Effects of Attention on Visual Experience During Monocular Rivalry ⇑ Eric A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monocular Rivalry Exhibits Three Hallmarks of Binocular Rivalry
This article may not exactly replicate the final version published. It is not the copy of record. 1 Monocular rivalry exhibits three hallmarks of binocular rivalry Robert P. O’Shea 1* , David Alais 2, Amanda L. Parker 2 and David J. La Rooy 1 1Department of Psychology, University of Otago, PO Box 56, Dunedin, New Zealand 2 School of Psychology, The University of Sydney, Australia * Corresponding author: e-mail: [email protected] Acknowledgements: We are grateful to Frank Tong for allowing us to use his stimuli for Experiment 2, and to Janine Mendola for helpful discussion. O'Shea, R. P., Parker, A. L., La Rooy, D. J. & Alais, D. (2009).Monocular rivalry exhibits three hallmarks of binocular rivalry: Evidence for common processes. Vision Research, 49, 671–681. http://www.elsevier.com/wps/find/journaldescription.cws_home/263/descri ption#description This article may not exactly replicate the final version published. It is not the copy of record. 2 Abstract Binocular rivalry occurs when different images are presented one to each eye: the images are visible only alternately. Monocular rivalry occurs when different images are presented both to the same eye: the clarity of the images fluctuates alternately. Could both sorts of rivalry reflect the operation of a general visual mechanism for dealing with perceptual ambiguity? We report four experiments showing similarities between the two phenomena. First, we show that monocular rivalry can occur with complex images, as with binocular rivalry, and that the two phenomena are affected similarly by the size and colour of the images. Second, we show that the distribution of dominance periods during monocular rivalry has a gamma shape and is stochastic. -
Spatio-Temporal Integration of an Object's Surface Information in Mid-Level Vision
Spatio-temporal integration of an object's surface information in mid-level vision A DISSERTATION SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Shin Ho Cho IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Professor Daniel J. Kersten and Sheng He June 2015 © Copyright by Shin Ho Cho 2015 All right Reserved Acknowledgements I would like to express the deepest appreciation to my two academic advisers, Professor Daniel J. Kersten, and Professor Sheng He. Both have the attitude and the substance of a genius: they continually and convincingly conveyed a spirit of adventure in regard to research and scholarship, and an excitement to explore the unknown intellectual world. Without their guidance and persistent help this dissertation would not have been possible. I would like to thank my committee members Professor Stephen Engel and Professor Bin He, whose comments and encouragement were very helpful in progressing my research and enabling me to finish this dissertation project. Also, I thank the University of Minnesota for financial support, especially the Doctoral Dissertation Fellowship Program. Shinho Cho (조신호) i To my parents and wife ii Abstract The human visual system can construct a 3D viewpoint of visual objects based on their 2D contours. This process is presumably an essential part of the visual system that enables interaction with an environment, e.g., grasping an object. Despite its importance, it is not clearly understood to what extent conscious awareness is involved in constructing 3D information from visual input. Here we investigated whether the 3D viewpoint of the object could be extracted and represented by the visual system when observers were not aware of the object’s image. -
A Primer on Binocular Rivalry, Including Current Controversies
A Primer on Binocular Rivalry, Including Current Controversies Randolph Blake Vanderbilt Vision Research Center Vanderbilt University Nashville TN 37240 USA running head: Binocular Rivalry email: [email protected] voice: 615-343-7010 FAX: 615-343-5029 Binocular Rivalry Abstract. Among psychologists and vision scientists, binocular rivalry has enjoyed sustained interest for decades dating back to the 19th century. In recent years, however, rivalry’s audience has expanded to include neuroscientists who envision rivalry as a “tool” for exploring the neural concomitants of conscious visual awareness and perceptual organization. For rivalry’s potential to be realized, workers using this “tool” need to know details of this fascinating phenomenon, and providing those details is the purpose of this article. After placing rivalry in a historical context, I summarize major findings concerning the spatial characteristics and the temporal dynamics of rivalry, discuss two major theoretical accounts of rivalry (“eye” vs “stimulus” rivalry) and speculate on possible neural concomitants of binocular rivalry. key words: binocular rivalry, suppression, conscious awareness, neural model, perceptual organization 1. Introduction The human brain has been touted as the most complex structure in the known universe (Thompson, 1985). This may be true, but despite its awesome powers the brain can behave like a confused adolescent when it is confronted with conflicting visual messages. When dissimilar visual stimuli are imaged on corresponding retinal regions of the two eyes, the brain lapses into an unstable state characterized by alternating periods of perceptual dominance during which one visual stimulus or the other is seen at a time. This confusion is understandable, for the eyes are signalling the brain that two different objects exist at the same location in space at the same time. -
Copyright and Use of This Thesis This Thesis Must Be Used in Accordance with the Provisions of the Copyright Act 1968
COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright A cross-modal investigation into the relationship between bistable perception and a global temporal mechanism by Amanda Louise Parker A thesis submitted in total fulfilment of the requirements of a Doctor of Philosophy in Science School of Psychology The University of Sydney 2013 Table of contents ORGANISATION OF THE THESIS ........................................................................................................ -
On the Dissociation Between Vision and Perception
On the neuronal activity in the human brain during visual recognition, imagery and binocular rivalry Thesis by Gabriel Kreiman In partial fulfillment of the requirements for the degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2002 (Defended August 29, 2001) ii © 2002 Gabriel Kreiman All Rights Reserved iii To all those teachers who taught me to enjoy learning iv v Acknowledgments Haec ego non multis scribo, sed tibi: satis enim magnum alter alteri theatrum sumus1. All of the work described in the following chapters would not have been possible without the enthusiastic help of a large and nice group of colleagues and friends. First of all, I would like to thank all the patients who participated in these experiments. We have not paid them and they have cooperated for the advancement of science. Candi Maechtlen and Irene Wainwright have provided valuable and prompt help throughout these years in several of the fundamental details that keep things going. Irene has also provided excellent editorial assistance in several of our publications. I have been fortunate to be able to interact and learn from a large number of teachers, colleagues and friends throughout my entire life. While a number of them have not contributed directly to this thesis work, it seems evident that they have enormously influenced my education and my preparation. Among them, I would like to especially mention my chess teacher Cesar Corte who was perhaps among the first who showed me the way to indulge in the wonderful task of solving new problems. The long hours of scientific exploration clearly have a root in me in the uncountable hours that we spent in front of a chessboard trying to figure out the solution to a problem or the best move.