Thermal Comfort Rating Metric: a Proposed Asset Rating System

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Comfort Rating Metric: a Proposed Asset Rating System Thermal Comfort Rating Metric: A Proposed Asset Rating System Tim Beggs, Manager, Innovation What Is a Comfort Metric? Comfort Index Comfort Index 46 HERS® Index image courtesy of RESNET (http://www.resnet.us/) WHY NOW? SAVING ENERGY ≠ DELIVERING COMFORT Lower Loads = New Risk Potential • Better enclosures • Lower loads • Lesser airflow • Potential for poor air mixing, lesser run time • Temperature swings and stratification Trends: Comfort Issues 36 EFL Homes Measured in the Southeast Psychrometric chart, House 24 – Most Compliant Trends: Comfort Issues 36 EFL Homes Measured in the Southeast Psychrometric Chart, House 25 – Least Compliant Trends: Comfort Issues Comfort issues are on the rise even in low load homes shortcomings of other metrics Comfort Rating Use Cases • Comparing homes (purchase & sales) • Designing homes (new homes) • Valuing homes (sales, appraisal, mortgages) • Developing a residential application of ASHRAE Standard 55 for thermal comfort (performance standard) • Assessing homes (retrofit) • Scoping a retrofit project (setting better targets) WHAT IS IT? Aspects of Comfort ENVIRONMENTAL FACTORS • Temperature • Temperature difference • Air speed • Humidity • Radiant PERSONAL FACTORS • Clothing insulation • Metabolic rate • Health Factors Affecting Comfort Architectural Design • Orientation • Spatial layout / floor plan/ elevation design • Volume of space Building Enclosure Characteristics • R-value / U-value • Air leakage • Solar management • Window-to-wall ratio • Shading coefficient • Shading (int + ext) • Mass-lag effects HVAC System Characteristics • Type + capacity of space conditioning • Duct layout • Temperature gain • Leakage • Air balancing • Diffuser placement • Diffuser air throw / selection Room Air Balance • We need to return air from each room • Air return strategy • Door undercut, typically no! • Doors open vs. closed • Transfer grilles ducts, yes! Photo Source: GreenBuilder Media Programmable Thermostat Use of Setback • Ability for comfort to recover • Its there when you need it • Room-by-room temperature set points (availability?) Room-by-Room Zoning • Damper on each branch duct • Manual vs. automatic dampers • Individual room units multi-zone climate control TODAY 30 YEARS AGO Ventilation Balanced vs. unbalanced Direct delivery (raw) Mixed delivery (preconditioned) Occupant Behavior • Range of behavior will maintain comfort • Level of sensitivity for the house • # of people, what they’re doing • Ability of system to respond for a control set point Improved sense of comfort + peace of mind HOW WOULD IT BE MEASURED? Foundation Metrics Thermal Comfort Performance Index (TCPI) Foundation Metrics Histo-Contour Comfort Map Foundation Metrics Ramp and Drift “Hair-plot” Foundation Metrics Heat Map Foundation Metrics Binary Heat Map What May Yield a Better / Poorer Score? Better Poorer Comfort Index • Multi-zone • Single thermostat temperature sensing • Over / under sized for control equipment • Right-sized or variable • No exterior shading speed equipment • Hot ceiling • Exterior shading • Dumping untreated Comfort • Neutral radiant ventilation air Index surfaces • Stratified air 46 • Dehumidification temperatures control • Continuous fan? • Improved air mixing • Fireplace? • Continuous fan? • Fireplace? Present IBACOS Activities with TCRM . Establishing the new home/retrofit industry needs . Continue introducing the concept . Webinar, blog, utilities, ASHRAE, RESNET, HPC, White Paper . Generating interest from stakeholders . Prompting feedback and documenting . Seeking collaboration and development partners . Establishing justification to move forward . Refining the vision for path forward Some Questions Moving Forward 1. What boundary conditions should exist on application a) Low load homes, all homes, igloos? 2. How should the scale be developed? 3. Should a reference home be involved as a baseline? 4. How can we accurately and appropriately model the comfort experience? 5. How can system dynamics be appropriately modeled? 6. What modeling would a user of the TCRM conduct, and what applications would be used? 7. What overlap with HERS-related field assessments exist, what other survey is required? 8. Etc..
Recommended publications
  • Reference Guide
    Indoor Air Quality Tools for Schools REFERENCE GUIDE Indoor Air Quality (IAQ) U.S. Environmental Protection Agency Indoor Environments Division, 6609J 1200 Pennsylvania Avenue, NW Washington, DC 20460 (202) 564-9370 www.epa.gov/iaq American Federation of Teachers 555 New Jersey Avenue, NW Washington, DC 20001 (202) 879-4400 www.aft.org Association of School Business Officials 11401 North Shore Drive Reston, VA 22090 (703) 478-0405 www.asbointl.org National Education Association 1201 16th Steet, NW Washington, DC 20036-3290 (202) 833-4000 www.nea.org National Parent Teachers Association 330 North Wabash Avenue, Suite 2100 Chicago, IL 60611-3690 (312) 670-6782 www.pta.org American Lung Association 1740 Broadway New York, NY 10019 (212) 315-8700 www.lungusa.org EPA 402/K-07/008 I January 2009 I www.epa.gov/iaq/schools Introduction � U nderstanding the importance of good basic measurement equipment, hiring indoor air quality (IAQ) in schools is the professional assistance, and codes and backbone of developing an effective IAQ regulations. There are numerous resources program. Poor IAQ can lead to a large available to schools through EPA and other variety of health problems and potentially organizations, many of which are listed in affect comfort, concentration, and staff/ Appendix L. Use the information in this student performance. In recognition of Guide to create the best possible learning tight school budgets, this guidance is environment for students and maintain a designed to present practical and often comfortable, healthy building for school low-cost actions you can take to identify occupants. and address existing or potential air quality Refer to A Framework for School problems.
    [Show full text]
  • Iot Operating System Based Fuzzy Inference System for Home Energy Management System in Smart Buildings
    sensors Article IoT Operating System Based Fuzzy Inference System for Home Energy Management System in Smart Buildings Qurat-ul-Ain 1, Sohail Iqbal 1,∗ ID , Safdar Abbas Khan 1 ID , Asad Waqar Malik 1 ID , Iftikhar Ahmad 1 and Nadeem Javaid 2 1 School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; [email protected] (Q.-u.-A.); [email protected] (S.A.K.); [email protected] (A.W.M.); [email protected] (I.A.) 2 COMSATS Institute of Information Technology, Islamabad 44000, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +92-336-5501-539 Received: 2 August 2018; Accepted: 20 August 2018; Published: 25 August 2018 Abstract: Energy consumption in the residential sector is 25% of all the sectors. The advent of smart appliances and intelligent sensors have increased the realization of home energy management systems. Acquiring balance between energy consumption and user comfort is in the spotlight when the performance of the smart home is evaluated. Appliances of heating, ventilation and air conditioning constitute up to 64% of energy consumption in residential buildings. A number of research works have shown that fuzzy logic system integrated with other techniques is used with the main objective of energy consumption minimization. However, user comfort is often sacrificed in these techniques. In this paper, we have proposed a Fuzzy Inference System (FIS) that uses humidity as an additional input parameter in order to maintain the thermostat set-points according to user comfort.
    [Show full text]
  • Innovate-UK-Energy-Catalyst-Round-4-Directory-Of-Projects
    Directory of projects Energy Catalyst – Round 4 1 Introduction Energy markets around the world – private and public, household and industry, developed and developing – are all looking for solutions to the same problem: how to provide a resilient energy system that delivers affordable and clean energy with access for all. Solving this trilemma requires innovation and collaboration on an international scale and UK businesses and researchers are at the forefront of addressing the energy revolution. Innovate UK is the UK’s innovation agency. We work with business, policy-makers and the research base to help support the development of new ideas, technologies, products and services, and to help companies de-risk their innovations as they journey towards commercialisation and business growth. The Energy Catalyst was established as a national open competition, run by Innovate UK and co-funded with the Engineering & Physical Sciences Research Council (EPSRC), the Department for Business, Energy & Industrial Strategy (BEIS) and the Department for International Development (DFID). Since 2013, the Energy Catalyst has invested almost £100m in grant funding across more than 750 organisations and 250 projects. The Energy Catalyst exists to accelerate development, commercialisation and deployment of the very best of UK energy technology and business innovation. Support from the Energy Catalyst has enabled many companies to validate their technology and business propositions, to forge key supply-chain partnerships, to accelerate their growth and to secure investment for the next stages of their business development. Affordable access to clean and reliable energy supplies is a key requirement for sustainable and inclusive economic growth. With funding through DFID’s “Transforming Energy Access” programme, the Energy Catalyst is helping UK energy innovators to forge new international partnerships, and directly address the energy access needs of poor households, communities and enterprises in Sub-Saharan Africa and South Asia.
    [Show full text]
  • A Comprehensive Thermal Comfort Analysis of the Cooling Effect of The
    sustainability Article A Comprehensive Thermal Comfort Analysis of the Cooling Effect of the Stand Fan Using Questionnaires and a Thermal Manikin Sun-Hye Mun y, Younghoon Kwak y, Yeonjung Kim and Jung-Ho Huh * Department of Architectural Engineering, University of Seoul, Seoul 02504, Korea; [email protected] (S.-H.M); [email protected] (Y.K.); [email protected] (Y.K.) * Correspondence: [email protected]; Tel.: +82-2-6490-2757 Contributed equally to this work. y Received: 14 August 2019; Accepted: 12 September 2019; Published: 17 September 2019 Abstract: In this study a quantitative analysis was performed on the effect on thermal comfort of the stand fan, a personal cooling device that creates local air currents. A total of 20 environmental conditions (indoor temperatures: 22, 24, 26, 28, and 30 ◦C; fan modes: off, low (L) mode, medium (M) mode, and high (H) mode) were analyzed using questionnaires on male and female subjects in their 20s and a thermal manikin test. The contents of the questionnaire consisted of items on thermal sensation, thermal comfort, thermal acceptability, and demands on changes to the air velocity. This step was accompanied by the thermal manikin test to analyze the convective heat transfer coefficient and cooling effect quantitatively by replicating the stand fan. Given that this study provides data on the cooling effect of the stand fan in quantitative values, it allows for a comparison of energy use with other cooling systems such as the air conditioner, and may be used as a primary data set for analysis of energy conservation rates.
    [Show full text]
  • Healthy Building Industry Review Resources
    Healthy Building Industry Review Resources Pacific Northwest National Laboratory December 31, 2019 Contact: Kevin Keene ([email protected]) PNNL-SA-159876 The Department of Energy and Pacific Northwest National Laboratory do not endorse any of the products, services, or companies included in this document. This industry review investigates existing resources for facility managers, owners, operators, and other decision-makers to make informed decisions relating to energy efficient buildings that also support occupant health and productivity. Healthy building practices have had limited adoption due to lack of awareness and limited research compared to energy efficiency. This review explores some of the most impactful existing resources for healthy buildings and their integration with energy efficiency. The focus is on the commercial and federal sector and healthy building categories that intersect with energy use New or Existing Name Type Summary IEQ Elements Sector Buildings? Energy Connection Reference The Financial Case for High Performance Business Case By applying financial impact calculations to findings from Lighting, Indoor Air Quality, Commercial Existing No https://stok.com/wp- Buildings over 60 robust research studies on the effect of HPBs in Thermal Comfort content/uploads/2018/10/stok_report_financial-case-for- three key occupant impact areas (Productivity, Retention, high-performance-buildings.pdf and Wellness), this paper arrives at the financial impacts below to help owneroccupants and tenants quantify the benefits of
    [Show full text]
  • Thermal Comfort in a Naturally-Ventilated Educational Building
    Thermal Comfort in a Naturally-Ventilated Educational Building David Mwale Ogoli Judson College, Elgin, IL ABSTRACT: A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2) in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used in thermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitute a “comfortable” thermal environment include physical factors (ambient air temperature, mean radiant temperature, air movement and humidity), personal factors (activity and clothing), classifications (gender, age, education, etc.) and psychological expectations (knowledge, experience, psychological effect of visual warmth by, say, a fireplace). Comparisons are made using data gathered from Nairobi, Kenya. Keywords: Comfort, temperature, humidity and ventilation INTRODUCTION The “comfort zone” is an appropriate design goal for a deterministic mechanical system but analysis of many international field studies by researchers has questioned its relevance to passive solar buildings (Humphreys, 1976; Auliciems, 1978; Forwood, 1995; Baker and Standeven, 1996; Standeven and Baker, 1995; Milne, 1995;). Givoni (1998) revised his already authoritative and notable work on the building bio-climatic chart having recognized this new position. These revisions reflect a paradigm shift in thermal comfort for people relative to their thermal environment. The American Society of Heating, Ventilating and Air-conditioning Engineers (ASHRAE) has been discussing how people adapt to higher indoor temperatures in naturally ventilated buildings (Olesen, 2000). There is mounting evidence (Humphreys, 1996; Karyono, 2000) that confirms that thermal perceptions are affected by factors that are not recognized by current comfort standards.
    [Show full text]
  • DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies
    IES RE LOG SIDE NO NT CH IA TE L L TE A C I H T N N E O D L I O S G E I R E S R DSML Pocket Guidebook E S A I I D VolumeT 1: Residential Technologies E N N E T D I I A S L E R T E S C E H I N G O O L L O O G N I H E C S E T R E L S A I I D T E N N E T D I I A S L E R T E S C E H I N G O O L Western Area Power Administration August 2007 DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies Produced and funded by Western Area Power Administration P.O. Box 281213 Lakewood, CO 80228-8213 Prepared by National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 August 2007 Table of Contents List of Tables v List of Figures v Foreword vii Acknowledgements ix Introduction xi Energy Use and Energy Audits 1 Building Structure 9 Insulation 10 Windows, Glass Doors, and Sky lights 14 Air Sealing 18 Passive Solar Design 21 Heating and Cooling 25 Programmable Thermostats 26 Heat Pumps 28 Heat Storage 31 Zoned Heating 32 Duct Thermal Losses 33 Energy-Efficient Air Conditioning 35 Air Conditioning Cycling Control 40 Whole-House and Ceiling Fans 41 Evaporative Cooling 43 Distributed Photovoltaic Systems 45 Water Heating 49 Conventional Water Heating 51 Combination Space and Water Heaters 55 Demand Water Heaters 57 Heat Pump Water Heaters 60 Solar Water Heaters 62 Lighting 67 Incandescent Alternatives 69 Lighting Controls 76 Daylighting 79 Appliances 83 Energy-Efficient Refrigerators and Freezers 89 Energy-Efficient Dishwashers 92 Energy-Efficient Clothes Washers and Dryers 94 Home Offices
    [Show full text]
  • Comfort in High-Performance Homes in a Hot-Humid Climate
    Comfort in High-Performance Homes in a Hot-Humid Climate A. Poerschke and R. Beach IBACOS, Inc. January 2016 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at SciTech Connect http:/www.osti.gov/scitech Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 OSTI http://www.osti.gov Phone: 865.576.8401 Fax: 865.576.5728 Email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 NTIS http://www.ntis.gov Phone: 800.553.6847 or 703.605.6000 Fax: 703.605.6900 Email: [email protected] Comfort in High-Performance Homes in a Hot-Humid Climate Prepared for: The National Renewable Energy Laboratory On behalf of the U.S.
    [Show full text]
  • Advanced RTU Control Strategies
    3/4/2014 Advanced RTU Control Strategies Ryan R. Hoger, LEED AP 708.670.6383 [email protected] Environmental Impact of Buildings* • 40% of total U.S. energy consumption • 39% of total U.S. CO2 emissions • 72% of total U.S. electricity consumption *Commercial and Residential 1 3/4/2014 Environmental Energy Impact of Buildings 100% USA Energy Consumption (BTU) 38.2% 28% Transportation 33.4% 32% Industry 28.3% 40% Buildings* Residential & Commercial Buildings 2010 DOE Buildings Energy Data Book 20.26 Quadrillion BTU Site > dropped to 19.99 in 2011 39.29 Quadrillion BTU Primary > means bldgs are about 51-52% efficient in terms of raw energy utilization Commercial HVAC Energy Consumption 27% of all commercial HVAC energy is used by fans!!! 2 3/4/2014 Efficiency Ratings for RTUs • Air-Conditioning, Heating, and Refrigeration Institute RTUs < 65,000 Btuh (~5.4 tons) • Use residential test standards • SEER •AFUE • RTUs >= 65,000 Btuh (~5.4 tons) • EER + IEER • Thermal Efficiency 3 3/4/2014 Industry Movement to IEER Ratings The industry and governing bodies are evolving to Integrated Energy Efficiency Ratio (IEER) values as the leading energy measure: - IEER models building part load profile – EER measures peak unit performance that is typically experienced 3% of the operating time. - Codes now specify both a minimum EER and IEER - Rebate programs generally specify just a part load min IEER - The Department of Energy (DOE) Rooftop efficiency challenge - ONLY specifies IEER @ 18.0 – NO EER ASHRAE 90.1-2010 & IECC 2012 Minimums 4 3/4/2014
    [Show full text]
  • The Lennox Standard of Excellence. Merit® Series Is the Introductory
    Residential Products AIR CONDITIONERS & HEAT PUMPS GAS FURNACES OIL FURNACES AIR HANDLERS THERMOSTATS AIR PURIFICATION SL28XCV/XP25 AIR CONDITIONER AND HEAT PUMP XC21/XP21 AIR CONDITIONER AND HEAT PUMP SLP99V GAS FURNACE SL297NV ULTRA-LOW EMISSIONS GAS FURNACE SLO185V OIL FURNACE8 CBA38MV AIR HANDLER ICOMFORT® S30 ULTRA SMART THERMOSTAT LENNOX PUREAIR™ S The most precise and efficient air conditioner The most efficient two-stage central air The quietest and most efficient furnace you can buy!5 • 97.5% AFUE The quietest and most efficient air handler you can buy!9 • Wi-Fi-enabled ultra-smart thermostat for iComfort- 1 4 AIR PURIFICATION SYSTEM and heat pump you can buy conditioner and heat pump you can buy • Up to 99% AFUE • Meets new ultra-low emissions standards in California • Variable-speed motor for even temperatures enabled equipment Senses and communicates, and cleans • SL28XCV up to 28.00 SEER • XC21 up to 21.00 SEER • Variable-capacity heating operation the air in your home better than any • Two-stage heating operation and quiet operation • Precise Comfort – Holds the home’s temperature to within 11 • XP25 up to 23.50 SEER and 10.20 HSPF • XP21 up to 19.20 SEER and 9.80 HSPF • High-efficiency variable-speed blower 0.5 degrees or less when used with Lennox modulating other single system you can buy! ® • High-efficiency variable-speed blower • Antimicrobial drain pan for improved indoor • Precise Comfort design with a variable-capacity • SilentComfort fan motor minimizes sound while • Precise Comfort design air quality equipment
    [Show full text]
  • DUCT LEAKAGE TESTING AS REQUIRED by IECC 2009 ENERGY CODE 402.4 Air Leakage (Mandatory)
    DUCT LEAKAGE TESTING AS REQUIRED BY IECC 2009 ENERGY CODE 402.4 Air leakage (Mandatory). 402.4.1 Building thermal envelope. The building thermal envelope shall be durably sealed to limit infiltration. The sealing methods between dissimilar materials shall allow for differential expansion and contraction. The following shall be caulked, gasketed, weatherstripped or otherwise sealed with an air barrier material, suitable film or solid material: 1. All joints, seams and penetrations. 2. Site-built windows, doors and skylights. 3. Openings between window and door assemblies and their respective jambs and framing. 4. Utility penetrations. 5. Dropped ceilings or chases adjacent to the thermal envelope. 6. Knee walls. 7. Walls and ceilings separating a garage from condi- tioned spaces. 8. Behind tubs and showers on exterior walls. 9. Common walls between dwelling units. 10.Attic access openings. 11. Rim joist junction. 12.Other sources of infiltration. more than 0.3 cfm per square foot (1.5 L/s/m2), and swing- 402.4.2 Air sealing and insulation. Building envelope air tightness and ing doors no more than 0.5 cfm per square foot (2.6 L/s/m2), insulation installation shall be demonstrated to comply with one of the following options given by Section 402.4.2.1 or 402.4.2.2: when tested according to NFRC 400 or AAMA/WDMAI/ 402.4.2.1 Testing option. Building envelope tightness and insulation CSA 101/I.S.2/A440 by an accredited, independent laboratory installation shall be considered acceptable when tested air leakage is less and listed and labeled by the manufacturer.
    [Show full text]
  • With WIRELESS PROGRAMMABLE THERMOSTATS a MODULATING SYSTEM
    GEN III - VVT VOTE BASED AUTO CHANGEOVER VAV with WIRELESS PROGRAMMABLE THERMOSTATS A MODULATING SYSTEM 70° 68° 75° 72° INSTALLATION AND APPLICATIONS MANUAL TABLE OF CONTENTS 1 OVERVIEW 3 System Operation 3 Component Selection 4 Sequence Of Operation 5 System Schematic Overview 6 2 SYSTEM COMPONENTS 7 GEN III Controller 7 Communicating Damper Board 8 Wireless Thermostat 9 3 INSTALLATION INSTRUCTIONS 10 GEN III Controller 10 Damper 1 Installation 12 Thermostat Installation 13 4 COMMISSIONING AND START UP 14 Sync Dampers To Wireless Zone Thermostats 14 Sync Monitor Thermostat To GEN III Controller 15 Confirm Communications 16 Set Unit Type 16 Set Clock 17 Set High / Low Limits 17 Set Fan Operation 18 5 CONFIRM SYSTEM OPERATION 18 Confirm Cool Call And Damper Operation 18 Confirm Heat Call And Damper Operation 19 Auxiliary Heat / Reheat / W1 First Operation 20 Supplemental Heat – Wiring Options 21 6 THERMOSTAT OVERVIEW AND OPERATION 22 Set Thermostat Display Modes 22 Thermostat Operation – End User Guide 23 Zone Set Up Menu 24 Monitor Thermostat Configuration 26 Set Schedules 27 Lock Thermostats, Master Temperature Set 28 System Diagnostic, High / Low Limit 29 Second Stage Delay, Override Hours, Priority Vote 30 Fan Mode, Unit Type, Sync Monitor, Maverick Call 31 System Air Balance, Temp Format, Clock, Password 32 Number Of Dampers, LAT Calibration, Morning Warm Up 33 Manufacturer’s Default 34 7 ZONE DAMPERS 35 Round And Rectangular Sizing And Selection 35 Slaving Zone Dampers 38 8 BYPASS DAMPERS 39 Slaving Bypass Dampers 40 IPC – Static Pressure Controller 41 9 TROUBLESHOOTING 43 10 SYSTEM SET UP DIRECTORY 46 11 FINAL SYSTEM REVIEW 47 2 GEN III – VVT SYSTEM OVERVIEW SYSTEM OVERVIEW GEN III – VVT is a commercial modulating zone control system controlling 2-20 independent zones per unit utilizing wireless Zonex thermostats.
    [Show full text]