge in 1684 and 1 talked with Newton about inverse-square forces (F 9 d2 ). Newton stated that he has already shown that inverse-square force implied an ellipse, but could not find the documents. Later he rewrote this into a short document called De Motu coporum in gyrum, and sent it to Halley. Halley was excited and asked for a full treatment of the subject. Two years later Newton sent Book I of The Mathematical Principals of Natural Philosophy (Principia). Key Point The goal of this project was to derive the orbits of bodies from a simpler set of assumptions about motion. That is, it sought to explain Kepler’s Laws with a simpler set of laws.
    [Show full text]
  • The Newton Fractal's Leonardo Sequence Study with the Google
    INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION e-ISSN: 1306-3030. 2020, Vol. 15, No. 2, em0575 OPEN ACCESS https://doi.org/10.29333/iejme/6440 The Newton Fractal’s Leonardo Sequence Study with the Google Colab Francisco Regis Vieira Alves 1*, Renata Passos Machado Vieira 1 1 Federal Institute of Science and Technology of Ceara - IFCE, BRAZIL * CORRESPONDENCE: [email protected] ABSTRACT The work deals with the study of the roots of the characteristic polynomial derived from the Leonardo sequence, using the Newton fractal to perform a root search. Thus, Google Colab is used as a computational tool to facilitate this process. Initially, we conducted a study of the Leonardo sequence, addressing it fundamental recurrence, characteristic polynomial, and its relationship to the Fibonacci sequence. Following this study, the concept of fractal and Newton’s method is approached, so that it can then use the computational tool as a way of visualizing this technique. Finally, a code is developed in the Phyton programming language to generate Newton’s fractal, ending the research with the discussion and visual analysis of this figure. The study of this subject has been developed in the context of teacher education in Brazil. Keywords: Newton’s fractal, Google Colab, Leonardo sequence, visualization INTRODUCTION Interest in the study of homogeneous, linear and recurrent sequences is becoming more and more widespread in the scientific literature. Therefore, the Fibonacci sequence is the best known and studied in works found in the literature, such as Oliveira and Alves (2019), Alves and Catarino (2019). In these works, we can see an investigation and exploration of the Fibonacci sequence and the complexification of its mathematical model and the generalizations that result from it.
    [Show full text]
  • William Blake 1 William Blake
    William Blake 1 William Blake William Blake William Blake in a portrait by Thomas Phillips (1807) Born 28 November 1757 London, England Died 12 August 1827 (aged 69) London, England Occupation Poet, painter, printmaker Genres Visionary, poetry Literary Romanticism movement Notable work(s) Songs of Innocence and of Experience, The Marriage of Heaven and Hell, The Four Zoas, Jerusalem, Milton a Poem, And did those feet in ancient time Spouse(s) Catherine Blake (1782–1827) Signature William Blake (28 November 1757 – 12 August 1827) was an English poet, painter, and printmaker. Largely unrecognised during his lifetime, Blake is now considered a seminal figure in the history of the poetry and visual arts of the Romantic Age. His prophetic poetry has been said to form "what is in proportion to its merits the least read body of poetry in the English language".[1] His visual artistry led one contemporary art critic to proclaim him "far and away the greatest artist Britain has ever produced".[2] In 2002, Blake was placed at number 38 in the BBC's poll of the 100 Greatest Britons.[3] Although he lived in London his entire life except for three years spent in Felpham[4] he produced a diverse and symbolically rich corpus, which embraced the imagination as "the body of God",[5] or "Human existence itself".[6] Considered mad by contemporaries for his idiosyncratic views, Blake is held in high regard by later critics for his expressiveness and creativity, and for the philosophical and mystical undercurrents within his work. His paintings William Blake 2 and poetry have been characterised as part of the Romantic movement and "Pre-Romantic",[7] for its large appearance in the 18th century.
    [Show full text]
  • Cao Flyer.Pdf
    Chaos and Order - A Mathematic Symphony Journey into the Language of the Universe! “The Universe is made of math.” — Max Tegmark, MIT Physicist Does mathematics have a color? Does it have a sound? Media artist Rocco Helmchen and composer Johannes Kraas try to answer these questions in their latest educational/entertainment full- dome show Chaos and Order - A Mathematic Symphony. The show captivates audiences by taking them on a journey into a fascinating world of sensuous, ever-evolving images and symphonic electronic music. Structured into four movements — from geometric forms, algo- rithms, simulations to chaos theory — the show explores breath- taking animated visuals of unprecedented beauty. Experience the fundamental connection between reality and mathematics, as science and art are fused together in this immer- sive celebration of the one language of our universe. Visualizations in Chaos and Order - A Mathematic Symphony Running time: 29, 40, or 51 minutes Year of production: 2012 Suitable for: General public 1st Movement - 2nd Movement - 3rd Movement - 4th Movement - Information about: Mathematical visualizations, fractals, music Form Simulation Algorithm Fractal Mesh cube N-body simulation Belousov- Mandelbrot set Public performance of this show requires the signing of a License Agreement. Static cube-array Simulated galaxy- Zhabotinsky cellular Secant Fractal Symmetry: superstructures automata Escape Fractal Kaleidoscope Rigid-body dynamics Evolutionary genetic Iterated function Chaos and Order - A Mathematic Symphony Voronoi
    [Show full text]
  • Donald Ault, Visionary Physics
    REVIEW Donald Ault, Visionary Physics David V. Erdman Blake/An Illustrated Quarterly, Volume 8, Issue 4, Spring 1975, pp. 128-130 128 affirm the existence of the "elect." Brisman's Donald D. Ault. Visionary Physics: Blake's omission is the more odd in that Milton's adherence to the promise of election is exactly Response to Newton. Chicago and London: the subject of Blake's most explicit criticism­­ The University of Chicago Press, 1974. in a poem which celebrates Blake's own "election"! $12.50. Presumably this is another instance of Blake's misreading in order to reinstate on his own terms. The Blakean, grateful for the insight which explains Reviewed by David V. Erdman why all of the action of Milton must be accomplished in a moment, will still wish that Brisman had had Time or Space to handle the associated proposition that the moment comprehends all time; for the specific correlations that Milton in that poem must perceive between the corruptions of history This is a book to be taken seriously, read care­ and the corruptions of his own Spectre and fully, consulted frequently. It must make an Emanation deserve the same close study that has irreversible revision of our understanding of been devoted to Adam's relationship to historical "Bacon & Newton & Locke"; of Urizen and his World; events in Paradise Lost. Brisman admits in his of what Blake meant by systems; of Blake's visionary Preface that Blake may seem slighted, and that he cosmos. It is an absorbing piece of scholarship deserves a separate study. One hopes that this to work one's way through, but one needs to summon remark can be read as the promise of such a study all one's powers as philosopher, historian of to come.
    [Show full text]
  • Leonardo Da Vinci (1452-1519) by Julia Pastore
    Leonardo da Vinci (1452-1519) by Julia Pastore Encyclopedia Copyright © 2015, glbtq, Inc. Entry Copyright © 2002, glbtq, Inc. Reprinted from http://www.glbtq.com A polymath with an extraordinary range of knowledge, Leonardo da Vinci embodies the notion of the aspiring and inquisitive Renaissance Man. One of the greatest painters in the history of art and an outstanding empirical scientist and inventor of machinery, his life was shadowed both by his illegitimacy and rumors of homosexuality. The child of middle-class notary Ser Piero da Vinci and a local peasant girl, Leonardo was born out of wedlock in Vinci, a town near Florence, on April 15, 1452. He never escaped the stigma of being a bastard. Denied entrance to university or any of the respected professions because of his birth, he was deprived of the humanist education of his day. For all the limitations his lack of an education imposed on him, however, Leonardo more than compensated for the deprivation by devising his empirical approach to natural phenomena. In his mid-teens, Leonardo was apprenticed in Florence to Andrea del Verrochio, a sculptor and painter affiliated with the powerful Medici family, under whose guidance the boy's artistic talents quickly flowered. Top: A sketch of Leonardo da Vinci Leonardo's Sexuality believed to be a self portrait. Center: Part of a design One of the most traumatizing experiences of Leonardo's life occurred in 1476 while he for a flying machine by was still living in Verrochio's house. Sodomy charges were anonymously brought Leonardo. against him and three others for allegedly having sexual relations with a seventeen- Above: Mona Lisa, year-old male artists' model.
    [Show full text]