agronomy Review Glucosinolate Biosynthesis and the Glucosinolate–Myrosinase System in Plant Defense Shweta Chhajed 1 , Islam Mostafa 1,2 , Yan He 1,3, Maged Abou-Hashem 2, Maher El-Domiaty 2 and Sixue Chen 1,4,5,* 1 Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA; shwetachhajed@ufl.edu (S.C.);
[email protected] (I.M.);
[email protected] (Y.H.) 2 Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
[email protected] (M.A.-H.);
[email protected] (M.E.-D.) 3 MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100083, China 4 Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA 5 Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA * Correspondence: schen@ufl.edu; Tel.: +1-(352)-273-8330; Fax: +1-(352)-273-8024 Received: 3 October 2020; Accepted: 12 November 2020; Published: 14 November 2020 Abstract: Insect pests represent a major global challenge to important agricultural crops. Insecticides are often applied to combat such pests, but their use has caused additional challenges such as environmental contamination and human health issues. Over millions of years, plants have evolved natural defense mechanisms to overcome insect pests and pathogens. One such mechanism is the production of natural repellents or specialized metabolites like glucosinolates. There are three types of glucosinolates produced in the order Brassicales: aliphatic, indole, and benzenic glucosinolates. Upon insect herbivory, a “mustard oil bomb” consisting of glucosinolates and their hydrolyzing enzymes (myrosinases) is triggered to release toxic degradation products that act as insect deterrents.