Media Gateway Control Protocol H.248 / MEGACO Media Gateway Control Protocol Basics

Total Page:16

File Type:pdf, Size:1020Kb

Media Gateway Control Protocol H.248 / MEGACO Media Gateway Control Protocol Basics C&I Training on Conformity and Interoperability ITU-D Jun/2015 Agenda 1. Next-generation Networks (NGN) basic concepts. Integration testing – interoperability aspects. ITU-T Q.3909 and ITU-D Q26/2 Report 2. SIP Protocol 3. H.248 / Sigtran Protocol 4. NGN Lab Instrumentation; Protocols: SIP 5. NGN Lab Instrumentation; Protocols: H.248/Sigtran 2 Next-generation Networks (NGN) basic concepts. Integration testing – interoperability aspects. ITU-T Q.3909 and ITU-D Q26/2 Report TDM Network TDM Network Basic topology • Advantages of circuit-switched Transit phone networks: ― Capillarity ― QoS – Quality of Service ― Real-time voice optimized network • Disadvantages of circuit-switched Lex Lex phone networks: Transport ― Resource monopolization Network ― Hierarchical network ― Closed systems supplied by limited vendors ― Specialized network ― Low growth rate 5 TDM Network Circuit Switch SCC#7 Call Serv. Control Supl. Subscriber SWITCH Subscriber B Lines Lines FABRIC A Trunks Sinalling Voice Circuits 6 TDM Network Basic call example Animation of an PSTN (TDM) Phone call 7 Network Convergence Network Convergence Data Network Data networks based on TCP / IP Protocol began in the late 60's when the first networks have emerged through the ARPANET , " joining " North American universities . Advantages Disadvantages • Optimized resource • In the past - no quality usage of service (QoS) guarantee • Not hierarchical • Nowadays – some QoS • Multi-service Network garantee • Steady year-long growth IP Network Si Si It is possible to talk over IP Networks 9 Network Convergence Basics • The explosion of data transfer has revolutionized the telecommunication environment, especially the Internet (www, FTP, email, Facebook, Twitter, WhatsApp, Skype), indicating a shift from a “Voice Based” network to a "Data Based" network. 10 Network Convergence High level view of the converged environment Always on with any devices Anytime, anywhere and in any form Voice and multimedia Self service, intuitive Simple for the end user Secure, trusted and reliable 11 Network Convergence Multi-service Networks Single data-based telecommunications networks providing high-quality integrated voice, video and data services, strategically offering multi- media based services and minimizing costs for both providers and consumers. • Factors propelling convergence: ― Vigorous data traffic growth ― Technological factors . Statistical multiplexing . Protocols and networks such as IP/MPLS that transport media with guaranteed quality of service. Routers, computers, gateways and other elements are simpler, more economical and easier to manage than TDM telephone network equipment. Codecs: high-quality voice/video compression and packing. 12 NGN NGN Definition of NGN ITU-T Recommendation Y.2001 Application and Services Layer "A packet-based network able to provide telecommunication services and able to make use of multiple broadband, QoS Open/Standard Interface enabled transport technologies and in which service-related functions are independent from underlying transport- Call Control related technologies. Layer It enables unfettered access for users to networks and to competing service Open/Standard providers and/or services of their choice. Interface It supports generalized mobility which will allow consistent and ubiquitous provision of services to users." Infrastructure and Data Transport Layer 4 NGN Enabling Packet Switching It is possible to talk over IP Networks SOFTSWITCH SCC#7 / Call Sup. SIGTRAN Control Serv. Signaling takes typically different path than media does G Subscriber Lines ACCESS W GATEWAY B IP Subscriber G A Lines W TRUNK GW GATEWAY Trunks Sinalling Media Packets 15 NGN NGN basic concepts • Packet-based transfer • Separation of control functions among bearer capabilities, call/session, and application/ service • Decoupling of service provision from transport, and provision of open interfaces • Support for a wide range of services, applications and mechanisms based on service building blocks (including real time/ streaming/ non- real time and multimedia services) • Broadband capabilities with end-to-end QoS (Quality of Service) • Interworking with legacy networks via open interfaces 16 NGN NGN basic concepts • Generalized mobility • Unfettered access by users to different service providers • Unified service characteristics for the same service as perceived by the user • Converged services between fixed/mobile • Independence of service-related functions from underlying transport technologies • Support of multiple last mile technologies • Compliant with all regulatory requirements, for example concerning emergency communications, security, privacy, lawful interception, etc. 17 NGN NGN basic concepts TDM Architecture NGN Architecture IN Service Platform NGIN Services SIP Session Call Control Control Switching H.248 MGCP SIP Switching Transport Subscriber Media A/D Trunk User 18 NGN Three Layers • Responsible for services offered to users connected to the network Application and Services Layer • Responsible for defining, supervising, clearing Open/Standard and rating calls over the IP network. The Interface functions of this layer are: ― Signaling Call Control ― Call Control Layer ― Service Layer Access Open/Standard • This is the layer where the media servers are, Interface responsible for: ― Processing media Infrastructure and Data ― Message recording and playback Transport Layer ― Text-to-speech conversion and speech recognition 19 NGN NGN – Softswitch Approach Service Application NMS Media Server IN Billing Server SIP‐I Control SIGTRAN SIGTRAN H.248 / MGCP H.248 / MGCP Core SIP SIP H.323 H.323 SG Access LMG SS7 MGW SBC IP IAD PRI / R2 IP MSAN PSTN POTS / IP Private PBX Network 20 NGN NGN basic concept • SS7 message conversion to the • Establishment and termination of • Media adaptation between IP network (SIGTRAN). sessions in IP network. networks. • Establishes and terminates IP- • Maintains the state of all calls • Protocol conversion between IP SS7 connections. Keeps the and the resources allocated to and TDM connection status between them. networks. • Create and delete protocol • Send/receive signals and entities. messages to/from other networks and protocols • MGC provides the QoS information. 21 NGN Motivation User needs ― Higher-speed Internet NGN – to remember ― Low cost ― Transparency between wired and wireless “A proposal to evolve technology current voice-based ― Low-cost apps with user-friendly interfaces telecommunication networks to data-based Service Provider Goals networks, integrating voice, ― Easily manageable networks video and data, combining ― Planned networks wired and wireless ― Services independent of networks technologies, and giving ― Networks that can evolve users unlimited, ― Simple, open user access uninterrupted access with ― Create open, fast platforms support for mobility.” ― Guaranteed network QoS 22 NGN Class V Class V SofftSwitch basic call 23 NGN architecture and technologies NGN architecture and technologies Residential Gateway MGC MGC SIP-T / SIP-I / H.323 H.248 / MGCP H.248 / MGCP IP RTP / RTCP AGW AGW Analog Analog Phone Phone 25 NGN architecture and technologies Trunk Gateway MGC MGC SIP / H.323 / SIP-T / SIP-I ISUP ISUP IP SS7 SS7 H.248 / H.248 / MGCP MGCP PSTN PSTN E1 / T1 E1 / T1 RTP / RTCP MGW MGW 26 NGN architecture and technologies Signalling Gateway MGC MGC SIGTRAN SIGTRAN SIP-T/SIP-I / H.323 IP ISUP SG H.248 / H.248 / SG MGCP MGCP SS7 SS7 PSTN PSTN E1 / T1 E1 / T1 RTP / RTCP MGW MGW 27 ITU-T Q.3909 28 ITU-T Q.3909 Specification process for NGN conformance testing and interoperability testing Define the target Define specifications Define test Build up test bed and (service, application, (Protocol, Service, QoS) specifications to examine tests protocol, function) examine tests From ITU‐T 29 Points and Protocols to test Most requested SIP-I tests M3UA H.248 SIP/H323 ISUP ISDN-PRI SIP SIP Tester SCC#7 -ISUP Sgtran M3UA H.248 SIP-I SIP /H.323 ISDN-PRI SIP Test type: Test type: Test type: Test type: Test type: Test type: Test type: Conformance Conformance Conformance Conformance Conformance Conformance Performance Performance Functional tests (Traffic) (Traffic) Voice Quality Who request: Who request: Who request: Who request: Who request: Interoperability, SIP-ISUP Who request: Service Provider Service Provider Service Provider Service Provider ANATEL Who request: Service Provider ANATEL Service Provider Anatel Manufacturer Manufacturer (consulting (consulting services) services) Test Activities Protocols Sigtran H.323 or SIP IP NETWORK MEGACO MGCP Where to measure? Testing Methods What to measure? • Functional How to measure? • Interoperability • Conformance • Interworking • Performance 31 Test Activities Protocols International Documents Other documents standards ITU-T, ETSI, IETF, ... Tests Procedures Profiles Sigtran Sigtran Sigtran Sigtran H.323 or SIP H.323 or SIP H.323 or SIP H.323 or SIP H.248 H.248 H.248 H.248 SIP-I SIP-I SIP-I SIP-I What to measure? Where to measure? Tester 32 Tests - What and Where to measure? • What to Measure? ― Measurement of messages and parameters of NGN protocols in the IP network. ― Performance: signaling and voice traffic ― Evaluation of quality and intelligibility of voice • Where to Measure? ― Choice of adequate test system ― Localization of the points of measurement ― Definition of the testing methods 33 Conformance / Interoperability Tests • Advantage ― Ensure equipment network performance ― Ensure interoperability with equipment and systems from discrete vendors ― Quality
Recommended publications
  • Converged IP/MPLS Backbone Networks for 2G and 3G Voice Services Integration
    White Paper Converged IP/MPLS Backbone Networks for 2G and 3G Voice Services Integration With Release 4 of the third-generation (3G) architectural standards for mobile networks, mobile operators can now reduce costs, enhance revenues, and decrease time to market for new voice-over-IP (VoIP) and traditional voice services. When mobile operators deploy a new split architecture to support voice, and consolidate 2G and 3G voice over an IP/Multiprotocol Label Switching (IP/MPLS) backbone network, existing 2G and newer 3G voice traffic can greatly benefit from simplified operations, multigigabit speeds, transport efficiency, quality of service (QoS), traffic engineering, and all of the features required of carrier-class networks. This paper describes how IP/MPLS technologies support the emerging VoIP infrastructure in mobile networks to facilitate the convergence of 2G and 3G mobile voice services, including the evolution of the VoIP network from the split architecture in 3G Release 4 to the introduction of the IP-enabled media gateway, and how available technologies from Cisco Systems® can help operators effectively manage converged IP/MPLS mobile networks. Summary Most mobile operators are now firmly focused on consolidating transmission and management of a broad range of mobile services deployed on disparate networks to reduce their capital expenses (CapEx) and operating expenses (OpEx), increase business agility, and more easily deploy new 3G IP-based services. Cisco® has helped both wireless and wireline carriers accomplish such consolidation while greatly enhancing performance and network features by converging disparate networks into one common IP/MPLS core to support both existing and future services. The Cisco IP Next-Generation Network (IP NGN) architecture for mobile operators is a roadmap to realize the vision of next-generation mobile services – the delivery of data, voice, and video anywhere and anytime across virtually any access technology.
    [Show full text]
  • Technical Architecture Alternatives for Open Connectivity Roaming Hubbing Model
    GSM Association Non-confidential Official Document IR.80 - Technical Architecture Alternatives for Open Connectivity Roaming Hubbing Model Technical Architecture Alternatives for Open Connectivity Roaming Hubbing Model Version 2.0 26 February 2015 This is a Non-binding Permanent Reference Document of the GSMA Security Classification: Non-confidential Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association. Copyright Notice Copyright © 2015 GSM Association Disclaimer The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. V2.0 Page 1 of 95 GSM Association Non-confidential Official Document IR.80 - Technical Architecture Alternatives for
    [Show full text]
  • ETSI TS 125 412 V9.0.0 (2010-01) Technical Specification
    ETSI TS 125 412 V9.0.0 (2010-01) Technical Specification Universal Mobile Telecommunications System (UMTS); UTRAN Iu interface signalling transport (3GPP TS 25.412 version 9.0.0 Release 9) 3GPP TS 25.412 version 9.0.0 Release 9 1 ETSI TS 125 412 V9.0.0 (2010-01) Reference RTS/TSGR-0325412v900 Keywords UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • Dimensioning and Optimization of Next Generation Networks (NGN) (DO- NGN)
    Dimensioning and Optimization of Next Generation Networks (NGN) (DO- NGN) Dr. Mahmood Ashraf Khan Prof. Hiroyuki Ohsaki Osaka University, Japan Table of Contents Executive Summary 4 Project Background 5 Chapter 1: NGN Overview 1.0 Introduction 7 1.1 History of NGN 7 1.2 Standards bodies and industry support forums 8 1.3 Drivers of NGN 9 1.4 Characteristics of NGN 10 1.5 NGN VS PSTN 11 1.6 Pre-NGN Vs NGN 11 1.7 NGN Architecture 13 1.8 NGN Layers 15 1.8.1 Access/Media Layer 15 1.8.2 Core Transport Layer 15 1.8.3 Control Layer 15 1.8.4 Application / Service Layer 16 1.9 NGN Components 16 1.9.1 Media Gateway Controller/Softswitch 16 1.9.2 Application Server 17 1.9.3 Packet Network 17 1.9.4 Trunking Gateways 17 1.9.5 Access Networks/Gateways 17 1.10 NGN Protocols 18 1.10.1 H.323 20 1.10.2 SIGTRAN 20 1.10.3 H.248 21 1.10.4 SIP 21 1.11 NGN Services 23 1.12 NGN Service Creation 24 1.13 Challenges for NGN 24 1.14 Conclusion 25 Chapter 2: Access Technologies Overview 2.1 Introduction 26 2.2 Comparison Factors 27 2.3 Fixed line Technologies 28 2.3.1 Optical Networks 28 2.3.2 HFC 29 2.3.3 DSL 30 2.3.4 Power Line Communication (PLC) 31 2.3.5 Comparative analysis of Fixed-line 32 2.4 Wireless Technologies 33 2.4.1 Microwave Link 33 2.4.2 MMDS 35 2.4.3 LMDS 36 2 2.4.4 FSO 37 2.4.5 WiFi 38 2.4.6 WiMax 39 2.4.7 Satellite Technology 40 2.4.8 Third Generation (3G) Networks 40 2.4.9 Comparative Analysis of Wireless 42 2.5 Recommendations for NGN 43 Chapter 3: NGN Structure in NTT Japan 3.1 Introduction 45 3.2 Broadband in Japan 46 3.3 IPTV in Japan 48 3.4
    [Show full text]
  • MAPS™ Brochure from Brochures.Html Website, Or Refer to Webpage
    Message Automation & Protocol Simulation (MAPS™) Multi-Interface, Multi-Protocol Simulator - TDM, IP, 2G, 3G, 4G, 5G Overview GL's Message Automation & Protocol Simulation (MAPS™) is a protocol simulation/ emulation and conformance test tool that supports a variety of protocols such as MGCP, SIP, MEGACO, SS7, ISDN, GSM, CAS, MC- MLPPP, MAP, LTE, UMTS, SS7 SIGTRAN, ISDN SIGTRAN, SIP I, Diameter, MAP IP, 5G N1 N2, N4 and others. This protocol emulation tool covers solutions for both protocol simulation and analysis. The product also supports RTP, TDM, TRAU GSM, and Mobile traffic simulation over various network. The application includes various test plans and test cases to support the testing of real- time entities. Along with automation capability, the application gives users the unlimited ability to edit messages and control call scenarios (message sequences). "Call Scenarios" are generated through scripts. MAPS™ is designed to work on TDM interfaces as well as on the Ethernet interfaces. TDM signaling protocols such as SS7, ISDN, CAS, MC-MLPPP, MAP, IUP, CAP, INAP, GSM, and FXO/FXS operate over TDM networks, whereas SIP, MEGACO, and MGCP operate over IP networks. MAPS™ supports 3G & 4G mobile protocol simulation such as LTE (S1, eGTP) interfaces, LTE Diameter [S6a, S6d, S13, Cx/Dx, Gx, Rx, SLg, SLh], INAP IP (ANSI, ITU), CAP IP (ANSI, ITU), GSM A over IP, SKINNY, MAP IP, BICC IP, GPRS, and UMTS (IuCS, IuPS, IuH) over IP. MAPS™ architecture supports both Binary and Text Based Protocol Simulation. MAPS™ also supports Location Services (LCS) simulation for positioning mobile devices. Simulates SLg, SLh interfaces (GMLC, MME, HSS), Lg, Lh interfaces (GMLC, MSC, SGSN, HLR), SLs interface (MME, E-SMLC) and Lb interface (MME, SMLC) and interfaces implementing positioning functionality in a cellular network.
    [Show full text]
  • SIGTRAN User Guide 910-5595-001 Revision B December 2009
    Tekelec EAGLE® 5 Integrated Signaling System SIGTRAN User Guide 910-5595-001 Revision B December 2009 Copyright 2009 Tekelec. All Rights Reserved. Printed in USA. Legal Information can be accessed from the Main Menu of the optical disc or on the Tekelec Customer Support web site in the Legal Information folder of the Product Support tab. Table of Contents Chapter 1: Introduction.......................................................................8 About this manual.....................................................................................................................9 Audience.....................................................................................................................................9 Updates for this Release...........................................................................................................9 Manual organization...............................................................................................................10 Manual conventions................................................................................................................11 Documentation Admonishments..........................................................................................11 Customer Care Center............................................................................................................11 Emergency Response..............................................................................................................14 Related Publications...............................................................................................................14
    [Show full text]
  • Voip Core Technologies
    VoIP Core Technologies Aarti Iyengar Apricot 2004 Copyright 2004 Table Of Contents • What is Internet Telephony or Voice over IP? • VoIP Network Paradigms • Key VoIP Protocols – Call Control and Signaling protocols – Softswitch communication protocols – Bearer protocols – More .. • Summary Copyright 2004 Aarti Iyengar 2 What is VoIP? • Legacy Telephony – TDM/SS7 based infrastructure – Traditional Class 5/Class 4 switches • Voice over IP – IP-based packet infrastructure for PSTN voice transport – New elements that collectively perform traditional functions and more • And what is Internet Telephony? Copyright 2004 Aarti Iyengar 3 Traditional PSTN Network SS7 signaling SS7 network Call Control, Legacy Legacy Legacy Signaling, Class 4/5 Class 4/5 Class 4/5 Bearer/Media Switch Switch Switch and Features TDM network TDM Copyright 2004 bearer Aarti Iyengar 4 SS7 signaling SS7 network VoIP Network IP signaling + Signaling IP bearer Signaling Gateway Media Gateway Controller Call Application Control Server IP network Media Server Media Features (conferencing) Media Media Gateway Gateway Bearer/ TDM Media TDM network Copyright 2b00e4arer Aarti Iyengar 5 VoIP Network Paradigms • Centralized a.k.a Master/Slave model • Distributed a.k.a Peer Model Copyright 2004 Aarti Iyengar 6 VoIP Network Paradigms (contd.) • Centralized model – Dumb endpoints (media gateways, IADs, phones) and intelligent central entity (call agent or controller) – Controller instructs, the endpoints obey – More akin to legacy telephony model – Well suited to basic telephony features
    [Show full text]
  • SIGTRAN - an Introduction Tareque Hossain SS7 & SIGTRAN
    SIGTRAN - An Introduction Tareque Hossain SS7 & SIGTRAN ! " SS7 ! " Stands for Signaling System No. 7 ! " A set of telephony signaling protocols which are used to set up public switched telephone network calls throughout the world ! " SIGTRAN ! " Stands for Signaling Transport ! " An IETF task force that defined the specifications for a protocol family to provide reliable datagram service and user layer adaptation (UA) for Signaling System 7 (SS7) & ISDN protocols over IP Comparison of SS7 & IP Stack INAP HTTP TCAP TCP SCCP IP MTP3 DLL MTP2 Ethernet MTP1 MTP: Message Transfer Part SCCP: Signalling Connection Control Part TCAP: Transaction Capabilities Application Part INAP: Intelligent Network Application Part SIGTRAN Protocol Stack TCAP SCCP MTP3 ISDN M3UA M2UA M2PA SUA IUA SCTP IP M3UA: MTP3 User Adaptation Layer M2PA: MTP2 User Peer-to-Peer Adaptation Layer SUA: SCCP User Adaptation Layer IUA: ISDN User Adaptation Layer SCTP: Stream Control Transmission Protocol SCTP ! " A new transport protocol with time sensitive signaling in mind ! " Flexible enough for general use ! " SCTP can use multi-homed endpoints for redundancy as opposed to TCP strictly connecting 2 endpoints ! " TCP is byte streamed, application is responsible for structuring data. SCTP is message oriented, defining structured frames of data at transport layer ! " Provides multi-streaming capability: data is split into multiple streams, each independently sequenced SS7/ SIGTRAN Network Architecture PSTN Phone MGC MGC SSP IP Network STP STP SG SG IP Phone SCP SSP MG MG SoftSwitch PSTN Phone SG: Signaling Gateway MGC: Media Gateway Controller STP: Service Transfer Point MG: Media Gateway SCP: Service Control Point SSP: Service Switching Point Future of SIGTRAN ! " Traffic increased by Local Number Portability & SMS has pushed SS7 networks beyond capacity ! " SIGTRAN allows PSTN network to offload traffic to IP networks ! " PSTN infrastructure is many times larger and far reaching than IP networks ! " SIGTRAN will last as long as PSTN networks last ! " Questions? Comments? .
    [Show full text]
  • We Know Where You Are!
    2016 8th International Conference on Cyber Conflict Permission to make digital or hard copies of this publication for internal use within NATO and for personal or educational use when for non-profit or non-commercial Cyber Power purposes is granted providing that copies bear this notice and a full citation on the N.Pissanidis, H.Rõigas, M.Veenendaal (Eds.) first page. Any other reproduction or transmission requires prior written permission by NATO CCD COE. 2016 © NATO CCD COE Publications, Tallinn We Know Where You Are! Siddharth Prakash Rao Dr Silke Holtmanns Department of Computer Science Bell Labs, Nokia Aalto University, Finland Espoo, Finland [email protected] [email protected] Dr Ian Oliver Dr Tuomas Aura Bell Labs, Nokia Department of Computer Science Espoo, Finland Aalto University, Finland [email protected] [email protected] Abstract: Mobile network technologies require some degree of tracking of user location, specifically user equipment tracking, as part of their fundamental mechanism of working. Without this basic function, features such as hand-over between cells would not work. Since mobile devices are typically associated with a single person, this provides a potential mechanism for user location surveillance. Network operators are bound by strict privacy legislation. However, spying by certain agencies, hackers and even advertisers without the users’ or operators’ knowledge has become a serious issue. In this article, we introduce and explain all known recent attacks on mobile networks that compromised user privacy. We focus on attacks using the Signalling System 7 (SS7) protocol as the interconnection interface between operators mainly in GSM networks.
    [Show full text]
  • TR 129 903 V5.0.0 (2001-12) Technical Report
    ETSI TR 129 903 V5.0.0 (2001-12) Technical Report Universal Mobile Telecommunications System (UMTS); Feasibility study on SS7 signalling transportation in the core network with SCCP-User Adaptation (SUA) (3GPP TR 29.903 version 5.0.0 Release 5) 3 GPP TR 29.903 version 5.0.0 Release 5 1 ETSI TR 129 903 V5.0.0 (2001-12) Reference DTR/TSGN-0429903v500 Keywords UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • MTP/SCCP/SSCOP and SIGTRAN (Message of SS7 Over IP); Message Transfer Part 3 User Adaptation Layer (M3UA)
    ETSI TS 102 142 V1.1.1 (2003-05) Technical Specification Services and Protocols for Advanced Networks (SPAN); MTP/SCCP/SSCOP and SIGTRAN (Message of SS7 over IP); Message transfer part 3 User Adaptation layer (M3UA) [Endorsement of RFC 3332 (2002), modified] 2 ETSI TS 102 142 V1.1.1 (2003-05) Reference DTS/SPAN-130263 Keywords M3UA, MTP, SCCP, SIGTRAN, SS7, endorsement ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • IMS Roaming, Interconnection and Interworking Guidelines Version 29.0 16 November 2018
    GSM Association Non-confidential Official Document IR.65 - IMS Roaming, Interconnection and Interworking Guidelines IMS Roaming, Interconnection and Interworking Guidelines Version 29.0 16 November 2018 This is a Non-binding Permanent Reference Document of the GSMA Security Classification: Non-confidential Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association. Copyright Notice Copyright © 2019 GSM Association Disclaimer The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. V29.0 Page 1 of 66 GSM Association Non-confidential Official Document IR.65 - IMS Roaming, Interconnection and Interworking Guidelines Table of Contents Introduction
    [Show full text]