Bluehead-Shiner-Cons

Total Page:16

File Type:pdf, Size:1020Kb

Bluehead-Shiner-Cons 17 American Currents Vol. 30, No. 1 Conservation Assessment for Bluehead Shiner (Pteronotropis hubbsi) Anthony W. Ranvestel and Brooks M. Burr Department of Zoology and Center for Systematic Biology, Southern Illinois University, Carbondale, IL 62901-6501, [email protected] he goal of this report is to provide information for throughout the Gulf and Atlantic Coastal Plain of the southern the U.S. Forest Service regarding the life history, United States (Page and Burr, 1991). Males develop a flag- status, and distribution of Pteronotropis hubbsi, the like dorsal fin and spectacular coloration during the breeding T bluehead shiner, as well as addressing current season, making them highly coveted by many aquarium fish research, conservation, and management practices on this hobbyists. These fishes are typically found in swamps and species. Only a handful of studies have been published regard- small streams, but also occur in backwaters of rivers and lakes ing the biology of P. hubbsi (e.g., Burr and Warren, 1986; (Bailey and Robison, 1978; Page and Burr, 1991). Pteronotropis Taylor and Norris, 1992; Fletcher and Burr, 1992), and a few hubbsi was originally discovered by G. E. Gunning in southern more discuss taxonomy and distribution, but this information Illinois in 1954. It was not described until over 20 years later, has not yet been compiled into one comprehensive document. after B. M. Burr and L. M. Page found 12 adults and 187 Indeed, there remains a paucity of information on the biology young-of-the-year in Wolf Lake, Illinois. The adult specimens and distribution of P. hubbsi, and its taxonomic status is in a found by Burr and Page were designated as paratypes in the constant state of flux. The present document compiles much original description of Notropis hubbsi by Bailey and Robison of the information on P. hubbsi, and also addresses potential (1978). Populations of P. hubbsi exist in Arkansas, Louisiana, threats to existing populations, documents current land use Texas, and Oklahoma, and historically in southern Illinois, where this species occurs, and suggests future research priorities although the Illinois population is believed to be extirpated. aimed at management and conservation of this species. Taxonomy Background Pteronotropis hubbsi belongs to the order Cypriniformes, The genus Pteronotropis, commonly referred to as the family Cyprinidae. Some discord has surrounded the generic “sailfin shiners,” is composed of five species* distributed status with various scientists proposing different taxonomic assignments. Bailey and Robison (1978) originally assigned the bluehead shiner to the genus Notropis, and concluded it This Conservation Assessment (dated 15 June 2002) was prepared to compile was closely related to the bluenose shiner, P. welaka (previously the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides informa- in Notropis), based on four synapomorphic characters. They tion to serve as a Conservation Assessment for the Eastern Region of the USDA Forest Service. It does not represent a management decision by the Forest Service. Though the best scientific information available was used and subject experts * Ed. note: Suttkus and Mettee (2001) described a new species of were consulted in preparation of this document, it is expected that new infor- Pteronotropis and elevated one from synonymy, bringing the number of mation will arise. In the spirit of continuous learning and adaptive management, valid species in the genus to seven. Reference: Suttkus, R. D., and M. if you have information that will assist in conserving the subject taxon, please F. Mettee. 2001. Analysis of four species of Notropis included in the contact the Eastern Region of the Forest Service, Threatened and Endangered subgenus Pteronotropis Fowler, with comments on relationships, origin, Species Program, 310 Wisconsin Ave., Suite 580, Milwaukee, WS 53203. and dispersion. Geological Survey of Alabama Bulletin 170: 1-50. Winter (Feb.) 2004 American Currents 18 Fig. 1. Initial male bluehead shiner (Pteronotropis hubbsi). Photograph © William Roston. also suggested that these species were monophyletic and may Pteronotropis hubbsi is described as a distinctive slab-sided be allied to members in the genus Cyprinella. Several studies species having usually 9 or 10 principle dorsal and anal rays have since revisited the taxonomic relationships of these two and a broad dark lateral axial stripe extending from chin to species using morphological, biochemical, and molecular just beyond caudal fin base where it ends abruptly. Mouth is methods. Dimmick (1987), using allozymic comparisons, terminal, sharply upturned; pharyngeal teeth in a single row, refuted the claims of Bailey and Robison (1978), suggesting 4-4; snout projecting slightly beyond upper lip. Dorsal fin that P. welaka and P. hubbsi did not constitute a monophyletic origin behind pelvic insertion, its distance from snout tip and group, and that P. hubbsi was not closely related to members caudal base subequal. Dorsal fin of males rounded and elon- of the genus Cyprinella. Mayden (1989) first elevated gated, with middle rays longest. Eye moderate in size, with a Pteronotropis to generic level, including P. welaka, but leaving diameter about equal to length of lower jaw. Lateral line P. hubbsi in Notropis. Amemiya and Gold (1990), in docu- incomplete; 2-9 pored scales; these scales not elevated; 34-38 menting chromosomal nucleolus organizer region (NOR) scales in lateral series. Nuptial tubercles well developed but phenotypes in several species of Notropis and Pteronotropis, small in breeding males; irregularly distributed over the head, united P. hubbsi and P. welaka, as well as P. signipinnis, into a concentrated along mandible, anterodorsal rim of orbit, lower monophyletic group in the genus Pteronotropis. Simons et al. edge of lachrymal; uniformly distributed over dorsal surface. (2000) assessed the monophyly of the five species of Tubercles also on body scales and fins. Pteronotropis using DNA sequences of the mitochondrial Color Broad, dark lateral stripe crossing the chin with- cytochrome b gene and found that while the genus was not out involving upper lip or snout. Stripe terminates at caudal monophyletic, the monophyly of P. hubbsi and P. welaka was base where it forms a deep, darker basicaudal spot that extends strongly supported. a short distance onto the caudal rays. Body dusky above, lower surface of head and belly light, chin distinctly black. Description Dorsolateral surface reddish orange extending from ahead of nostril back to caudal base. Rays of the basal half to three- The following description is taken from Bailey and fifths of caudal fin and basal half of dorsal fin also reddish Robison (1978). (See also Robison and Buchanan, 1988.) orange. Males with olive yellow on membranes but not rays 19 American Currents Vol. 30, No. 1 of middle of anal fin. Dorsal fin of males dark, larger males electrofishing, minnow traps) are often ineffective in the with iridescent greenish blue on dorsal membranes from just densely vegetated habitat preferred by this species (Burr and proximal of the middle almost to its distal margin. Pelvic and Warren, 1986) which may result in unrealistic population anal fins washed with blue green. The top of the head from estimates. Fletcher and Burr (1992) found it was the dominant occiput to between the anterior edges of nostrils is a deep azure cyprinid at Chemin-a-haut Bayou in northeast Louisiana, blue with green iridescence, hence the species’ common name. collecting approximately 740 individuals over four sample dates during 1986-1988. Douglas (1992) reported drastic Habitat population fluctuations in collections from the Ouachita River and nearby backwaters in northeast Louisiana. Collections from Pteronotropis hubbsi typically inhabits quiet, backwater areas these sites during 1967-83 produced only three specimens, of sluggish streams and oxbow lakes (Bailey and Robison, 1978). but 938 individuals were collected during 1984-1991. From The water is usually tea colored and heavily vegetated with 1992-1995, no specimens were collected, leading researchers plants such as Proserpinaca palustris, Polygonum hydropiperoides, to believe that increased P. hubbsi abundance during 1984- Nelumbo pentapetala, or Ceratophyllum demersum (hornwort), 1991 was due to a biological response to hydrologic factors at with scattered Nuphar luteum (lillies) and Taxodium distichum this site (Douglas and Jordan, 2002). Burr et al. collected 12 (bald cypress) (Bailey and Robison, 1978; Goldstein et al., adults and 187 young-of-the-year during 1974 in Wolf Lake, 2000). Substrates are generally mud, detritus, or mixed mud IL (Burr and Warren, 1986). However, after an intensive and sand (Bailey and Robison, 1978; Burr and Warren, 1986). search for P. hubbsi in Wolf Lake during 1981-1985, Burr and Individuals school in slackwater areas away from substantial Warren (1986) were unable to find any specimens. Robison current and remain poised in mid-water just outside vegeta- and Buchanan (1988) suggest that P. hubbsi are migratory in tion, where they dart for protection if disturbed (Bailey and Ouachita drainage systems. Individuals are never found in Robison, 1978). upstream areas, except during the late spring when they are believed to migrate upstream to spawn. However, Taylor and Distribution and Abundance Norris (1992) found no such pattern in the Oklahoma population used in
Recommended publications
  • Environmental Sensitivity Index Guidelines Version 2.0
    NOAA Technical Memorandum NOS ORCA 115 Environmental Sensitivity Index Guidelines Version 2.0 October 1997 Seattle, Washington noaa NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service Office of Ocean Resources Conservation and Assessment National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce The Office of Ocean Resources Conservation and Assessment (ORCA) provides decisionmakers comprehensive, scientific information on characteristics of the oceans, coastal areas, and estuaries of the United States of America. The information ranges from strategic, national assessments of coastal and estuarine environmental quality to real-time information for navigation or hazardous materials spill response. Through its National Status and Trends (NS&T) Program, ORCA uses uniform techniques to monitor toxic chemical contamination of bottom-feeding fish, mussels and oysters, and sediments at about 300 locations throughout the United States. A related NS&T Program of directed research examines the relationships between contaminant exposure and indicators of biological responses in fish and shellfish. Through the Hazardous Materials Response and Assessment Division (HAZMAT) Scientific Support Coordination program, ORCA provides critical scientific support for planning and responding to spills of oil or hazardous materials into coastal environments. Technical guidance includes spill trajectory predictions, chemical hazard analyses, and assessments of the sensitivity of marine and estuarine environments to spills. To fulfill the responsibilities of the Secretary of Commerce as a trustee for living marine resources, HAZMAT’s Coastal Resource Coordination program provides technical support to the U.S. Environmental Protection Agency during all phases of the remedial process to protect the environment and restore natural resources at hundreds of waste sites each year.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Louisiana's Animal Species of Greatest Conservation Need (SGCN)
    Louisiana's Animal Species of Greatest Conservation Need (SGCN) ‐ Rare, Threatened, and Endangered Animals ‐ 2020 MOLLUSKS Common Name Scientific Name G‐Rank S‐Rank Federal Status State Status Mucket Actinonaias ligamentina G5 S1 Rayed Creekshell Anodontoides radiatus G3 S2 Western Fanshell Cyprogenia aberti G2G3Q SH Butterfly Ellipsaria lineolata G4G5 S1 Elephant‐ear Elliptio crassidens G5 S3 Spike Elliptio dilatata G5 S2S3 Texas Pigtoe Fusconaia askewi G2G3 S3 Ebonyshell Fusconaia ebena G4G5 S3 Round Pearlshell Glebula rotundata G4G5 S4 Pink Mucket Lampsilis abrupta G2 S1 Endangered Endangered Plain Pocketbook Lampsilis cardium G5 S1 Southern Pocketbook Lampsilis ornata G5 S3 Sandbank Pocketbook Lampsilis satura G2 S2 Fatmucket Lampsilis siliquoidea G5 S2 White Heelsplitter Lasmigona complanata G5 S1 Black Sandshell Ligumia recta G4G5 S1 Louisiana Pearlshell Margaritifera hembeli G1 S1 Threatened Threatened Southern Hickorynut Obovaria jacksoniana G2 S1S2 Hickorynut Obovaria olivaria G4 S1 Alabama Hickorynut Obovaria unicolor G3 S1 Mississippi Pigtoe Pleurobema beadleianum G3 S2 Louisiana Pigtoe Pleurobema riddellii G1G2 S1S2 Pyramid Pigtoe Pleurobema rubrum G2G3 S2 Texas Heelsplitter Potamilus amphichaenus G1G2 SH Fat Pocketbook Potamilus capax G2 S1 Endangered Endangered Inflated Heelsplitter Potamilus inflatus G1G2Q S1 Threatened Threatened Ouachita Kidneyshell Ptychobranchus occidentalis G3G4 S1 Rabbitsfoot Quadrula cylindrica G3G4 S1 Threatened Threatened Monkeyface Quadrula metanevra G4 S1 Southern Creekmussel Strophitus subvexus
    [Show full text]
  • The Blackside Dace (Chrosomus Cumberlandensis) and the Cumberland Arrow Darter (Etheostoma Sagitta) in Northeast Tennessee
    WATER QUALITY’S INFLUENCE ON THE OCCUPANCY OF TWO JEOPARDIZED FISHES: THE BLACKSIDE DACE (CHROSOMUS CUMBERLANDENSIS) AND THE CUMBERLAND ARROW DARTER (ETHEOSTOMA SAGITTA) IN NORTHEAST TENNESSEE __________________________ A Thesis Presented to the Faculty of the College of Science Morehead State University _________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _________________________ by Brandon L. Yates July 5, 2017 ProQuest Number:10605069 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 10605069 Published by ProQuest LLC ( 2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Accepted by the faculty of the College of Science, Morehead State University, in partial fulfillment of the requirements for the Master of Science degree. ______________________________ David J. Eisenhour Director of Thesis Master’s Committee: ________________________________, Chair David J. Eisenhour _________________________________ Brian C. Reeder _________________________________ David P. Smith _________________________________ Michael C. Compton ________________________ Date WATER QUALITY’S INFLUENCE ON THE OCCUPANCY OF TWO JEOPARDIZED FISHES: THE BLACKSIDE DACE (CHROSOMUS CUMBERLANDENSIS) AND THE CUMBERLAND ARROW DARTER (ETHEOSTOMA SAGITTA) IN NORTHEAST TENNESSEE Brandon L. Yates Morehead State University, 2017 Director of Thesis: __________________________________________________ David J.
    [Show full text]
  • Perdido River and Bay Surface Water Improvement and Management Plan
    Perdido River and Bay Surface Water Improvement and Management Plan November 2017 Program Development Series 17-07 Northwest Florida Water Management District Perdido River and Bay Surface Water Improvement and Management Plan November 2017 Program Development Series 17-07 NORTHWEST FLORIDA WATER MANAGEMENT DISTRICT GOVERNING BOARD George Roberts Jerry Pate John Alter Chair, Panama City Vice Chair, Pensacola Secretary-Treasurer, Malone Gus Andrews Jon Costello Marc Dunbar DeFuniak Springs Tallahassee Tallahassee Ted Everett Nick Patronis Bo Spring Chipley Panama City Beach Port St. Joe Brett J. Cyphers Executive Director Headquarters 81 Water Management Drive Havana, Florida 32333-4712 (850) 539-5999 Crestview Econfina Milton 180 E. Redstone Avenue 6418 E. Highway 20 5453 Davisson Road Crestview, Florida 32539 Youngstown, FL 32466 Milton, FL 32583 (850) 683-5044 (850) 722-9919 (850) 626-3101 Perdido River and Bay SWIM Plan Northwest Florida Water Management District Acknowledgements This document was developed by the Northwest Florida Water Management District under the auspices of the Surface Water Improvement and Management (SWIM) Program and in accordance with sections 373.451-459, Florida Statutes. The plan update was prepared under the supervision and oversight of Brett Cyphers, Executive Director and Carlos Herd, Director, Division of Resource Management. Funding support was provided by the National Fish and Wildlife Foundation’s Gulf Environmental Benefit Fund. The assistance and support of the NFWF is gratefully acknowledged. The authors would like to especially recognize members of the public, as well as agency reviewers and staff from the District and from the Ecology and Environment, Inc., team that contributed to the development of this plan.
    [Show full text]
  • Checklist of the Inland Fishes of Louisiana
    Southeastern Fishes Council Proceedings Volume 1 Number 61 2021 Article 3 March 2021 Checklist of the Inland Fishes of Louisiana Michael H. Doosey University of New Orelans, [email protected] Henry L. Bart Jr. Tulane University, [email protected] Kyle R. Piller Southeastern Louisiana Univeristy, [email protected] Follow this and additional works at: https://trace.tennessee.edu/sfcproceedings Part of the Aquaculture and Fisheries Commons, and the Biodiversity Commons Recommended Citation Doosey, Michael H.; Bart, Henry L. Jr.; and Piller, Kyle R. (2021) "Checklist of the Inland Fishes of Louisiana," Southeastern Fishes Council Proceedings: No. 61. Available at: https://trace.tennessee.edu/sfcproceedings/vol1/iss61/3 This Original Research Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Southeastern Fishes Council Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/sfcproceedings. Checklist of the Inland Fishes of Louisiana Abstract Since the publication of Freshwater Fishes of Louisiana (Douglas, 1974) and a revised checklist (Douglas and Jordan, 2002), much has changed regarding knowledge of inland fishes in the state. An updated reference on Louisiana’s inland and coastal fishes is long overdue. Inland waters of Louisiana are home to at least 224 species (165 primarily freshwater, 28 primarily marine, and 31 euryhaline or diadromous) in 45 families. This checklist is based on a compilation of fish collections records in Louisiana from 19 data providers in the Fishnet2 network (www.fishnet2.net).
    [Show full text]
  • Review of Special Provisions and Other Conditions Placed on Gdot Projects for Imperiled Species Protection
    GEORGIA DOT RESEARCH PROJECT 18-06 FINAL REPORT REVIEW OF SPECIAL PROVISIONS AND OTHER CONDITIONS PLACED ON GDOT PROJECTS FOR IMPERILED SPECIES PROTECTION VOLUME III OFFICE OF PERFORMANCE-BASED MANAGEMENT AND RESEARCH 600 WEST PEACHTREE STREET NW ATLANTA, GA 30308 TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No.: 2. Government Accession No.: 3. Recipient's Catalog No.: FHWA-GA-20-1806 Volume III N/A N/A 4. Title and Subtitle: 5. Report Date: Review of Special Provisions and Other Conditions Placed on January 2021 GDOT Projects For Imperiled Aquatic Species Protection, 6. Performing Organization Code: Volume III N/A 7. Author(s): 8. Performing Organization Report No.: Jace M. Nelson, Timothy A. Stephens, Robert B. Bringolf, Jon 18-06 Calabria, Byron J. Freeman, Katie S. Hill, William H. Mattison, Brian P. Melchionni, Jon W. Skaggs, R. Alfie Vick, Brian P. Bledsoe, (https://orcid.org/0000-0002-0779-0127), Seth J. Wenger (https://orcid.org/0000-0001-7858-960X) 9. Performing Organization Name and Address: 10. Work Unit No.: Odum School of Ecology N/A University of Georgia 11. Contract or Grant No.: 140 E. Green Str. PI#0016335 Athens, GA 30602 208-340-7046 or 706-542-2968 [email protected] 12. Sponsoring Agency Name and Address: 13. Type of Report and Period Covered: Georgia Department of Transportation Final; September 2018–January 2021 Office of Performance-based 14. Sponsoring Agency Code: Management and Research N/A 600 West Peachtree St. NW Atlanta, GA 30308 15. Supplementary Notes: Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.
    [Show full text]
  • Conservation Status of Imperiled North American Freshwater And
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Fishes of the Choctawhatchee River System in Southeastern Alabama and Northcentral Florida
    Southeastern Fishes Council Proceedings Volume 1 Number 55 Number 55 Article 1 January 2015 Fishes of the Choctawhatchee River System in Southeastern Alabama and Northcentral Florida Thomas P. Simon Indiana State University, [email protected] Charles C. Morris US National Park Service, Indiana Dunes National Lakeshore, [email protected] Bernard R. Kuhajda Tennessee Aquarium, [email protected] Carter R. Gilbert University of Florida, Florida Museum of Natural History, [email protected] Henry L. Bart Jr. Tulane University, [email protected] Follow this and additional works at: https://trace.tennessee.edu/sfcproceedings See next page for additional authors Part of the Biodiversity Commons, Marine Biology Commons, and the Other Ecology and Evolutionary Biology Commons Recommended Citation Simon, Thomas P.; Morris, Charles C.; Kuhajda, Bernard R.; Gilbert, Carter R.; Bart, Henry L. Jr.; Rios, Nelson; Stewart, Paul M.; Simon, Thomas P. IV; and Denney, Mitt (2015) "Fishes of the Choctawhatchee River System in Southeastern Alabama and Northcentral Florida," Southeastern Fishes Council Proceedings: No. 55. Available at: https://trace.tennessee.edu/sfcproceedings/vol1/iss55/1 This Original Research Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Southeastern Fishes Council Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/sfcproceedings. Fishes of the Choctawhatchee River System in Southeastern Alabama and Northcentral Florida Abstract The diversity and distribution of fish species occurring in the Choctawhatchee River drainage in southeastern Alabama and northcentral Florida were surveyed to obtain historical baseline information.
    [Show full text]
  • Minimum Flows and Levels Criteria Development Evaluation of the Importance of Water Depth and Frequency of Water Levels/Flows On
    Special Publication SJ2002-SP2 Minimum flows and levels criteria development Evaluation of the importance of water depth and frequency of water levels/flows on fish population dynamics Literature review and summary Annotated bibliography for water level effects on fish populations Submitted by: Jeffrey E. Hill and Charles E. Cichra University of Florida Institute of Food and Agricultural Sciences Department of Fisheries and Aquatic Sciences 7922 NW 71st Street Gainesville, FL 32653-3071 February 2002 Hill &Cichra-Feb 2002 Table of Contents Introduction 2 Methods 2 Annotated bibliography 3 Acknowledgements 62 Appendix A 63 Hill & Cichra - Feb 2002 Annotated bibliography for water level effects on fish populations Introduction Water level, instream flows, and water fluctuations have a number of significant effects in aquatic systems. The response of fish to water levels can have important implications for reproduction, survival, growth, and recruitment of fishes, as well as the fisheries they support. Stream flow has effects not only within the stream itself, but also in associated estuary and coastal marine habitats. This document is an annotated bibliography of the effects of water levels on fish populations, with special reference to Florida fishes, habitats, and systems. This annotated bibliography provides 290 references to primary and gray literature. This bibliography is by no means exhaustive, but it directs users to relevant literature and the extensive citations therein. The coverage is primarily 1980 to 2000. This information will be used by the St. John's River Water Management District (SJRWMD) Water Supply Management Division for the development of ecological criteria for its Minimum Flow and Levels (MF&Ls) Program.
    [Show full text]
  • Final Business Plan NFWF Native Black Bass Keystone Initiative Feb
    A Business Plan for the Conservation of Native Black Bass Species in the Southeastern US: A Ten Year Plan February 2010 Executive Summary Conservation need : The southeastern US harbors a diversity of aquatic species and habitats unparalleled in North America. More than 1,800 species of fishes, mussels, snails, turtles and crayfish can be found in the more than 70 major river basins of the region; more than 500 of these species are endemic. However, with declines in the quality and quantity of aquatic resources in the region has come an increase in the rate of extinctions; nearly 100 species have become extinct across the region in the last century. At present, 34 percent of the fish species and 90 percent of the mussels in peril nationwide are found in the southeast. In addition, the southeast contains more invasive, exotic aquatic species than any other area of the US, many of which threaten native species. The diversity of black bass species (genus Micropterus ) mirrors the freshwater fish patterns in North America with most occurring in the southeast. Of the nine described species of black bass, six are endemic to the southeast: Guadalupe bass, shoal bass, redeye bass, Florida bass, Alabama bass, and Suwannee bass. However, many undescribed forms also exist and most of these are in need of conservation measures to prevent them from becoming imperiled. Furthermore, of the black bass species with the greatest conservation needs, all are endemic to the southeast and found in relatively small ranges (Figure 1). In an effort to focus and coordinate actions to conserve these species, local, state and federal agencies, universities, NGOs and businesses from across the region have come together in partnership with the National Fish and Wildlife Foundation to develop the Southeast Native Black Bass Keystone Initiative.
    [Show full text]
  • Fundulus Chrysotus) and Bluenose Shiners (Pteronotropis Welaka) Jacob A
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School June 2019 Reproductive Parameters and Methodologies for the Culture of Golden Topminnows (Fundulus chrysotus) and Bluenose Shiners (Pteronotropis welaka) Jacob A. Fetterman Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Natural Resources and Conservation Commons Recommended Citation Fetterman, Jacob A., "Reproductive Parameters and Methodologies for the Culture of Golden Topminnows (Fundulus chrysotus) and Bluenose Shiners (Pteronotropis welaka)" (2019). LSU Master's Theses. 4941. https://digitalcommons.lsu.edu/gradschool_theses/4941 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. REPRODUCTIVE PARAMETERS AND METHODOLOGIES FOR THE CULTURE OF GOLDEN TOPMINNOWS (Fundulus chrysotus) AND BLUENOSE SHINERS (Pteronotropis welaka) A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Renewable Natural Resources by Jacob Fetterman B.S., Lock Haven University, 2017 August 2019 ACKNOWLEDGMENTS First, I would like to extend my gratitude to Dr. Christopher Green. My professional growth as a researcher here at LSU would not have possible without your mentorship. Your work ethic, leadership skills, and extensive aquaculture and fish physiology knowledge have been truly inspirational. Thank you for the effort you have put into my graduate education and development as a scientist.
    [Show full text]