Selected Results on Selection Principles
Selected results on selection principles Ljubiˇsa D.R. Koˇcinac Abstract We review some selected recent results concerning selection princi- ples in topology and their relations with several topological construc- tions. 2000 Mathematics Subject Classification: 54-02, 54D20, 03E02, 05C55, 54A25, 54B20, 54C35, 91A44. Keywords: Selection principles, star selection principles, uniform selection principles, game theory, partition relations, relative properties, function spaces, hyperspaces. 1 Introduction The beginning of investigation of covering properties of topological spaces defined in terms of diagonalization and nowadays known as classical selection principles is going back to the papers [52], [35], [36], [63]. In this paper we shall briefly discuss these classical selection principles and their relations with other fields of mathematics, and after that we shall be concentrated on recent innovations in the field, preferably on results which are not included into two nice survey papers by M. Scheepers [73], [74]. In particular, in [74] some information regarding ”modern”, non-classical selection principles can arXiv:1201.1576v1 [math.GN] 7 Jan 2012 be found. No proofs are included in the paper. Two classical selection principles are defined in the following way. Let A and B be sets whose elements are families of subsets of an infinite set X. Then: Sfin(A, B) denotes the selection hypothesis: For each sequence (An : n ∈ N) of elements of A there is a sequence (Bn : n ∈ N) of finite sets such that for each n, Bn ⊂ An, and Sn∈N Bn is an element of B. 1 S1(A, B) denotes the selection principle: For each sequence (An : n ∈ N) of elements of A there is a sequence (bn : n ∈ N) such that for each n, bn ∈ An, and {bn : n ∈ N} is an element of B.
[Show full text]