Curriculum Vitae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Nanostructured Non-Titania Photocatalysts and Hole Scavenging Agents for CO2 Photoreduction Processes
Heriot-Watt University Research Gateway A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO2 photoreduction processes Citation for published version: Tan, JZY & Maroto-Valer, MM 2019, 'A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO photoreduction processes', Journal of Materials Chemistry A, vol. 7, no. 16, pp. 9368-9385. https://doi.org/10.1039/C8TA10410G2 Digital Object Identifier (DOI): 10.1039/C8TA10410G Link: Link to publication record in Heriot-Watt Research Portal Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Materials Chemistry A General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Journal of Materials Chemistry A View Article Online REVIEW View Journal | View Issue A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO Cite this: J. Mater. Chem. A,2019,7, 2 9368 photoreduction processes Jeannie Z. Y. Tan * and M. Mercedes Maroto-Valer The imperative for the development of sustainable energy technologies to alleviate the heavy reliance on fossil fuels as well as to mitigate the serious environmental issues associated with CO2 emission has fostered the development of solar fuels through CO2 photoreduction. -
The Grand Challenges in the Chemical Sciences
The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Jerusalem, June 3-7 2018 Biographies and Abstracts The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Participants: Jacob Klein Dan Shechtman Dorit Aharonov Roger Kornberg Yaron Silberberg Takuzo Aida Ferenc Krausz Gabor A. Somorjai Yitzhak Apeloig Leeor Kronik Amiel Sternberg Frances Arnold Richard A. Lerner Sir Fraser Stoddart Ruth Arnon Raphael D. Levine Albert Stolow Avinoam Ben-Shaul Rudolph A. Marcus Zehev Tadmor Paul Brumer Todd Martínez Reshef Tenne Wah Chiu Raphael Mechoulam Mark H. Thiemens Nili Cohen David Milstein Naftali Tishby Nir Davidson Shaul Mukamel Knut Wolf Urban Ronnie Ellenblum Edvardas Narevicius Arieh Warshel Greg Engel Nathan Nelson Ira A. Weinstock Makoto Fujita Hagai Netzer Paul Weiss Oleg Gang Abraham Nitzan Shimon Weiss Leticia González Geraldine L. Richmond George M. Whitesides Hardy Gross William Schopf Itamar Willner David Harel Helmut Schwarz Xiaoliang Sunney Xie Jim Heath Mordechai (Moti) Segev Omar M. Yaghi Joshua Jortner Michael Sela Ada Yonath Biographies and Abstracts (Arranged in alphabetic order) The Grand Challenges in the Chemical Sciences Dorit Aharonov The Hebrew University of Jerusalem Quantum Physics through the Computational Lens While the jury is still out as to when and where the impressive experimental progress on quantum gates and qubits will indeed lead one day to a full scale quantum computing machine, a new and not-less exciting development had been taking place over the past decade. -
Call for Papers | 2022 MRS Spring Meeting
Symposium CH01: Frontiers of In Situ Materials Characterization—From New Instrumentation and Method to Imaging Aided Materials Design Advancement in synchrotron X-ray techniques, microscopy and spectroscopy has extended the characterization capability to study the structure, phonon, spin, and electromagnetic field of materials with improved temporal and spatial resolution. This symposium will cover recent advances of in situ imaging techniques and highlight progress in materials design, synthesis, and engineering in catalysts and devices aided by insights gained from the state-of-the-art real-time materials characterization. This program will bring together works with an emphasis on developing and applying new methods in X-ray or electron diffraction, scanning probe microscopy, and other techniques to in situ studies of the dynamics in materials, such as the structural and chemical evolution of energy materials and catalysts, and the electronic structure of semiconductor and functional oxides. Additionally, this symposium will focus on works in designing, synthesizing new materials and optimizing materials properties by utilizing the insights on mechanisms of materials processes at different length or time scales revealed by in situ techniques. Emerging big data analysis approaches and method development presenting opportunities to aid materials design are welcomed. Discussion on experimental strategies, data analysis, and conceptual works showcasing how new in situ tools can probe exotic and critical processes in materials, such as charge and heat transfer, bonding, transport of molecule and ions, are encouraged. The symposium will identify new directions of in situ research, facilitate the application of new techniques to in situ liquid and gas phase microscopy and spectroscopy, and bridge mechanistic study with practical synthesis and engineering for materials with a broad range of applications. -
Academic Appointments Academic
Curriculum Vitae William R. Dichtel Robert L. Letsinger Professor of Chemistry, Northwestern University Date of Birth September 19, 1978 Work address 2145 Sheridan Rd, Rm M292 Tel: (847) 467-6031 Northwestern University [email protected] Evanston, IL 60208 Web site http://www.williamdichtel.com Academic Appointments Robert L. Letsinger Professor (07/2016 – Present) Department of Chemistry Northwestern University Associate Professor (02/2014 – 06/2016) Assistant Professor (07/2008 – 01/2014) Department of Chemistry and Chemical Biology Cornell University Academic Background and Education Research Associate (Jointly Appointed) Research Associate (Jointly Appointed) Department of Chemistry and Biochemistry Department of Chemistry University of California, Los Angeles California Institute of Technology Advisor: Prof J. Fraser Stoddart Advisor: Prof James R. Heath August 2005 – June 2008 August 2005 – June 2008 Doctor of Philosophy Bachelor of Science Department of Chemistry and Biochemistry Department of Chemistry University of California, Berkeley Massachusetts Institute of Technology Advisor: Prof Jean M. J. Fréchet Advisor: Prof Timothy M. Swager September 2000 – July 2005 September 1996 – June 2000 Honors and Awards Leo Hendrik Baekeland Award (2017) Finalist, Blavatnik Award for Young Scientists (2017) Arthur K. Doolittle Award (ACS PMSE Division, 2016) Visiting Miller Professor, University of California, Berkeley (Spring 2016) John D. and Catherine T. MacArthur Fellowship (2015) Kavli Frontiers of Science Fellow (2015) Kavli -
CHAD A. MIRKIN, PH.D. Northwestern University
CHAD A. MIRKIN, PH.D. Northwestern University, Department of Chemistry 2145 Sheridan Road, Evanston, IL 60208-3113 Phone: 847-491-2907 Fax: 847-467-5123 Email: [email protected] Education 1991 NSF Postdoctoral Fellow in Chemistry, Massachusetts Institute of Technology, Cambridge, MA 1989 Ph.D. in Inorganic & Organic Chemistry, The Pennsylvania State University, State College, PA 1986 B.S. in Chemistry (Phi Beta Kappa), Dickinson College, Carlisle, PA Professional Experience 2008-present Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, Materials Science & Engineering, Biomedical Engineering, Chemical & Biological Engineering, Northwestern University 2004-2008 Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, and Materials Science & Engineering, Northwestern University 2000-2004 Director, Center for Nanofabrication and Molecular Self-Assembly and George B. Rathmann Professor of Chemistry, Northwestern University 1997-2000 Charles E. and Emma H. Morrison Professor of Chemistry, Northwestern University 1995-1997 Associate Professor, Department of Chemistry, Northwestern University 1991-1995 Assistant Professor, Department of Chemistry, Northwestern University Awards and Honors (selected, over 230 national and international total) 2020 ACS Division of Colloid and Surface Science Award for Outstanding Achievement in Nanoscience; AAAS Philip Hauge Abelson Award 2019 Kabiller Prize in Nanoscience and Nanomedicine; SCI Perkin -
The Rapid Evolution of Highly Efficient Perovskite Solar Cells
Energy & Environmental Science View Article Online REVIEW View Journal | View Issue The rapid evolution of highly efficient perovskite solar cells Cite this: Energy Environ. Sci., 2017, 10,710 Juan-Pablo Correa-Baena,†*a Antonio Abate,*b Michael Saliba,*c Wolfgang Tress,c d c a T. Jesper Jacobsson, Michael Gra¨tzel and Anders Hagfeldt Perovskite solar cells (PSCs) have attracted much attention because of their rapid rise to 22% efficiencies. Here, we review the rapid evolution of PSCs as they enter a new phase that could revolutionize the photovoltaic industry. In particular, we describe the properties that make perovskites so remarkable, and the Received 21st November 2016, current understanding of the PSC device physics, including the operation of state-of-the-art solar cells with Accepted 30th January 2017 efficiencies above 20%. The extraordinary progress of long-term stability is discussed and we provide an DOI: 10.1039/c6ee03397k outlook on what the future of PSCs might soon bring the photovoltaic community. Some challenges remain in terms of reducing non-radiative recombination and increasing conductivity of the different device layers, rsc.li/ees and these will be discussed in depth in this review. Broader context Perovskite-based solar cells have emerged as a promising technology for highly efficient and low-cost photovoltaics. Using low-temperature solution processing, the high efficiencies so far reported go beyond 20% and start approaching their practical limitations. This unprecedented rise in efficiency, with the added advantage of low-cost processing, has made perovskite solar cells an exciting field of study. In this review, we summarize some of the major developments in the perovskite field related to thin film material processing, solar cell physics and long-term stability, which are key to commercialization of this exciting technology. -
John F. Hartwig Henry Rapoport Professor of Chemistry
John F. Hartwig Henry Rapoport Professor of Chemistry Department of Chemistry, University of California Berkeley 718 Latimer Hall MC# 1460, Berkeley, CA 94720-1460 Email: [email protected] http://www.cchem.berkeley.edu/jfhgrp/ Personal Born August 7, 1964 in Elmhurst, IL Employment 2011-present University of California, Berkeley Henry Rapoport Professor of Chemistry. 2011-present Lawrence Berkeley National Laboratory, Berkeley Senior Faculty Scientist. 2006-2011 University of Illinois Urbana-Champaign Kenneth L. Reinhart Jr. Professor of Chemistry. 2004-2006 Yale University, New Haven, CT Irénée DuPont Professor of Chemistry. 1998-2004 Yale University, New Haven, CT Professor of Chemistry. 1996-1998 Yale University, New Haven, CT Associate Professor of Chemistry. 1992-1996 Yale University, New Haven, CT Assistant Professor of Chemistry. Appointment commenced July 1, 1992. 1990-1992 Massachusetts Institute of Technology, Cambridge, MA American Cancer Society Postdoctoral Associate. 1986-1989 University of California, Berkeley, CA Graduate Student Instructor. Taught organic chemistry to undergraduate students and inorganic chemistry to graduate students. 1985 Monsanto Japan Ltd., Kawachi, Japan Worked among an all-Japanese staff for three months on an agricultural and surface science research project. 1984 General Electric Research and Development, Schenectady, NY Synthesis of novel monomers, ionomers and polymer blends. Education 1990-1992 Massachusetts Institute of Technology, Cambridge, MA Postdoctoral Advisor: Prof. Stephen J. Lippard Studied the Pt-DNA adducts formed by an orally active platinum antitumor drug and the ability of these adducts to block DNA replication and bind cellular proteins. Designed, synthesized, and analyzed a platinum antitumor drug possessing a fluorescent ligand for in vivo monitoring. 1986-1990 University of California, Berkeley, CA Ph.D., Chemistry. -
Annual Review 2011
Annual Review 2011 www.rsc.org Contents 01 Welcome from the President 02 A message from the Chief Executive 03 Supporting a strong membership 07 Leading the global chemistry community 11 Engaging people with chemistry 15 Influencing the future of chemistry 19 Enhancing knowledge 23 Summary of financial information 24 Contacts Professor David Phillips CBE CSci CChem FRSC We championed the cause of chemical sciences with pride and conviction throughout the International Year of Chemistry. ‘‘ Welcome from the President When the United Nations announced that 2011 would be designated the “International Year of Chemistry” (IYC), we knew immediately that the year would bring countless opportunities to promote, expand and evolve both the RSC and the chemical sciences more broadly. We needed to make it a year to remember. I’m delighted to say we rose to the challenge. In a year marked with natural disasters, economic uncertainty and adverse conditions affecting the chemical sciences in ways never seen before, we still led the UK in being perhaps the most active country in the world throughout IYC. Our members did us proud, arranging hundreds of IYC events across the globe. Perhaps most visible was the Global Water Experiment, an international effort to map global water quality using data collected by school pupils. A national media campaign, including an outing on BBC TV’s One Show, led to widespread awareness of the experiment. Dedicated and enthusiastic UK teachers then inspired a sensational number of their pupils to take part, and as a country we contributed more data to the experiment than any other. -
KAREN L. WOOLEY W. T. Doherty-Welch Chair in Chemistry
KAREN L. WOOLEY W. T. Doherty-Welch Chair in Chemistry University Distinguished Professor Presidential Impact Fellow Texas A&M University, Department of Chemistry 3255 TAMU, P. O. Box 30012, College Station, Texas 77842-3012 Tel. (979) 845-4077, Fax (979) 862-1137, e-mail: [email protected] www.chem.tamu.edu/faculty/wooley http://orcid.org/0000-0003-4086-384X http://www.researcherid.com/rid/D-4399-2015 Born July 9, 1966, Oakridge, Oregon, USA Education: Ph. D., Cornell University, Polymer/Organic Chemistry, August 1993 Advisor: Professor J. M. J. Fréchet, Dissertation Title: "Design, Synthesis and Properties of Dendritic Macromolecules" B. S., Oregon State University, Chemistry, May 1988 Professional History: Presidential Impact Fellow, Texas A&M University, 2017 – Lifetime Professor of Materials Science & Engineering, Texas A&M University, 2014 – present University Distinguished Professor, Texas A&M University, 2011 – present W. T. Doherty-Welch Chair in Chemistry; Professor of Chemistry; Professor of Chemical Engineering, Texas A&M University, 2009 – present; Professor of Biotechnology Program, 2014 – present James S. McDonnell Distinguished University Professor of Arts & Sciences, Washington University, 2006 – 2009 Professor, Washington University, School of Arts & Sciences, Department of Chemistry, 1999 – 2009 Professor, Washington University, School of Medicine, Department of Radiology, 2007 – 2009 Faculty member in the Division of Biological and Biomedical Sciences, Chemical Biology Program, Washington University, 1996 – 2005 Faculty member in the Center for Materials Innovation, Washington University, 2003 – 2009 Assistant Professor, Washington University, Department of Chemistry, August 1993 – 1999 Teaching: Texas A&M University. Chem228 Organic Chemistry II; Chem466 Polymer Chemistry; Chem470 Industrial Chemistry; Chem491 Research; Chem689 Special Topics: Nanomedicine; Chem690 Theory of Chemical Research; Chem691 Research Washington University. -
3000 Darwin Skeptics
3000 Darwin Skeptics rae.org/essay-links/darwinskeptics Darwin Skeptics A Select List of Science Academics, Scientists, and Scholars Who are Skeptical of Darwinism Compiled by Jerry Bergman PhD. It is commonly claimed that no scientist rejects macroevolution or Darwinism (by which is meant evolutionary naturalism, or the view that variation caused by mutations plus natural selection accounts for all life forms). For example, Dr. Steve Jones, Professor of Genetics at University College of London, wrote that “no scientist denies the central truth of The Origin, the idea of descent with modification… plants, animals and everything else descended from a common ancestor” (Jones, 2000, pp. xvii, xxiii). Other writers avoid the words “all” or “no scientist” and claim instead that “almost no scientist” rejects Darwinism as defined above. In an article refuting “wiccan creationism,” the author claimed that evolutionary theory has been confirmed to such a high degree and has such great explanatory power that it is the central organizing principle of the biological sciences today. Modern biology is basically unthinkable outside of the context of evolution and that is why it is accepted without reservations by pretty much every working scientists [sic] in the life sciences. It also isn’t really questioned in the other natural sciences, either, like physics or chemistry. The author then makes the following absolutist statement: Evolution is taken as a fact—and while there might be disagreements about some of the details of how evolution proceeds, there are no disagreements about the idea that it does occur and that it is the explanation for the diversity of life on our planet. -
POSTGRADUATE GRADUATION 2017 Postgraduate Graduation 2017
Imperial College London College Imperial POSTGRADUATE GRADUATION 2017 GRADUATION POSTGRADUATE POSTGRADUATE GRADUATION 2017 Wednesday 3 May Royal Albert Hall, London Postgraduate Graduation 2017 PRESIDENT’S WELCOME CONTENTS 01 President’s welcome Welcome to the Imperial College London Postgraduate Graduation. 02 Chair’s welcome My colleagues and I are pleased 03 Senior staff at Imperial to be here to celebrate your accomplishments as our postgraduate 04 About the day degree recipients and honorees 06 Imperial’s past and future and award winners. We hope that you enjoy the ceremony and the 08 World-leading research celebration as much as we do. at Imperial We share the honour of celebrating your achievements 10 Honorary degree with all of those who have supported you on your journey. We know that pursuing graduate study 12 Imperial College Medals requires dedication and the steadfast support of family and friends, and we salute them too today. 14 President’s Medals Faculty mentors and doctoral advisors are also here to celebrate with us. Their guidance has been 19 Regius Professorship pivotal in graduates’ accomplishments and we thank them for being excellent teachers, academic leaders 20 Outstanding Student and role models. Achievement Awards You, our graduates, have worked long and hard 24 Imperial College Business for this distinction. You have followed your passion School and School of and become experts in your chosen fields. You have demonstrated the ability to think rigorously, to explore, Professional Development to question. We are inspired by the great breadth of your accomplishments and we know that you all join 38 Faculty of Natural Sciences the ranks of some 190,000 very distinguished alumni and Faculty of Medicine who bring prestige to Imperial’s name. -
Division of Polymer Chemistry (POLY)
Division of Polymer Chemistry (POLY) Graphical Abstracts Submitted for the 250th ACS National Meeting & Exposition INNOVATION FROM DISCOVERY TO APPLICATION August 16-20, 2015 | Boston, MA Division of Polymer Chemistry (POLY) Table of Contents [click on a session time (AM/PM/EVE) for link to abstracts] Session SUN MON TUE WED THU AM AM Protein-Like Structure & Activity in Synthetic Systems EVE PM PM General Topics: New Synthesis & Characterization of AM AM AM AM EVE Polymers PM PM PM PM AM Surface Modification of Polymeric Materials AM EVE PM AM AM AM Silicones PM PM PM EVE Herman Mark Scholars Award Symposium in Honor of AM Stuart Rowan PM AM Ring Opening Polymerization AM EVE PM PM1 Industrial Innovations in Polymer Chemistry PM2 Biomacromolecules/Macromolecules Young Investigator PM Award Herman Mark Award Symposium in Honor of Timothy AM Lodge Value of Basic Research in Solving Industrial Polymer AM Problems PM Henkel Award for Outstanding Graduate Research in AM Polymer Chemistry Henry A. Hill Centennial Symposium: Innovation in AM Polymer Science PM Multi-component & Sequential Reactions in Polymer PM AM Science: Efficient Synthesis of Structural Diverse AM EVE PM Polymers PM AM AM Ionic Liquids in Polymer Design: From Energy to Health EVE PM PM Charles Overberger Award Symposium in Honor of AM Krzysztof Matyjaszewski PM Herman Mark Young Scholars Award Symposium in AM Honor of Bradley Olsen PM Note: ACS does not own copyrights to the individual abstracts. For permission, please contact the author(s) of the abstract. POLY 1: Modular approach to single chain nanoparticles using alternating radical copolymerization Christopher Lyon1, [email protected], Erik B.