Plan De Manejo Parque Nacional Villarrica Segunda Edición 2013

Total Page:16

File Type:pdf, Size:1020Kb

Plan De Manejo Parque Nacional Villarrica Segunda Edición 2013 Plan de Manejo Parque Nacional Villarrica Segunda Edición 2013. Departamento Áreas Silvestres Protegidas Corporación Nacional Forestal Región de la Araucanía, Chile Temuco, 2013 Equipo de Planificación para elaboración Plan de Manejo del Parque Nacional Villarrica (2006) Nemo Ortega Alul, Ingeniero Forestal, Coordinador y editor elaboración del Plan de Manejo PN. Villarrica Sergio Morales Sáez, Ingeniero Forestal, Elaboración de la Zonificación Mauricio Schacht Araya, Ingeniero Forestal, Elaboración de la cartografía base y la Zonificación (UFRO) Eduardo Núñez Araya, Geógrafo, Asesoría permanente en la elaboración y edición del Plan de Manejo Pamela Sánchez Pérez, MSc. Elaboración Línea Base Fauna Basilio Guiñez Lillo, Licenciado en Cs. Naturales, Elaboración Línea Base Fauna Marco Cortés Bianchi, Ingeniero Forestal, Elaboración Línea Base Flora Marcelo Saavedra Muñoz, Mag. En Educación, Colaboración en la elaboración y edición de la Línea base Flora y de todo el documento. Inés Soto Higuera, Psicóloga Organizacional, Coordinación dos Talleres de Planificación participativa con la comunidad Jorge Paredes Reyes, Administrador del PN. Villarrica colaboración en Líneas Bases, secciones temáticas y talleres. Lilian Vega Cruces, Estudiante de la carrera de Historia y Geografía, Elaboración antecedentes Histórico-culturales Guardaparques del PN. Villarrica Marcos Matus Lagos, Apoyo elaboración líneas bases en terreno Frabián Moraga Escobar, Apoyo elaboración líneas bases en terreno Lizardo Muñoz Gutiérrez, Apoyo elaboración líneas bases en terreno Ariel Matus Mora, Apoyo elaboración líneas bases en terreno Revisión Edición 2013: Ricardo Crisóstomo Henríquez, Ingeniero Forestal, Depto. Áreas Silvestres Protegidas, CONAF Araucanía Oscar Pontigo Ardiles, Ingeniero Forestal Jefe Depto. Áreas Silvestres Protegidas, CONAF Araucanía. 2 INDICE DE CONTENIDOS PORTADA 1 INDICE 3 CONTEXTO SEGUNDA VERSIÓN, AÑO 2013 8 9 PARTE A: MARCO CONTEXTUAL 1. Antecedentes generales 9 1.1 Ubicación y accesos 10 1.2 Deslindes 11 1.3 Antecedentes Legales 12 1.4 Síntesis Medio Ambiental 13 1.4.1 Limitantes para el manejo 13 1.4.2 Fisiografía 14 1.4.3 Hidrografía 14 1.4.4 Vegetación 15 1.4.5 Fauna 16 1.5 Situación de Uso 16 1.5.1 Uso Pasado 16 1.5.2 Uso Actual 17 2. Zona de influencia 17 2.1 Criterios de Definición 17 2.2 Zonas de Influencia 18 2.2.1 Zona de Influencia Ecológica 18 2.2.2 Zona de Influencia Socio-Económica 19 3 2.2.3 Zona de Influencia Político-Administrativa 20 3. Marco legal, político y técnico 20 3.1 Instrumentos Legales 20 3.1.1 Marco legal Nacional 21 3.2 Estrategias, Políticas y Planes Relacionados 22 3.2.1 Vinculación con Araucanía Lacustre (Emprende Chile) 22 3.2.2 Vinculación con la Estrategia de Desarrollo Regional (EDR) 23 3.2.3 Vinculación con la Estrategia de CONAF (IX Región) para el 23 Desarrollo Regional (ECDR) 3.3 Lineamientos Técnicos Relacionados 24 3.3.1 Definición de Parque Nacional 25 26 PARTE B: ANALISIS TERRITORIAL 1. Unidades homogéneas 26 1.1 Establecimiento de Tipología de Unidades Homogéneas 26 1.2 Valoración de Unidades Homogéneas 27 1.2.1 Criterios considerados 27 1.2.2 Valoración de Clases de Unidades Homogéneas 27 2. Valoración de las Unidades Homogéneas 28 2.1 Comunidad vegetal 28 2.1.1 Análisis bibliográfico de los estudios Florísticos realizados 28 2.1.2 Valoración Metodológica 28 2.1.3 Análisis de inventario vegetacional 28 2.1.4 Comunidades vegetacionales descritas 29 2.1.5 Superficie por tipo de uso del suelo 30 4 2.1.6 Superficie por tipo de uso vegetacional 31 33 2.1.7 Descripción de las comunidades vegetales 2.1.8 Valoración de las comunidades o asociaciones 37 2.1.9 Conclusiones 39 2.2 Biotopo faunístico 40 2.2.1 Análisis bibliográfico de los estudios faunísticos 40 2.2.2 Inventario faunístico 40 2.2.3 Definición de especies 40 2.2.4 Síntesis de la valorización de especies de fauna por biotopo 40 2.2.5 Relación proporcional de las especies faunísticas por 41 biotopo 2.2.6 Biotopos 41 2.2.6.1 Determinación de Biotopos del Parque Nacional Villarrica 41 2.2.6.2 Síntesis de Valoración de Biotopos 41 2.3 Unidad Geomorfología 44 2.3.1 Pendiente 44 2.3.2 Geomorfología 45 2.3.3 Geología 45 2.3.4 Hidrología 48 2.3.5 Valorización de Unidades Homogéneas 49 2.3.6 Conclusiones 51 2.4 Unidad de paisaje 52 2.4.1 Definición y descripción de unidades de paisaje (up) 52 2.4.2 Valoración de las unidades por criterio 52 5 2.4.3 Valoración del potencial de uso público (PUPp) 52 2.4.4 Síntesis del inventario del paisaje 52 2.4.5 Conclusiones 54 2.5 Unidad de acceso 59 2.5.1 Vías camineras 59 2.5.2 Senderos 60 2.6 Unidad de pendiente 64 2.7 Antecedentes Históricos Culturales 64 2.7.1 Clasificación y Valorización de sitios histórico culturales 64 2.8 Unidad de ocupación 72 2.9 Unidad de turismo 74 2.9.1 Inventario de Atractivos Turísticos 74 2.9.2 Clasificación de los Atractivos Turísticos 75 2.9.3 Valoración de los Atractivos Turísticos 80 2.9.4 Potencial de Uso Turístico 82 2.9.5 Conclusiones 88 90 PARTE C: ORDENACION Y PROGRAMACION 1. Objetivos de manejo 90 2. Programas de Manejo 90 2.1 Programas de aplicación 90 2.2 Matriz Lógica de Programas 91 2.3 Carta Gantt 117 3. Zonificación 117 6 3.1 Zonificación del Parque Nacional Villarrica 120 3.1.1 Zona de Uso Intangible 120 3.1.2 Zona de Uso Primitivo 121 3.1.3 Zona de Uso Público (Intensivo-Extensivo) 121 3.1.4 Zona de Uso Especial 121 3.1.5 Protección Integral 122 4. Normativa 124 4.1 Normas de Uso y Manejo 124 4.2 Normas Generales 133 4.2.1 Normas sectoriales 133 PARTE D: DIRECCIÓN Y EVALUACIÓN 152 1. Estructura organizativa y aprobaciones 152 1.1 Estructura Organizacional del Personal 152 1.1.2 Responsabilidades 152 158 2. Sistema de seguimiento y evaluación 3. Bibliografía consultada y complementaria 160 PARTE E: ANEXOS 166 7 CONTEXTO SEGUNDA VERSIÓN, AÑO 2013: Durante los años posteriores a la publicación de la primera versión del Plan de Manejo del Parque Nacional Villarrica, realizada el año 2006, esta unidad del Sistema Nacional de Áreas Silvestres Protegidas del Estado, fue objeto de un esfuerzo de reinterpretación de sus límites físicos y su posterior inscripción en los Registros de Propiedad de los Conservadores de Bienes Raíces de las comunas respectivas, en las cuales se encuentra inserto el parque nacional. Esta ardua labor realizada por el Ministerio de Bienes Nacionales y la Corporación Nacional Forestal, culminó en el mes de enero del 2010 con la inscripción a favor del Fisco del Sector Puesco, con lo cual la totalidad del Parque Nacional Villarrica se encuentra desde esa fecha inscrito en favor del Fisco de Chile. Este proceso posibilitó dimensionar con mayor precisión la superficie y determinar los límites del Parque Nacional Villarrica. Posterior a ello y al amparo de la dictación de la nueva Ley de Turismo y en especial el Decreto Supremo N°50 del 25 de marzo del 2011 del Ministerio de Economía, el cual establece el “Reglamento que fija el procedimiento para otorgamiento de Concesiones Turísticas en Áreas Silvestres Protegidas del Estado”, el Parque Nacional Villarrica fue definido como Área Silvestre Priorizada por un Consejo de Ministros de Estado, con la finalidad de que las futuras licitaciones turísticas en la Unidad, fueran regidas por el DS N°50/2011. Esta decisión implicó en un hecho relevante, la realización de un Estudio de Intensidad de Uso de las Zonas Factibles de Concesionar dentro del parque nacional, estudio que basado en variables biofísicas propone modificaciones a la zonificación del contenida en el Plan de Manejo del 2006. Esta versión 2013 del Plan de Manejo considera estos hechos relevantes para incorporar modificaciones en su Parte C “Ordenación y Programación”, en específico en todo el punto 3 denominado “Zonificación del Parque Nacional Villarrica”. Esta modificación se basa principalmente en dos aspectos, por un lado la determinación de los nuevos límites del Parque Nacional y por otro lado, la propuesta de zonificación revisada y ajustada relacionada con el “Estudio de Intensidad de Uso”. Basado en el principio de planificación dinámica en la construcción de los Planes de Manejo, la actualización presentada debe ser complementada por una etapa posterior. Esta etapa posterior deberá contemplar la modificación de toda la planimetría asociada al Plan de Manejo, fundamentándola en los actuales límites inscritos del Parque Nacional Villarrica. 8 PARTE A: MARCO CONTEXTUAL 1. ANTECEDENTES GENERALES La historia del Parque Nacional Villarrica se encuentra íntimamente ligada con la Reserva Forestal de Villarrica o Hualalafquén, ya que en ella se incluían los actuales terrenos del Parque. Esta reserva fue creada el 18 de octubre de 1912, a través del Decreto Supremo Nº 1722 del Ministerio de Industrias y Obras Públicas, con los sobrantes de terrenos fiscales que quedaron después de otorgarle título de dominio a la “Sociedad Ganadera del Lanín” que fue entregada a una empresa alemana, en los terrenos ubicados entre Pucón y Trancura, por Decreto Supremo Nº 62 del Ministerio de Relaciones Exteriores, con fecha 12 de enero del año 1912, quedando la administración de la Reserva en manos de la Sección de Aguas y Bosques del Ministerio de Industrias (Cabeza, 1988). Esta reserva tenía como objetivo proveer al Estado de una reserva maderera y la explotación comercial de sus recursos en forma racional. La reserva tuvo originalmente alrededor de 273.000 ha. de superficie (Cabeza, 1988), pero a través del tiempo fue sufriendo diversas desafecciones de sus terrenos, que fueron configurando el actual sector de la Reserva Forestal de Villarrica, el Parque Nacional Huerquehue y el Parque Nacional Villarrica.
Recommended publications
  • Rapid Magma Ascent and Generation of Th Excesses in the Lower Crust At
    Earth and Planetary Science Letters 255 (2007) 229–242 www.elsevier.com/locate/epsl Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile ⁎ Brian R. Jicha a, , Brad S. Singer a, Brian L. Beard a, Clark M. Johnson a, Hugo Moreno-Roa b,c, José Antonio Naranjo b a Department of Geology and Geophysics, University of Wisconsin—Madison, 1215 West Dayton Street, Madison WI 53706, USA b Servicio Nacional de Geología y Minería (SERNAGEOMIN), Avenida Santa María, 0104 Santiago, Chile c Observatorio Volcanologico de los Andes del Sur (OVDAS), Cerro Ñielol-Sector Antenas, Temuco, Chile Received 28 July 2006; received in revised form 7 December 2006; accepted 8 December 2006 Available online 30 January 2007 Editor: R.W. Carlson Abstract Basaltic to rhyolitic lavas and tephras erupted over the last 70 kyr at the Puyehue–Cordón Caulle volcanic complex in the Andean Southern Volcanic Zone (SVZ) were analyzed for major and trace element, Sr isotope, and U–Th isotope compositions to constrain the timescales of magmatic processes and identify the subducted and crustal components involved in magma genesis. Internal U–Th mineral isochrons from five lavas and three tephra fall deposits are indistinguishable from their eruption ages, indicating a short period (b1000 yr) of crystal residence in the magma prior to eruption. The (230Th/232Th) ratios define a narrow range (0.80–0.83) compared to that of all SVZ lavas (0.72–0.97), suggesting that Puyehue basalt was derived from a relatively uniform mantle source. Dacites and rhyolites have the largest U excesses and likely evolved via fractional crystallization of a plagioclase-dominated mineral assemblage.
    [Show full text]
  • The Volcanic Ash Soils of Chile
    ' I EXPANDED PROGRAM OF TECHNICAL ASSISTANCE No. 2017 Report to the Government of CHILE THE VOLCANIC ASH SOILS OF CHILE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROMEM965 -"'^ .Y--~ - -V^^-.. -r~ ' y Report No. 2017 Report CHT/TE/LA Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the Copyright holder is clear and, where feasible, to contact the originators. For questions please contact [email protected] indicating the item reference number concerned. REPORT TO THE GOVERNMENT OP CHILE on THE VOLCANIC ASH SOILS OP CHILE Charles A. Wright POOL ANL AGRICULTURE ORGANIZATION OP THE UNITEL NATIONS ROME, 1965 266I7/C 51 iß - iii - TABLE OP CONTENTS Page INTRODUCTION 1 ACKNOWLEDGEMENTS 1 RECOMMENDATIONS 1 BACKGROUND INFORMATION 3 The nature and composition of volcanic landscapes 3 Vbloanio ash as a soil forming parent material 5 The distribution of voloanic ash soils in Chile 7 Nomenclature used in this report 11 A. ANDOSOLS OF CHILE» GENERAL CHARACTERISTICS, FORMATIVE ENVIRONMENT, AND MAIN KINDS OF SOIL 11 1. TRUMAO SOILS 11 General characteristics 11 The formative environment 13 ÈS (i) Climate 13 (ii) Topography 13 (iii) Parent materials 13 (iv) Natural plant cover 14 (o) The main kinds of trumao soils ' 14 2. NADI SOILS 16 General characteristics 16 The formative environment 16 tö (i) Climat* 16 (ii) Topograph? and parent materials 17 (iii) Natural plant cover 18 B.
    [Show full text]
  • Lesson Plans Villarrica Volcano Eruption
    My NASA Data - Lesson Plans Villarrica Volcano Eruption Purpose Students use scale to determine the area of volcanic deposits following the March 3, 2015 eruption of Chile's Mount Villarrica stratovolcano, one of the country's most active volcanoes. Learning Objectives Students use a scale to calculate a map area. Students determine the area of volcanic deposits. Students explain the time scale involved in the measured change. Why Does NASA Study This Phenomenon? Landsat 8 Launched on February 11, 2013, Landsat 8 (formerly the Landsat Data Continuity Mission, LDCM) is the most recently launched Landsat satellite. It is collecting valuable data and imagery used in 1 / 8 agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth’s surface on a global basis. The data from Landsat spacecraft constitute the longest record of the Earth’s continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Essential Questions How quickly did volcanic debris from Mount Villarricia's eruption cover the area? How much of thea area was covered? Materials Required Rulers Colored printouts of images Technology Requirements Standalone Lesson (no technology required) Teacher Background Information Glacier-clad Villarrica is one of Chile's most active volcanoes. It rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera.
    [Show full text]
  • La Catástrofe Del Nevado Del Ruiz, ¿Una Enseñanza Para El Ecuador? El Caso Del Cotopaxi
    La catástrofe del Nevado del Ruiz, ¿Una enseñanza para el Ecuador? El caso del Cotopaxi. Robert d’Ercole To cite this version: Robert d’Ercole. La catástrofe del Nevado del Ruiz, ¿Una enseñanza para el Ecuador? El caso del Cotopaxi.. Estudios de Geograf’ia, Corporación Editora Nacional, 1989, Riesgos Naturales en Quito, 2, pp.5-32. hal-01184809 HAL Id: hal-01184809 https://hal.archives-ouvertes.fr/hal-01184809 Submitted on 25 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LA CATASTROFE DEL NEVADO DEL RUIZ l UNA ENSENANZA- PARA EL ECUADOR ? EL CASO DEL COTOPAXI Robert D'Ercole* El 13 de noviembre de 1985, el volcân colombiano, el Nevado deI Ruiz, erupciono provocando la muerte de unas 25.000 personas. Esta es la mayor catâstrofe causada por un volcan desde la que produjo 29.000 victimas, en 1902 en la isla Martinica, luego de la erupci6n de la Montafla Pelée. La magnitud de las consecuencias y el hecho de que el Ruiz haya dado signos de reactivaci6n mucho tiempo antes, plantean el problema deI fenomeno natural pero también de los factores humanos que originaron la tragedia.
    [Show full text]
  • Field Measurements of Active Volcanoes in the Southern Chilean Andes
    Field Measurements of Active Volcanoes in the Southern Chilean Andes February – March 2012 Kelby Hicks Kayla Iacovino Tehnuka Ilanko Yves Moussallam Nial Peters Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK _____________________________________________________________________ Funding provided by the Royal Geopgraphical Society with IBG facilitated a month- long volcano monitoring campaign on three active volcanoes in Chile: Villarrica, a steadily active and constantly degassing stratovolcano; Puyehue-Cordon Caulle, a recently active, explosive volcano; and Lascar, a periodically active volcano in the Atacama region, which showed signs of unrest prior to this field campaign. This funding combined with additional monies from Antofagasta, The Jeremy Willson Charitable Trust and the Cambridge University Department of Geography was used principally for equipment costs, transportation, and guide hire at the fieldwork sites. From February 1st to March 6th 2012 our group of five PhD students, through collaboration with the local volcanic observatory OVDAS (Observatorio Volcanologico de los Andes del Sur), deployed a series of remote and direct sensing instruments previously unavailable to local observatory at Villarrica, Puyehue-Cordon Caulle, and Láscar, three active volcanoes that present a real and significant risk to surrounding populations. Here we present an overview of the work conducted and preliminary high-resolution data on the volcanic emissions at these three sites, an essential component of volcanic hazard assessment and eruption forecasting. _____________________________________________________________________ Cover Image: The team sets up equipment near the active vent of Puyehue-Cordon Caulle. Fieldwork Overview After a few days spent organising logistics in Santiago the team headed south to Temuco where we had scheduled a meeting with the head of OVDAS.
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]
  • United States-Chile Binational Exchange for Volcanic Risk Reduction, 2015—Activities and Benefits
    Prepared in cooperation with Red Nacional de Vigilancia Volcánica del Servicio Nacional de Geología y Minería de Chile United States-Chile Binational Exchange for Volcanic Risk Reduction, 2015—Activities and Benefits Circular 1432 U.S. Department of the Interior U.S. Geological Survey Cover. Chilean and American delegates on caldera rim of Chaitén Volcano, Chile, March 28, 2015. The steaming lava dome is in the background. (Photograph by Christopher Wills, California Geological Survey.) United States-Chile Binational Exchange for Volcanic Risk Reduction, 2015— Activities and Benefits By Thomas C. Pierson, Margaret T. Mangan, Luis E. Lara Pulgar, and Álvaro Amigo Ramos Prepared in cooperation with Red Nacional de Vigilancia Volcánica del Servicio Nacional de Geología y Minería de Chile Circular 1432 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
    [Show full text]
  • Boron and Other Trace Element Constraints on the Slab-Derived Component in Quaternary Volcanic Rocks from the Southern Volcanic Zone of the Andes
    Geochemical Journal, Vol. 47, pp. 185 to 199, 2013 Boron and other trace element constraints on the slab-derived component in Quaternary volcanic rocks from the Southern Volcanic Zone of the Andes HIRONAO SHINJOE,1* YUJI ORIHASHI,2 JOSÉ A. NARANJO,3 DAIJI HIRATA,4 TOSHIAKI HASENAKA,5 TAKAAKI FUKUOKA,6 TAKASHI SANO7 and RYO ANMA8 1Tokyo Keizai University, Japan 2Earthquake Research Institute, The University of Tokyo, Japan 3Servicio Nacional de Geología y Minería, Chile 4Kanagawa Prefectural Museum of Natural History, Japan 5Department of Earth and Environmental Sciences, Graduate School of Science and Technology, Kumamoto University, Japan 6Department of Environment Systems, Faculty of Geo-environmental Science, Rissho University, Japan 7Department of Geology and Paleontology, National Museum of Nature and Science, Japan 8Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, Tsukuba University, Japan (Received April 18, 2012; Accepted December 25, 2012) We present a dataset for boron and other trace element contents obtained from samples from 13 volcanoes distributed along the Quaternary volcanic front of the Southern Volcanic Zone (SVZ) of the Chilean Andes. The dataset shows con- straints on the nature of slab-derived component to mantle source. Analyzed samples show large negative Nb and Ta anomalies, and enrichment of alkaline earth elements and Pb, which are features of typical island arc volcanic rocks. Boron contents of SVZ volcanic rocks range 2.3–125.5 ppm, exhibiting marked enrichment relative to N-MORB and OIB. Both the boron contents and B/Nb ratios of the volcanic rocks increase from the southern SVZ (SSVZ) to central SVZ (CSVZ). Fluid mobile/immobile element ratios (B/Nb, Ba/Nb, Pb/Nb, and K/Nb) are used to examine slab-derived com- ponent to mantle source.
    [Show full text]
  • Processes Culminating in the 2015 Phreatic Explosion at Lascar Volcano, Chile, Evidenced by Multiparametric Data
    Nat. Hazards Earth Syst. Sci., 20, 377–397, 2020 https://doi.org/10.5194/nhess-20-377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, evidenced by multiparametric data Ayleen Gaete1, Thomas R. Walter1, Stefan Bredemeyer1,2, Martin Zimmer1, Christian Kujawa1, Luis Franco Marin3, Juan San Martin4, and Claudia Bucarey Parra3 1GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 2GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 3Observatorio Volcanológico de Los Andes del Sur (OVDAS), Servicio Nacional de Geología y Minería (SERNAGEOMIN), Temuco, Chile 4Physics Science Department, Universidad de la Frontera, Casilla 54-D, Temuco, Chile Correspondence: Ayleen Gaete ([email protected]) Received: 13 June 2019 – Discussion started: 25 June 2019 Accepted: 5 December 2019 – Published: 4 February 2020 Abstract. Small steam-driven volcanic explosions are com- marole on the southern rim of the Lascar crater revealed a mon at volcanoes worldwide but are rarely documented or pronounced change in the trend of the relationship between monitored; therefore, these events still put residents and the CO2 mixing ratio and the gas outlet temperature; we tourists at risk every year. Steam-driven explosions also oc- speculate that this change was associated with the prior pre- cur frequently (once every 2–5 years on average) at Lascar cipitation event. An increased thermal anomaly inside the ac- volcano, Chile, where they are often spontaneous and lack tive crater as observed in Sentinel-2 images and drone over- any identifiable precursor activity.
    [Show full text]
  • Along Arc Petrochemical Variations in the Southernmost Andean SVZ (43.5-46°S): Implications for Magma Genesis
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Along Arc Petrochemical Variations in the Southernmost Andean SVZ (43.5-46°S): Implications for Magma Genesis Charles R Stern* Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399, USA José Antonio Naranjo SERNAGEOMIN, Av. Santa María 0104, Santiago, Chile *Contact email: [email protected] Abstract. The southernmost Andean SVZ (43.5-46°S) (Sellés et al., 2004) further to the north. Among the smaller consists of six stratovolcanoes (Yanteles, Melimoyu, MEC, the Puyuhuapi group are HA type basalts (Fig. 2; Mentolat, Macá, Cay, Hudson). Hudson and Melimoyu are Lopéz et al. 1995a). In contrast, the Palena group just to high-K (K2O>1 wt% at 50 wt% SiO2), high incompatible the north of are LA type basalts (Fig. 2; Watt et al., 2013), element abundance (HA) types. Macá and Cay are low-K, as are all other MEC cones further to the south in the low incompatible element abundance (LA) centers, while Mentolat has very low K, Rb and other incompatible SSVZ. This paper addresses these regional variations in element contents (VLA), similar to Huequi, Calbuco and magma types along and across the SSVZ arc. Nevados de Longaví further north. Such differences have been attributed to differences in degree of mantle partial melting due to variability in the extent of contamination of the mantle source region by hydrous fluids and/or melts derived from subducted oceanic lithosphere, possibly as a result in down-dip temperature changes at the top of the subducted slab.
    [Show full text]
  • Processes Culminating in the 2015 Phreatic Explosion at Lascar Volcano, Chile, Monitored by Multiparametric Data Ayleen Gaete1, Thomas R
    https://doi.org/10.5194/nhess-2019-189 Preprint. Discussion started: 25 June 2019 c Author(s) 2019. CC BY 4.0 License. Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, monitored by multiparametric data Ayleen Gaete1, Thomas R. Walter1, Stefan Bredemeyer1,2, Martin Zimmer1, Christian Kujawa1, Luis Franco3, Juan San Martin4, Claudia Bucarey Parra3 5 1 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 2 GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 3 Observatorio Volcanológico de Los Andes del Sur (OVDAS), Servicio Nacional de Geología y Minería (SERNAGEOMIN), Temuco, Chile. 4 Physics Science Department, Universidad de la Frontera, Casilla 54-D, Temuco, Chile. 10 Correspondence to: Ayleen Gaete ([email protected]) Abstract. Small steam-driven volcanic explosions are common at volcanoes worldwide but are rarely documented or monitored; therefore, these events still put residents and tourists at risk every year. Steam-driven explosions also occur frequently (once every 2-5 years on average) at Lascar volcano, Chile, where they are often spontaneous and lack any identifiable precursor activity. Here, for the first time at Lascar, we describe the processes culminating in such a sudden 15 volcanic explosion that occurred on October 30, 2015, which was thoroughly monitored by cameras, a seismic network, and gas (SO2 and CO2) and temperature sensors. Prior to the eruption, we retrospectively identified unrest manifesting as a gradual increase in the number of long-period (LP) seismic events in 2014, indicating an augmented level of activity at the volcano. Additionally, SO2 flux and thermal anomalies were detected before the eruption.
    [Show full text]
  • Monitoring of the 2015 Villarrica Volcano Eruption by Means of DLR’S Experimental TET-1 Satellite
    remote sensing Article Monitoring of the 2015 Villarrica Volcano Eruption by Means of DLR’s Experimental TET-1 Satellite Simon Plank 1,* ID , Michael Nolde 1, Rudolf Richter 2 ID , Christian Fischer 3, Sandro Martinis 1, Torsten Riedlinger 1, Elisabeth Schoepfer 1 and Doris Klein 1 ID 1 German Remote Sensing Data Center, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany; [email protected] (M.N.); [email protected] (S.M.); [email protected] (T.R.); [email protected] (E.S.); [email protected] (D.K.) 2 Remote Sensing Technology Institute, German Aerospace Center DLR, 82234 Oberpfaffenhofen, Germany; [email protected] 3 Institute of Optical Sensor Systems, German Aerospace Center DLR, 12489 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-8153-28-3460 Received: 17 July 2018; Accepted: 28 August 2018; Published: 30 August 2018 Abstract: Villarrica Volcano is one of the most active volcanoes in the South Andes Volcanic Zone. This article presents the results of a monitoring of the time before and after the 3 March 2015 eruption by analyzing nine satellite images acquired by the Technology Experiment Carrier-1 (TET-1), a small experimental German Aerospace Center (DLR) satellite. An atmospheric correction of the TET-1 data is presented, based on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GDEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor data with the shortest temporal baseline to the TET-1 acquisitions. Next, the temperature, area coverage, and radiant power of the detected thermal hotspots were derived at subpixel level and compared with observations derived from MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data.
    [Show full text]