Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neuropeptides As Attractants of Immune Cells in the Brain and Their Distinct Signaling
Advances in Neuroimmune Biology 1 (2011) 53–62 53 DOI 10.3233/NIB-2011-005 IOS Press Neuropeptides as Attractants of Immune Cells in the Brain and their Distinct Signaling Mami Noda∗, Masataka Ifuku, Yuko Okuno, Kaoru Beppu, Yuki Mori and Satoko Naoe Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan Abstract. Microglia, the immune cells of the central nervous system (CNS), are busy and vigilant housekeepers in the adult brain. The main candidate as a chemoattractant for microglia at damaged site is adenosine triphosphate (ATP). However, many other substances can induce immediate change of microglia. Some neuropeptides such as angiotensin II, bradykinin (BK), endothelin, galanin (GAL), and neurotensin are also chemoattractants for microglia. Among them, BK increased microglial migration via B1 receptor with different mechanism from that of ATP. BK-induced migration was controlled by a Gi/o protein-independent pathway, while ATP-induced migration was via a Gi/o protein-dependent and also a mitogen-activated protein kinase (MAPK) / extracellular signal-regulated kinase (ERK)-dependent pathway. On the other hand, GAL is reported to have a similar signal cascade as that of BK, though only part of the signaling was similar to that of BK-induced migration. For example, BK activates reverse-mode Na+/Ca2+ exchange allowing extracllular Ca2+ influx, while GAL induces intracellular Ca2+ mobilization via increasing inositol-1,4,5-trisphosphate. In addition, GAL activates MAPK/ERK-dependent signaling but BK did not. These results suggest that chemoattractants for immune cells in the brain including ATP and each peptide may have distinct role under both physiological and pathophysiological conditions. -
Design and Synthesis of Cyclic Analogs of the Kappa Opioid Receptor Antagonist Arodyn
Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn By © 2018 Solomon Aguta Gisemba Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Dr. Michael Rafferty Dr. Teruna Siahaan Dr. Thomas Tolbert Date Defended: 18 April 2018 The dissertation committee for Solomon Aguta Gisemba certifies that this is the approved version of the following dissertation: Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Date Approved: 10 June 2018 ii Abstract Opioid receptors are important therapeutic targets for mood disorders and pain. Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and 1,2,3 4 8 depression. Arodyn (Ac[Phe ,Arg ,D-Ala ]Dyn A(1-11)-NH2), an acetylated dynorphin A (Dyn A) analog, has demonstrated potent and selective KOR antagonism, but can be rapidly metabolized by proteases. Cyclization of arodyn could enhance metabolic stability and potentially stabilize the bioactive conformation to give potent and selective analogs. Accordingly, novel cyclization strategies utilizing ring closing metathesis (RCM) were pursued. However, side reactions involving olefin isomerization of O-allyl groups limited the scope of the RCM reactions, and their use to explore structure-activity relationships of aromatic residues. Here we developed synthetic methodology in a model dipeptide study to facilitate RCM involving Tyr(All) residues. Optimized conditions that included microwave heating and the use of isomerization suppressants were applied to the synthesis of cyclic arodyn analogs. -
Radial Glia Reveal Complex Regulation by the Neuropeptide Secretoneurin
Transcriptomic and proteomic characterizations of goldfish (Carassius auratus) radial glia reveal complex regulation by the neuropeptide secretoneurin Dillon Da Fonte Thesis submitted to the Faculty of Graduate and Postdoctoral Studies University of Ottawa in partial fulfillment of the requirements for the Master of Science degree in biology Department of Biology Faculty of Science University of Ottawa © Dillon Da Fonte, Ottawa, Canada, 2016 Acknowledgements Finishing this thesis has been both a challenging and rewarding experience. This accomplishment would not have been possible without the never-ending support of colleagues, friends, family. First, I would like to express my most sincere gratitude to my supervisor and mentor, Dr. Vance Trudeau. Thank you for the opportunities you have given me, this experience has truly solidified my passion for research. I appreciate our many conversations that were enjoyed over a beer – it was truly a memorable experience. I would also like to thank my M.Sc. advisory committee, Dr. Michael Jonz and Dr. Marc Ekker for your time and insightful comments. A special thank you to Dr. Chris Martynuik who taught me the bioinformatics needed to analyze both transcriptomic and proteomic data and for all your help during my time at the University of Florida. I would like to also acknowledge my funding support from University of Ottawa, NSERC, and the Michael Smith Foreign Study Award for supporting my research stay at the University of Florida. To all current and past members of TeamENDO, thank you for the sense of community you all instilled in the lab. Both inside and outside the lab, I have made memories with all of you that I will cherish forever. -
Cionin, a Vertebrate Cholecystokinin/Gastrin
www.nature.com/scientificreports OPEN Cionin, a vertebrate cholecystokinin/gastrin homolog, induces ovulation in the ascidian Ciona intestinalis type A Tomohiro Osugi, Natsuko Miyasaka, Akira Shiraishi, Shin Matsubara & Honoo Satake* Cionin is a homolog of vertebrate cholecystokinin/gastrin that has been identifed in the ascidian Ciona intestinalis type A. The phylogenetic position of ascidians as the closest living relatives of vertebrates suggests that cionin can provide clues to the evolution of endocrine/neuroendocrine systems throughout chordates. Here, we show the biological role of cionin in the regulation of ovulation. In situ hybridization demonstrated that the mRNA of the cionin receptor, Cior2, was expressed specifcally in the inner follicular cells of pre-ovulatory follicles in the Ciona ovary. Cionin was found to signifcantly stimulate ovulation after 24-h incubation. Transcriptome and subsequent Real-time PCR analyses confrmed that the expression levels of receptor tyrosine kinase (RTK) signaling genes and a matrix metalloproteinase (MMP) gene were signifcantly elevated in the cionin-treated follicles. Of particular interest is that an RTK inhibitor and MMP inhibitor markedly suppressed the stimulatory efect of cionin on ovulation. Furthermore, inhibition of RTK signaling reduced the MMP gene expression in the cionin-treated follicles. These results provide evidence that cionin induces ovulation by stimulating MMP gene expression via the RTK signaling pathway. This is the frst report on the endogenous roles of cionin and the induction of ovulation by cholecystokinin/gastrin family peptides in an organism. Ascidians are the closest living relatives of vertebrates in the Chordata superphylum, and thus they provide important insights into the evolution of peptidergic systems in chordates. -
Reorganization of Neural Peptidergic Eminence After Hypophysectomy
The Journal of Neuroscience, October 1994, 14(10): 59966012 Reorganization of Neural Peptidergic Systems Median Eminence after Hypophysectomy Marcel0 J. Villar, Bjiirn Meister, and Tomas Hiikfelt Department of Neuroscience, The Berzelius Laboratory, Karolinska Institutet, Stockholm, 171 77 Sweden Earlier studies have shown the formation of a novel neural crease to a final stage of a few, strongly immunoreactive lobe after hypophysectomy, an experimental manipulation fibers in the external layer at longer survival times. Vaso- that causes transection of neurohypophyseal nerve fibers active intestinal polypeptide (VIP)- and peptide histidine- and removal of pituitary hormones. The mechanisms that isoleucine (PHI)-IR fibers in hypophysectomized animals had underly this regenerative process are poorly understood. already contacted portal vessels 5 d after hypophysectomy, The localization and number of peptide-immunoreactive and from then on progressively increased in numbers. Fi- (-IR) fibers in the median eminence were studied in normal nally, most of the peptide fibers described above formed rats and in rats at different times of survival after hypophy- dense innervation patterns around the large blood vessels sectomy using indirect immunofluorescence histochemistry. along the lateral borders of the median eminence. The number of vasopressin (VP)-IR fibers increased in the The present results show that hypophysectomy induces external layer of the median eminence in 5 d hypophysec- a wide variety of changes in hypothalamic neurosecretory tomized rats. Oxytocin (OXY)-IR fibers decreased in the in- fibers. Not only is the expression of several peptides in these ternal layer and progressively extended into the external fibers modified following different survival times, but a re- layer. -
The Hypothalamus and the Regulation of Energy Homeostasis: Lifting the Lid on a Black Box
Proceedings of the Nutrition Society (2000), 59, 385–396 385 CAB59385Signalling39612© NutritionInternationalPNSProceedings Society in body-weight 2000 homeostasisG. of the Nutrition Williams Society et (2000)0029-6651©al.385 Nutrition Society 2000 593 The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box Gareth Williams*, Joanne A. Harrold and David J. Cutler Diabetes and Endocrinology Research Group, Department of Medicine, The University of Liverpool, Liverpool L69 3GA, UK Professor Gareth Williams, fax +44 (0)151 706 5797, email [email protected] The hypothalamus is the focus of many peripheral signals and neural pathways that control energy homeostasis and body weight. Emphasis has moved away from anatomical concepts of ‘feeding’ and ‘satiety’ centres to the specific neurotransmitters that modulate feeding behaviour and energy expenditure. We have chosen three examples to illustrate the physiological roles of hypothalamic neurotransmitters and their potential as targets for the development of new drugs to treat obesity and other nutritional disorders. Neuropeptide Y (NPY) is expressed by neurones of the hypothalamic arcuate nucleus (ARC) that project to important appetite-regulating nuclei, including the paraventricular nucleus (PVN). NPY injected into the PVN is the most potent central appetite stimulant known, and also inhibits thermogenesis; repeated administration rapidly induces obesity. The ARC NPY neurones are stimulated by starvation, probably mediated by falls in circulating leptin and insulin (which both inhibit these neurones), and contribute to the increased hunger in this and other conditions of energy deficit. They therefore act homeostatically to correct negative energy balance. ARC NPY neurones also mediate hyperphagia and obesity in the ob/ob and db/db mice and fa/fa rat, in which leptin inhibition is lost through mutations affecting leptin or its receptor. -
Estrogen Receptor (ER) Expression and Function in the Pregnant Human Myometrium: Estradiol Via Era Activates ERK1/2 Signaling in Term Myometrium
227 Estrogen receptor (ER) expression and function in the pregnant human myometrium: estradiol via ERa activates ERK1/2 signaling in term myometrium Toni Welsh1,2, Matrika Johnson1, Lijuan Yi1, Huiqing Tan1, Roksana Rahman1, Amy Merlino1, Tamas Zakar2,3 and Sam Mesiano1 1Department of Reproductive Biology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA 2Mothers and Babies Research Centre, University of Newcastle, Newcastle, New South Wales 2308, Australia 3Department of Obstetrics and Gynaecology, John Hunter Hospital, Newcastle, New South Wales 2305, Australia (Correspondence should be addressed to S Mesiano; Email: [email protected]) Abstract Estrogens are thought to promote labor by increasing inhibition of 26S proteasome activity increased ERa protein the expression of pro-contraction genes in myometrial cells. abundance to detectable levels in term myometrial explants, The specific estrogen receptors ((ERs: ERa and ERb (also however, indicating rapid turnover of ERa protein by known as ESR1 and ESR2)) and G protein-coupled receptor proteasomal processing in the pregnant myometrium. E2 30 (GPR30; also known as G protein-coupled estrogen stimulated rapid extranuclear signaling in myometrial explants, receptor 1)) and signaling pathways that mediate these actions as evidenced by increased extracellularly regulated kinase are not clearly understood. In this study, we identified the ERs (ERK1/2) phosphorylation within 10 min. This effect was expressed in the pregnant human myometrium and determined inhibited by pre-treatment with an ER antagonist, ICI a key extranuclear signaling pathway through which estradiol 182 780, indicating the involvement of ERa. Inhibition of (E2) modulates expression of the gene encoding the oxytocin ERK signaling abrogated the ability of E2 to stimulate OXTR receptor (OXTR), a major pro-contraction protein. -
Activation of Orexin System Facilitates Anesthesia Emergence and Pain Control
Activation of orexin system facilitates anesthesia emergence and pain control Wei Zhoua,1, Kevin Cheunga, Steven Kyua, Lynn Wangb, Zhonghui Guana, Philip A. Kuriena, Philip E. Bicklera, and Lily Y. Janb,c,1 aDepartment of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143; bDepartment of Physiology, University of California, San Francisco, CA 94158; and cHoward Hughes Medical Institute, University of California, San Francisco, CA 94158 Contributed by Lily Y. Jan, September 10, 2018 (sent for review May 22, 2018; reviewed by Joseph F. Cotten, Beverley A. Orser, Ken Solt, and Jun-Ming Zhang) Orexin (also known as hypocretin) neurons in the hypothalamus Orexin neurons may play a role in the process of general an- play an essential role in sleep–wake control, feeding, reward, and esthesia, especially during the recovery phase and the transition energy homeostasis. The likelihood of anesthesia and sleep shar- to wakefulness. With intracerebroventricular (ICV) injection or ing common pathways notwithstanding, it is important to under- direct microinjection of orexin into certain brain regions, pre- stand the processes underlying emergence from anesthesia. In this vious studies have shown that local infusion of orexin can shorten study, we investigated the role of the orexin system in anesthe- the emergence time from i.v. or inhalational anesthesia (19–23). sia emergence, by specifically activating orexin neurons utilizing In addition, the orexin system is involved in regulating upper the designer receptors exclusively activated by designer drugs airway patency, autonomic tone, and gastroenteric motility (24). (DREADD) chemogenetic approach. With injection of adeno- Orexin-deficient animals show attenuated hypercapnia-induced associated virus into the orexin-Cre transgenic mouse brain, we ventilator response and frequent sleep apnea (25). -
The Oxytocin/Vasopressin Receptor Family Has at Least Five Members in the Gnathostome Lineage, Including Two Distinct V2 Subtypes
The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, including two distinct V2 subtypes General and Comparative Endocrinology 175(1): 135-143 doi:10.1016/j.ygcen.2011.10.011 Accepted October 20, 2011 E-pub October 28, 2012 Published January 1, 2012 Figshare doi:10.6084/m9.figshare.811860. Shared October 1, 2013 Daniel Ocampo Daza*, Michalina Lewicka¹, Dan Larhammar Department of Neuroscience, Science for Life Laboratory, Uppsala Universitet, Box 593, SE-751 24 Uppsala, Sweden * Corresponding author. E-mail address: [email protected] ¹ Current address: Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden Cite as D. Ocampo Daza, M. Lewicka and D. Larhammar. The oxytocin/vasopressin family has at least five members in the gnathostome lineage, including two distinct V2 subtypes. General and Comparative Endocrinology, 175 (1) (2012) 135-143. This document corresponds to the article as it appeared upon acceptance. You are free to download, print and distribute it for any purposes under a Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/), provided the original work is cited as specified. Errata: The introduction incorrectly states that “the V2 receptor inhibits adenylyl cyclase, thereby reducing the production of cAMP” on page 3. In fact the V2-type vasopressin receptors stimulate adenylyl cyclase and increase the cytosolic cyclic AMP release, see for instance Schöneberg et al., Molecular aspects of vasopressin receptor function, Advances in experimental medicine and biology 449 (1998) 347–58. This mistake was reported in the proofreading phase of pre-publication, but the correction was not carried to the final version of the article. -
Orexin Reverses Cholecystokinin-Induced Reduction in Feeding
ORIGINAL ARTICLE Orexin reverses cholecystokinin-induced reduction in feeding A. Asakawa,1 A. Inui,1 T. Inui,2 G. Katsuura,3 M. A. Fujino4 and M. Kasuga1 1Division of Diabetes, Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan 2Inui Clinic, Osaka, Japan 3Shionogi Research Laboratories, Shionogi & Co Ltd, Shiga, Japan 4First Department of Internal Medicine, Yamanashi Medical University, Yamanashi, Japan Aim: This study was designed to investigate the effect of orexin on anorexia induced by cholecystokinin (CCK), a peripheral satiety signal. Methods: We administered orexin A (0.01±1 nmol/mouse) and CCK-8 (3 nmol/mouse) to mice. Food intake was measured at different time-points: 20 min, 1, 2 and 4 h post-intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) administrations. Results: Intracerebroventricular-administered orexin significantly increased food intake in a dose-dependent man- ner. The inhibitory effect of i.p.-administered CCK-8 on food intake was significantly negated by the simultaneous i.c.v. injection of orexin in a dose-dependent manner. Conclusions: Orexin reversed the CCK-induced loss of appetite. Our results indicate that orexin might be a promising target for pharmacological intervention in the treatment of anorexia and cachexia induced by various diseases. Keywords: orexin, cholecystokinin, mice, food intake, anorexia Received 28 March 2002; returned for revision 20 May 2002; revised version accepted 21 June 2002 Introduction However, the relationship between orexin and per- ipheral satiety systems still remains to be determined. Orexin is a hypothalamic neuropeptide identified as a We investigated the effect of orexin on anorexia induced ligand for an orphan G-protein coupled receptor [1±3]. -
Making Sense of the Sensory Regulation of Hunger Neurons
Insights & Perspectives Making sense of the sensory regulation Think again of hunger neurons Yiming Chen and Zachary A. Knight* AgRP and POMC neurons are two key cell types that regulate feeding in such as leptin, and increases the level of response to hormones and nutrients. Recently, it was discovered that these hormones that promote feeding, such as neurons are also rapidly modulated by the mere sight and smell of food. This ghrelin. This hormonal switch activates rapid sensory regulation ‘‘resets’’ the activity of AgRP and POMC neurons AgRP neurons and inhibits POMC neu- before a single bite of food has been consumed. This surprising and rons, creating a “hunger drive” that counterintuitive discovery challenges longstanding assumptions about the motivates animals to find and consume food, and that persists until food intake function and regulation of these cells. Here we review these recent findings and replenishes the body of nutrients. In this discuss their implications for our understanding of feeding behavior. We way, a simple negative feedback loop is propose several alternative hypotheses for how these new observations might thought to explain the remarkable be integrated into a revised model of the feeding circuit, and also highlight some coordination of feeding behavior with of the key questions that remain to be answered. physiologic need. While this homeostatic model is Keywords: widely accepted, one key piece of data has been missing: information about anticipatory; arcuate nucleus; feeding; homeostasis; hunger; hypothalamus; . the activity dynamics of these neurons neural circuit in vivo. In the past year, this gap has Introduction consumption [3–6]. POMC neurons, in been closed, as three groups have contrast, are activated by energy surfeit, reported measurements of AgRP and The body weight of most animals is and their activity promotes fasting and POMC neuron dynamics in awake, remarkably stable over time, suggesting weight loss [3, 7]. -
G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes
Int. J. Mol. Sci. 2014, 15, 1112-1142; doi:10.3390/ijms15011112 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes Benoît T. Roux 1 and Graeme S. Cottrell 2,* 1 Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK; E-Mail: [email protected] 2 Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-118-378-7027; Fax: +44-118-378-4703. Received: 4 December 2013; in revised form: 20 December 2013 / Accepted: 8 January 2014 / Published: 16 January 2014 Abstract: G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types.