Missouri Ozark Forest Soils: Perspectives and Realities

Total Page:16

File Type:pdf, Size:1020Kb

Missouri Ozark Forest Soils: Perspectives and Realities /.~~ ~OO©W~~-------------------------------------------------- Missouri Ozark Forest Soils: Perspectives and Realities R. David Hammer1 Abstract.-Ozark forest soils are dynamic in space and time, and most formed in multiple parent materials. Erosion and mass move­ ment have been variable and extensive. Soil attributes including texture, cation exchange capacity, and mineralogy are related to geologic strata and to geomorphic conditions. Soil organic carbon content is influenced by surface shape, position in landscape, and aspect. Phosphorus is universally low, and most P is occluded. Many soil attributes are distributed in patterns related to topo­ graphic, geologic, and geomorphic features, but the patterns often are masked by site-specific variability such as tree throw, micro-relief, and slumps. Generalizations about Ozark soil landscapes must be given cautiously and are most meaningful in the context of attribute ranges rather than means. The Missouri Ozark Forest Ecosystem Project ideas being developed as a consequence of (MOFEP) has provided an opportunity to inves­ recent studies and projects. The objective is to tigate Ozark forest soils in a context and with a illustrate important soil-landscape principles, rigor not previously possible. Soils are as with particular emphasis on their applicabilities essential for most terrestrial life as water and in Ozark forests. Rigorous, systematic data solar energy. However, soils are complex bodies evaluation will not be employed because it is that are difficult to study. They do not exist as assumed that most readers are not well versed discrete individual entities, such as trees, deer, in soil science concepts and terminology. The or fish. Soils have many attributes, most of presentation will be framed within a systematic which vru.y temporarily and are difficult to evaluation of a previously published document measure. All soil attributes change at different whose primru.y tenents seem to persist among spatial rates into other attributes. Soils are not non-soil scientists. The purpose in comparing as aesthetically appealing to most natural new ideas with old is not to discredit or embar­ resources students as the biota, particularly rass others. Rather, it is to force readers to trees, fish, and wildlife. Consequently, soils are confront old belief systems with new ones and not so well understood as other ecosystem to make conscious, informed choices. Old components and are infrequently included as paradigms are replaced slowly and reluctantly, components of ecosystem studies. When they even when individuals are confronted with hard are included, soils often are trivialized. Miscon­ evidence (Peters 1991, Rowe 1984, Simonson ceptions and untested assumptions often guide 1968). sampling schemes, thus ensuring that the sampling will not test the hypothesis. These "Landscape" is a currently popular term in circumstances have created an unfortunate, biological sciences, but it has not been well often costly situation. One of the most funda­ defined and often is presented in the context of mental ecosystem components is poorly under­ "scale." In this paper, a landscape is defmed as stood and frequently mismanaged. a population of geomorphically related land­ forms. Geomorphology is the study of pro­ This paper investigates prevailing concepts of cesses that shape the Earth's surface features. Ozark forest soils and compares them with Geomorphology and pedology (the study of soil­ forming processes) are synergistic because the temporal and spatial distributions of water and 1 Associate Professor of Pedology, School of energy control both (Daniels and Hammer Natural Resources. University of Missouri­ 1992). A landform is an individual Earth Columbia, Columbia, MO 65211. 106 surface feature that can be described in the have been eroded since the original land sur­ context of: (1) its location with respect to other veys, and that establishing "original" vegetation landforms, (2) its surface shape (concave or might be impossible because the eroded soils convex), (3) soil attributes within the landform, differ in various and important ways from the and (4) stratigraphic attributes (Hammer soils which supported the "historicfl vegetation. 1997a). Stratigraphy is the layering of geologic The botanist countered that the soils could be materials. Thus, landforms are three-dimen­ restored to their previous condition by re­ sional entities that vary spatially and tempo­ establishing the native vegetation. rally. A landscape is welded by the fluxes of materials and energy through its composing Most of pre-settlement Missouri was mantled by parts (landforms), and the parts segregate a veneer ofWisconsin-aged, silt-size loess. The materials and energy in space and time. loess originated as water-born sediments deposited on the Missouri River floodplain, from PREVAILING CONCEPTS OF OZARK which it was subsequently removed and distrib­ FOREST SOILS uted across the landscape by wind. The loess is underlain by older soil materials of various Sources of Ideas Espousing System origins and ages. Erosion of the loess mantle is Homogeneity irreversible and adds to the complexity of the soil landscape (Ruhe 1956). Sources of Ideas Several lessons emerge. Rowe's (1984) observa­ Primary sources of information about Ozark tion that skeptics are not easily converted in a forest soils are published soil surveys (Gilbert competitive world is reinforced. Second, the 1971, Gott 1975) and an overview of Ozark soils idea that vegetation can "restore" removed and vegetation (Krusekopf 1963). The rugged­ material of specific and unusual geologic origin ness of the Ozark landscape limited access to illustrates fundamental ignorance of basic sites, the stoney, clayey soils were difficult to Earth science. investigate, and the lack of perceived need for more precise information all combined, until Apparently few botanists, foresters, ecologists recently, to limit detailed, systematic investiga­ and others who work with natural systems tions of Ozark soils. Discussions with foresters, include soils beyond the introductory course as ecologists, botanists, and wildlife biologists part of their professional training. Pervasive during the early phases of MOFEP and continu­ evidence illustrates the synergisms of soils with ing to the present, suggest that early concepts the biota and of the complexities of the interac­ about Ozark soils remain widely held and tions of soils, waters and biota. Why do simple persistent. For example, the review of Ozark system models continue to prevail? These region soil attributes in a recently completed situations are not unique to Missouri (Hammer M.S. thesis investigating oak decline in the 1997a), are widespread, and limit the success of Ozarks (Jenkins 1992) cited only Krusekopf all natural sciences (Peters 1991). (1963). Krusekopfs Perceptions Illustrating the Problem Krusekopfs (1963) research bulletin remains a Scientists representing several disciplines met frequently cited source of information about recently to discuss a proposed statewide eco­ Ozark forest soils. Unfortunately, many of logical classification system (ECS). A botanist Krusekopfs key ideas about Ozark soils are suggested that "historicfl vegetation, which he untrue: defined as the plant communities indicated by the early 19th century land survey, should be a ". except for a few small spots on the key ECS component. He said this knowledge Salem and Lebanon plateaus, the entire would be a target towards which to manage Ozark region was originally forestedfl (p. 5). native vegetation in the future. A forester argued that the survey records were a very "In their main physical features, both the coarse, simple, single "point-in-time" represen­ forests and the soils of the Ozark region are tation of a botanical system whose temporal characterized by their sameness." (p. 6). and spatial variability are widely acknowledged. A soil scientist said that most Missouri soils 107 M©W~~-------------------------------------------------------- "Soils are consistently light in color-either surveys published prior to the 1990's and gray or brown, shallow in thickness of containing areas of Ozark forest soils were Dent surface soil, of medium (silt loam) texture, County (Gilbert 1971) and the Mark Twain and of relatively low fertility. Varying National Forest Area (Gott 1975). The legends amounts of chert stone characterize nearly of both surveys have relatively few soil series. all the soils except in the Ozark Border The Dent County survey contains 14 series, 4 ·of region." (p. 7). which are alluvial (table 1). Five of the 12 series mapped in the Mark Twain National Forest are "The lower subsoil tends to have a brown or alluvial (table 2). Thus, the complex upland reddish-brown color and is consistently landscape is portrayed as a small group of acid-a pH value of less than 5. The per­ relatively uniform soils. Is this phenomenon a cent of base saturation is low." (p. 7). consequence of Krusekopfs perspective of "sameness" of soils in the Ozark region? "There are no sharp contrasts in either forests or soils, and all changes tend to be Conversely, site-specific soils investigations gradational." (p. 7). conducted by Meinert (Meinert et al., 1977) on the MOFEP sites, an area much smaller then "Variations in the forest cannot be corre­ either Dent County or the Mark Twain National lated with depth or thickness of the surface Forest, resulted in 4 7 soil mapping units. soil because the latter is remarkably uni­ Meinert's soil units
Recommended publications
  • Visualizing Texas Parent Materials Julieta Collazo, Jonathan Gross, Cristine L
    Visualizing Texas Parent Materials Julieta Collazo, Jonathan Gross, Cristine L. S. Morgan Agrilife Research, Texas A&M University, College Station, TX Figure 2: INTRODUCTION Water MAJOR LAND RESOURCE AREAS A soil parent material map for Texas was created Wind Blown PARENT MATERIALS OF TEXAS SOIL to further the ISEE2 goal of better visualization Aeolian Sand for teaching soil science. Texas has a diverse Loess depositional history which includes residuum, as Coastal Sediments well as water and wind transported materials Coarse Coastal Sediments (Fig. 1). The most difficultly was found in Fine Coastal Sediments differentiating alluvial sediments in the Coastal Alluvium Plains. While these materials were classified Young Alluvium similarly by the United States Department of Old Alluvium Agriculture, differentiation of the two processes Deltaic Alluvium is important for teaching purposes. Another Lacustrine Alluvium 42 Desertic Basin problem that was encountered in the decision 77 High Plains 85 Grand Prairie Valley Fill Alluvium 78 Central Rolling Red Plains making process was delineating general 86 Blackland Prairie Alluvial Fans 80 Prairies 87 Claypan 81 Edward Plateau categories that are instructive for land use Undifferentiated Residuum 133 Coastal Plain 82 Central Basin 150 Gulf Coast Prairie decisions. Residuum Clastic 83 Rio Grand Plains and Valley 151 Gulf Coast Marshes 84 Cross Timbers Residuum Igneous or Metamorphic 152 Gulf Coast Flatwoods The overall goal of this project was to develop a Residuum Tuff decision tree to convert Official Series Colluvium Figure 3: 1st ORDER CLASSIFICATION Descriptions (OSD) to parent materials, to aid Organic Material teaching, as well as be congruent with Anthropogenic Windblown material, neighboring states and the United States.
    [Show full text]
  • Surficial Geology of Marine Quadrangle
    Introduction Clearing of forests during early European colonization and possibly earlier during 2004b). An electrical earth resistivity study of Neudecker’s Mountain, for example, Stream Valleys References Amerindian civilization centered at the Cahokia Site in western Madison County, led could not resolve specific sand bodies within the mound, although sand found in nearby The Silver Creek valley is filled with fine-grained postglacial stream sediment (Cahokia This map depicts geologic materials found within 5 feet of the ground surface in the to extensive upland erosion and sediment accumulation in creek valleys. Relatively boreholes may be correlatable to the mound. (cross section B-B’; ISGS Groundwater Formation) that overlies coarse-grained glacial stream sediment (Pearl Formation, Berg, R.C., J.P. Kempton, and K. Cartwright, 1984, Potential for Contamination of Marine 7.5-minute Quadrangle, Madison County, southwestern Illinois (fig. 1). The cross recent stream incision into these sediments and older deposits is attributed to large water Section, unpublished data). Other similar but smaller mounds also occur across the undifferentiated). The occurrence of the Pearl Formation (undifferentiated) in Silver Shallow Aquifers in Illinois: Illinois State Geological Survey Circular 532, 30 p. discharges with initially low sediment loads brought about by recent climate changes, quadrangle, but they have not been distinguished here because there is no supporting Creek is evidence that the valley was as a meltwater outlet during the Illinois Episode. sections show the extent of surficial and buried units down to bedrock.This product Fox, J., E.D. McKay, J. Hines, and M.M. Killey, unpublished, Work maps of geology for URFICIAL EOLOGY OF ARINE UADRANGLE land use changes, or both.
    [Show full text]
  • 1 Understanding the Regolith in Tropical and Sub
    UNDERSTANDING THE REGOLITH IN TROPICAL AND SUB-TROPICAL TERRAINS: THE KEY TO EXPLORATION UNDER COVER. C.R.M. Butt Cooperative Research Centre for Landscape Environments and Mineral Exploration CSIRO Exploration and Mining PO Box 1130 Bentley Western Australia 6151 Regolith distribution and characteristics Large areas of the world, especially the largely tropical to sub-tropical zone between latitudes 40º north and south, are characterized by a thick regolith cover. Much of this regolith is residual and consists of intensely weathered bedrock, but there may also be an overlying component of transported material, itself weathered to varying degrees. The regolith is most extensive in continental regions of low to moderate relief, such as the Precambrian shields, and adjacent and overlying Phanerozoic sedimentary basins, of South America, Africa, India, south east Asia and Australia. Remnants are present in some areas of stronger relief, perhaps most significantly in parts of the circum-Pacific belt, where ophiolitic rocks have weathered to form high grade nickel laterites. Commonly, such regolith is absent from tectonically active and mountainous areas. Thick residual regolith is also generally absent from very arid terrains in the tropics and sub-tropics, such as the Sahara and Arabian deserts, although transported materials, including fluvial deposits and dune sands, are widespread. Nevertheless, isolated occurrences of strongly weathered regolith are recorded from these desert regions, either exposed or buried beneath the younger sediments, indicating that it was once more widespread. There is also increasing recognition of the presence of similar regolith, mainly as thick saprolite, in North America and Europe. Much of the residual regolith has broadly lateritic characteristics, with a thick, clay-rich saprolite, generally with an overlying iron and /or aluminium-enriched horizon, although the latter may be only patchily developed or have been removed by later erosion.
    [Show full text]
  • Chapter 7 – Geomechanics
    Chapter 7 GEOMECHANICS GEOTECHNICAL DESIGN MANUAL January 2019 Geotechnical Design Manual GEOMECHANICS Table of Contents Section Page 7.1 Introduction ....................................................................................................... 7-1 7.2 Geotechnical Design Approach......................................................................... 7-1 7.3 Geotechnical Engineering Quality Control ........................................................ 7-2 7.4 Development Of Subsurface Profiles ................................................................ 7-2 7.5 Site Variability ................................................................................................... 7-2 7.6 Preliminary Geotechnical Subsurface Exploration............................................. 7-3 7.7 Final Geotechnical Subsurface Exploration ...................................................... 7-4 7.8 Field Data Corrections and Normalization ......................................................... 7-4 7.8.1 SPT Corrections .................................................................................... 7-4 7.8.2 CPTu Corrections .................................................................................. 7-7 7.8.3 Correlations for Relative Density From SPT and CPTu ....................... 7-10 7.8.4 Dilatometer Correlation Parameters .................................................... 7-11 7.9 Soil Loading Conditions And Soil Shear Strength Selection ............................ 7-12 7.9.1 Soil Loading .......................................................................................
    [Show full text]
  • Subsurface Exploration and Geotechnical Engineering Evalution
    SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING EVALUTION DeKalb County Fire Station No. 7 Decatur, DeKalb County, Georgia November 23, 2016 Submitted to: DeKalb County Facilities Management Department DeKalb County, Georgia Submitted by: Willmer Engineering Inc. Project No. 71.4175 November 23, 2016 VIA EMAIL Dulce M. Guzman Senior Project Manager Architectural & Engineering Services DeKalb County Facilities Management Department Clark W. Harrison Building 330 W. Ponce de Leon Avenue, 4 th Floor Decatur, Georgia 30030 SUBJECT: Subsurface Exploration and Geotechnical Engineering Evaluation Fire Station No. 7 Decatur, DeKalb County, Georgia Willmer Project No. 71.4175 Dear Ms. Guzman: Willmer Engineering Inc. (Willmer) is pleased to provide this report of subsurface exploration and geotechnical engineering evaluation for the proposed Fire Station No. 7 project located east of the intersection of Columbia Drive and Peachcrest Road in Decatur, DeKalb County, Georgia. This work was performed for DeKalb County under our Master Services Agreement in general accordance with our proposal dated October 6, 2016. The results of our evaluation and our recommendations are summarized in this report. This engineering report is divided into five sections. Section 1 contains the project background information and a summary of the objectives and scope of our work. Summaries of the field exploration and laboratory testing programs are provided in Sections 2 and 3, respectively. Section 4 presents regional geologic conditions and subsurface conditions at the site, and the results of our geotechnical engineering evaluations and our recommendations are presented in Section 5. We greatly appreciate the opportunity to be of service to you on this project. Please contact us if you have any questions concerning this report or require further assistance.
    [Show full text]
  • A Brief Guide to Parent Material and Landforms Developed for the New Mexico Envirothon Introduction
    A Brief Guide to Parent Material and Landforms Developed for the New Mexico Envirothon Logan Peterson, NRCS Introduction When soil scientists make maps of soil, we search above the ground for clues before we dig holes. As explained in “From the Surface Down,” a soil gets its unique properties from the interaction of five major factors: climate, living organisms, landscape position, parent material, and time. Once we learn how to read a landscape, we can identify differences in each of these factors and, thus, predict differences in soil properties. A steep north-facing slope will be cooler and support different vegetation than a steep south- facing slope of the same mountain. Because these two slopes will differ in their landscape position, microclimate, and living organisms, we can expect that they will have different soil properties. As another example, let’s compare two landforms: a mountain slope and a floodplain along a stream. The mountain slope is made up of bedrock which is several million years old, while the floodplain is made up of sediments which were recently deposited by water. The mountain slope is relatively steep, and water readily runs off of it, while the floodplain is flat and often flooded. Lastly, the hillslope hasn’t changed much in shape for several thousand years, while the floodplain was deposited during a heavy rainstorm just thirty years ago. We can see that the soils on these two landforms differ in their parent material, landscape position, and in the amount of time they have had to form. Because of its landscape position, the floodplain soil receives much more water, so it will grow a very different plant community (organisms) than the mountain slope soil.
    [Show full text]
  • Unexpected but Foreseeable Mat Settlements on Piedmont Residuum
    Unexpected but foreseeable mat settlements on Piedmont residuum Paul W. Mayne, Professor, Georgia Institute of Technology, USA ABSTRACT: A large mat foundation was constructed to support a 13-story dormitory on Piedmont residual silty soils in Atlanta, Georgia. Prior to construction, the geotechnical consultant of record estimated maximum expected settlements of the mat on the order of 1.8 inches (46 mm), while the building proceeded to deflect as much as 10 inches (250 mm) at the center and 5 inches (127 mm) at the corners near the end of construction. Details on the case history are reviewed by an outside observer and placed within the context of geotechnical practice. In addition to routine soil borings, the use of enhanced in-situ testing (in this case, flat dilatometer tests) in concert with elastic continuum solutions would have provided calculated values in line with the observed performance. KEYWORDS: foundations, displacements, elasticity, in-situ tests, mats, rafts, settlements. INTRODUCTION In preparation for the 1996 Summer Olympics, the construction of many office and residential buildings were underway in downtown Atlanta in order to accommodate a large number of visiting athletes, participants, and spectators. A site located south of the Olympic Village was to receive four mid-rise buildings that were eventually turned over to Georgia State University (GSU) for use as dormitories. The site was previously occupied by small one- and two-story residential and commercial buildings that were demolished prior to the new construction. Based on the results of soil test borings with standard penetration tests (SPT), the consultant recommended different systems for each of these buildings.
    [Show full text]
  • 222Ke21 LTA: CLIMATE GEOLOGY GEOMORPHOLOGY SOIL
    LTA:222Ke21 NAME: ACRES: SQUARE MILES: Charlesburg Till Plain 70002.367 109.379 DESCRIPTION: The characteristic landform pattern is undulating till plain with drumlins and scattered bedrock knolls. Soils are predominantly well drained loam over calcareous loam till or dolomite. Common habitat types include AFrDeO, AFrDe, AFrDe(Vb), and wetland CLIMATE GEOLOGY CODE PERCENT BEDROCK TYPE DESCRIPTION 86 77 Carbonates 88 10 92 13 AVERAGE DEPTH BEDROCK DEPTH TO BEDROCK DESCRIPTION 5005 Bedrock is between 50 feet and 5 feet of the land surface GEOMORPHOLOGY GEOMORPHOLOGY PROCESS TOPOGRAPHY Till Deposition Undulating SURFACE Drumlin Morain SOIL INFORMATION SOIL ASSOCIATIONS SOIL DESCRIPTION Hochheim-Theresa-Lamartine-Channahan-Whalan-Houghton Well drained, moderately well drained, and somewhat poorly drained loamy and silty soils with a silt loam surface over calcareous loam till or over clay residuum over dolomite bedrock, along with very poorly drained nonacid organic soils. SURFACE TEXTURES GENERAL TEXTURES FAMILY TEXTURES DRAINAGE CLASSES SIL-MK Loamy-Silty-Mucky FIL-FISI-SP WD-MWD-SPD-VPD PARENT MATERIAL Till-Residuum-Organic KOTAR'S HABITAT *Listed in order of probability occurrence, HABITAT 1 HABITAT 2 HABITAT 3 HABITAT 4 HABITAT 5 HABITAT 6 with each having an occurrence of 10% or greater WISCLAND LAND COVER COVER TYPE CLASS ACRES PERCENT Agricultural Land 55153 79 Bare Land 1337 2 Cloud Cover 105 0 Forested Wetland 2542 4 Grassland 1121 2 High Intensity Urban Area 398 1 Low Intensity Urban Area 336 0 Nonforested Wetland 5557 8 Open Water
    [Show full text]
  • Geochemical Exploration in Regolith Dominated Terrains
    Geochemical Exploration in Regolith Dominated Terrains Ravi Anand, Rob Thorne, Walid Salama, Vasek Metelka MINERAL RESOURCES Areas of regolith cover: Issues Large areas of South America, Africa and Australia Limited success because of lack of are covered with regolith. understanding of regolith-landform South America and Africa have suffered under formation and metal dispersion exploration relative to indicative mineral potential. processes in various climatic regimes Regolith may form important sampling media Palaeoclimatic history of Australia, Africa and South America Australia has drifted northwards This resulted in change in climatic conditions from wetter, warmer (tropical) to arid conditions. Tardy and Roquin 1998 Two types of cover: In situ and transported Transported cover In situ regolith . Anand How to describe regolith materials: Developing consistent and uniform terminology of weathering profile Anand and Paine 2002 Anand and Paine 2002 Variable regolith is exposed at landsurface In-situ regolith Transported regolith 2 1 Western Australia landscape 1 1 2 (colluvium, alluvium, Aeolian) Anand and Paine 2002 REGOLITH MAPPING DEM & drainage Landsat TM Aerial photo regolith interp Radiometrics RGB = K, Th, U Total magnetic intensity Cornelius and Wildman 2000 Anand, 2016 Data science in regolith mapping Input bands O.A. (%) K DEM+RAD 89.67 0.86 DEM+RAD+L7 92.87 0.90 DEM + RAD + Landsat 7 ETM+ Fe-rich duricrusts Lower Glacis (partially indurated) DEM + RAD rock outcrop/suboutcrop alluvial sediments Metelka 2014 Factual regolith-landform
    [Show full text]
  • Clark, Compartment 5, Tract 6
    Appendix Soils BcrAW—Beanblossom silt loam, 1 to 3 percent slopes, occasionally flooded, very brief duration Setting Landform: Flood plains Landform position: Natural levees and alluvial fans Soil Properties and Qualities Parent material: Channery, loamy alluvium Depth class: Deep (40 to 60 inches) Drainage class: Moderately well drained Water table depth: 3.5 to 5.0 feet (apparent) Available water capacity to a depth of 60 inches: About 6.3 inches Composition Beanblossom and similar soils: 90 percent Dissimilar inclusions: 10 percent * A deep, somewhat poorly drained soil in drainageways * Beanblossom soils, frequently flooded, on flood plains and alluvial fans * A moderately deep soil over hard black shale BfbC2—Blocher, soft bedrock substratum-Weddel silt loams, 6 to 12 percent slopes, eroded Setting Landform: Dissected till plains Landform position: Shoulders and backslopes Soil Properties and Qualities Blocher, soft bedrock Parent material: Thin loess, loamy materials and a paleosol in till over shale Depth class: Very deep (more than 60 inches) Drainage class: Moderately well drained Water table depth: 2 to 3 feet (perched) Available water capacity to a depth of 60 inches: About 9.0 inches Weddel Parent material: Loess and a paleosol in till and residuum from shale Depth class: Very deep (more than 60 inches) Drainage class: Moderately well drained Water table depth: 1.5 to 3.0 feet (perched) Available water capacity to a depth of 60 inches: About 8.2 inches Composition Blocher, soft bedrock and similar soils: 46 percent Weddel
    [Show full text]
  • Soil Survey of Guadalupe Mountains National Park, Texas
    United States In cooperation Department of with the Soil Survey of Agriculture United States Department of Guadalupe Mountains Natural Interior Resources National Park Conservation Service, National Park, Texas Service and National Park Texas Service AgriLife Research How To Use This Soil Survey General Soil Map The general soil map, which is a color map, shows the survey area divided into groups of associated soils called general soil map units. This map is useful in planning the use and management of large areas. To find information about your area of interest, locate that area on the map, identify the name of the map unit in the area on the color-coded map legend, then refer to the section General Soil Map Units for a general description of the soils in your area. Detailed Soil Maps The detailed soil maps can be useful in planning the use and management of small areas. To find information about your area of interest, locate that area on the Index to Map Sheets. Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Go to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described. The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs. iii This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including Texas AgriLife Research, and local agencies.
    [Show full text]
  • Eolian Sand and Loess Deposits Indicate West-Northwest Paleowinds During the Late Pleistocene in Western Wisconsin, USA
    Quaternary Research (2018), 89, 769–785. SPECIAL ISSUE Copyright © University of Washington. Published by Cambridge University Press, 2017. doi:10.1017/qua.2017.88 INQUA LoessFest 2016 Eolian sand and loess deposits indicate west-northwest paleowinds during the Late Pleistocene in western Wisconsin, USA Randall J. Schaetzla*, Phillip H. Larsonb, Douglas J. Faulknerc, Garry L. Runningc, Harry M. Jolc, Tammy M. Rittenourd aDepartment of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, Michigan 48823, USA bDepartment of Geography, AGES Research Laboratory, Minnesota State University, Mankato, Minnesota 56001, USA cDepartment of Geography and Anthropology, University of Wisconsin–Eau Claire, Eau Claire, Wisconsin 54701, USA dDepartment of Geology, Luminescence Laboratory, Utah State University, Logan, Utah 84322, USA (RECEIVED April 24, 2017; ACCEPTED August 27, 2017) Abstract Our study adds to the Quaternary history of eolian systems and deposits in western Wisconsin, USA, primarily within the lower Chippewa River valley. Thickness and textural patterns of loess deposits in the region indicate transport by west-northwesterly and westerly winds. Loess is thickest and coarsest on the southeastern flanks of large bedrock ridges and uplands, similar in some ways to shadow dunes. In many areas, sand was transported up and onto the western flanks of bedrock ridges as sand ramps, presumably as loess was deposited in their lee. Long, linear dunes, common on the sandy lowlands of the Chippewa valley, also trend to the east-southeast. Small depressional blowouts are widespread here as well and often lie immediately upwind of small parabolic dunes. Finally, in areas where sediment was being exposed by erosion along cutbanks of the Chippewa River, sand appears to have been transported up and onto the terrace treads, forming cliff-top dunes.
    [Show full text]