Estudio De La Composición De La Comunidad Bacteriana De Manantiales Salinos Ubicados En Los Departamentos De Risaralda Y Boyaca

Total Page:16

File Type:pdf, Size:1020Kb

Estudio De La Composición De La Comunidad Bacteriana De Manantiales Salinos Ubicados En Los Departamentos De Risaralda Y Boyaca PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE CIENCIAS DOCTORADO EN CIENCIAS BIOLÓGICAS ESTUDIO DE LA COMPOSICIÓN DE LA COMUNIDAD BACTERIANA DE MANANTIALES SALINOS UBICADOS EN LOS DEPARTAMENTOS DE RISARALDA Y BOYACA CAROLINA DIAZ CARDENAS TESIS Presentada como requisito parcial Para optar al título de DOCTOR EN CIENCIAS BIOLÓGICAS Bogotá D.C. 20 de Junio de 2011 NOTA DE ADVERTENCIA "La Universidad no se hace responsable por los conceptos emitidos por sus alumnos en sus trabajos de tesis. Solo velará por que no se publique nada contrario al dogma y a la moral católica y por que las tesis no contengan ataques personales contra persona alguna, antes bien se vea en ellas el anhelo de buscar la verdad y la justicia". Artículo 23 de la Resolución No13 de Julio de 1946. AGRADECIMIENTOS A la Unidad de Saneamiento y Biotecnología Ambiental (USBA) de la Pontifica Universidad Javeriana por facilitarme sus instalaciones e infraestructura para llevar a cabo este trabajo y a todos sus integrantes por compartir estos años, siempre con una calidad sonrisa y generando un buen ambiente de trabajo. Agradezco a mi directora Sandra Baena por sus enseñanzas, paciencia, amistad, confianza, entusiasmo y buenas ideas. A mis compañeros y amigos Luisa Bernal, Carolina Rubiano, Gina López, Habib Yanine y Javier Gómez, por sus aportes en el desarrollo de este trabajo y por su ayuda incondicional. A Colciencias por su apoyo financiero mediante el programa de créditos condonables para el desarrollo de doctorados nacionales. Al Dr. Bharat Patel, por recibirme en su laboratorio y por facilitarme los recursos económicos y logísticos para llevar a cabo parte de este trabajo. Al grupo de Genómica y Bioinformática de Ambientes Extremos – GEBIX, por su aporte en el proceso de pirosecuenciación y análisis de secuencias. Al geólogo Michael Tistl y a Claudia Alfaro, por proporcionarme información relacionada con las características fisicoquímicas y geológicas de los manantiales salinos. A mis padres, Marleny Cárdenas y Aberlado Díaz, por haberme dado la oportunidad de tener la educación que deseaba, por su ejemplo de perseverancia y compromiso y por su apoyo incondicional en todos los aspectos de mi vida. A mi hermana Ximena Díaz y a Alejandro Reyes por su paciencia, ánimo y colaboración. A todos mis amigos, quienes de una u otra forma me acompañaron durante este proceso, siempre con palabras de aliento y buena energía. RESUMEN En este estudio se determinó la composición de las comunidades bacterianas de dos manantiales salinos ubicados en el departamento de Risaralda, el Salado de Consotá y La Cristalina y uno ubicado en el departamento de Boyacá, denominado Salpa. Los tres manantiales, importantes desde una perspectiva histórica y económica, fluyen a partir de aguas subterráneas con más de 50 años antigüedad y pueden diferenciarse a partir de sus características fisicoquímicas. Aunque no se detectó diferencias significativas en la abundancia y composición de organismos del dominio Bacteria entre los tres manantiales a lo largo del tiempo, la composición de la comunidad bacteriana sí presentó variaciones espaciales, indicando que cada manantial alberga una comunidad bacteriana diferente, esta variación fue explicada en parte por los parámetros fisicoquímicos estudiados y principalmente por la concentración del ion calcio y de la temperatura. A pesar de las diferencias al interior de la comunidad bacteriana de cada manantial, se observó predominio de OTUs relacionadas con organismos de las clases y α-Proteobacteria, ampliamente reportadas en hábitats salinos incluyendo ambientes marinos, aunque en el manantial Salpa también se detectó predominio de OTUs relacionadas con organismos de la clase β-Proteobacteria. Además, se observó que estos manantiales son hábitats de nueva diversidad taxonómica como se deduce del alto número de secuencias del 16S ARNr con menos del 97% de similitud con secuencias de organismos cultivados y por las nuevas especies aisladas e identificadas en el curso de este estudio, las cuales además presentaron capacidades hidrolíticas que pueden ser exploradas más adelante. ABSTRACT Our study determined the composition of bacterial communities in two salt springs located in the department of Risaralda, the Salado de Consotá and La Cristalina and one located in the department of Boyacá, called Salpa. The three springs, which are important from a historical and economic perspective, flow from groundwaters that are more than 50 years old and can be recognized by their physicochemical characteristics. Although no significant differences were detected among the abundance and composition of organisms of the domain Bacteria from the three springs along time, the bacterial community composition did present spatial variations, indicating that each spring hosts a different microbial community; this variation was partly explained by physicochemical parameters and mainly by the calcium ion concentration and temperature. Despite the differences within the bacterial community of each spring, there was a predominance of OTUs related with organisms of the and α-Proteobacteria, widely reported in saline habitats including marine environments; in addition in Salpa spring β-Proteobacteria class was also detected. We also found that these springs are habitats of a new undescribed taxonomic diversity as reveled by the high number of 16S rRNA sequences with less than 97% similarity to sequences of cultured organisms, and by new species isolated and identified in the course of this study, which also showed hydrolytic properties that can be explored in further studies. TABLA DE CONTENIDO Página 1. INTRODUCCIÓN 1 2. MARCO TEÓRICO 4 2.1 Diversidad biológica 4 2.2 Estudio de comunidades microbianas en ambientes naturales 4 2.2.1 Métodos independientes de cultivo 5 2.2.2 Métodos dependientes de cultivo 9 2.2.2.1 Identificación taxonómica de los microorganismos cultivados 10 2.2.2.1.1 Caracterización fenotípica 10 2.2.2.1.2 Características genotípicas 11 2.3 Concepto de especie procariota 13 2.4 Ambientes acuáticos salinos 15 2.5 Comunidades microbianas en sistemas acuáticos salinos 17 2.6 Factores que afectan la composición de las comunidades microbianas en ambientes salinos 21 2.7 Importancia del estudio de la composición de las comunidades microbianas en ambientes salinos 22 3 OBJETIVOS DE INVESTIGACIÓN 25 4 MATERIALES Y MÉTODOS 26 4.1 Descripción de los sitios de estudio 26 4.1.1 Descripción de los manantiales del departamento de Risaralda 26 4.1.1.1 Manantial Salado de Consotá (SC) 26 4.1.1.2 La Cristalina (LC) 30 4.1.1.3 Generalidades hidrológicas y geológicas de la zona aledaña a los Manantiales SC y LC 33 4.1.2 Descripción del manantial Salpa (SP) ubicado en el departamento de Boyacá 34 4.1.2.1 Generalidades hidrológicas y geológicas de la zona aledaña al manantial SP 35 4.2 Muestreos y mediciones 37 4.3 Caracterización de la composición química del agua de los manantiales 39 4.3.1 Análisis de las variables fisicoquímicas 39 4.4 Composición isotópica del agua 40 4.5 Caracterización de la composición de las comunidades microbianas de los manantiales salinos 41 4.5.1 Características morfológicas de las comunidades microbianas presentes en los manantiales salinos SC y SP 41 4.5.2 Determinación del número total de células microbianas y detección de grupos microbianos particulares 43 4.5.2.1 Recuento total de células 43 4.5.2.2 Detección selectiva de grupos microbianos particulares usando la técnica de FISH 44 4.5.2.3 Recuento de células 46 4.5.3 Generación de inventarios biológicos a partir del aislamiento de microorganismos halotolerantes y/o halófilos aerobios y anaerobios heterotróficos 47 4.5.3.1 Inoculación de las series de cultivo 49 4.5.3.2 Aislamiento de cepas microbianas 49 4.5.3.3 Conservación de organismos aislados 50 4.5.3.4 Estudio polifásico de las cepas aisladas 50 4.5.3.4.1 Caracterización fenotípica 51 4.5.3.4.2 Caracterización genotípica 60 4.5.3.4.3 Detección de producción de enzimas hidrolíticas y producción de polihidroxialcanoatos (PHA) 65 4.5.4 Caracterización de la composición microbiana usando métodos independientes de cultivo 69 4.5.4.1 Extracción de ADN comunitario 69 4.5.4.1.1 Cuantificación de ácidos nucleicos 70 4.5.4.2 Clonación y secuenciación del gen que codifica para la sub-unidad pequeña del 16S ARNr de muestras del manantial SC y SP 70 4.5.4.3 Pirosecuenciación 454 de la región V5-V6 del gen codifica para el 16S ARNr del manantial LC 72 4.5.4.4 Análisis computacional de las secuencias del 16S ARNr 73 4.5.4.4.1 Alineamiento de las secuencias del 16S ARNr 74 4.5.4.4.2 Análisis filogenético de las secuencias del 16S ARNr 74 4.5.4.4.3 Agrupación de las secuencias en Unidades Taxonómicas Operacionales (OTUs) 75 4.5.4.4.4 Comparación filogenética de los taxones obtenidos por clonación 75 4.5.4.4.5 Análisis de las secuencias obtenidas por pirosecuenciación 75 4.5.5 Determinación de variaciones espaciales y temporales de las comunidades bacterianas dominantes de los manantiales salinos 76 4.5.5.1 Electroforesis en gen con gradiente desnaturalizante (DGGE) 76 4.5.5.1.1 Identificación de los grupos taxonómicos más abundantes de la comunidad bacteriana a partir de DGGE 77 4.5.5.1.2 Análisis estadístico del patrón de bandas de DGGE 78 5. RESULTADOS Y DISCUSIÓN 80 5.1 Caracterización de la composición fisicoquímica del agua de los manantiales salinos 80 5.1.1 Determinación de las diferencias en los parámetros fisicoquímicos entre los diferentes sitios de muestreo 82 5.1.2 Análisis de Componentes Principales (ACP) 83 5.2 Composición isotópica
Recommended publications
  • Relevance of Phenotypic Information for the Taxonomy of Not-Yet-Cultured Microorganisms
    Systematic and Applied Microbiology 42 (2019) 22–29 Contents lists available at ScienceDirect Systematic and Applied Microbiology j ournal homepage: www.elsevier.de/syapm Relevance of phenotypic information for the taxonomy of not-yet-cultured microorganisms a,b,c,∗ a a,b a a Jörg Overmann , Sixing Huang , Ulrich Nübel , Richard L. Hahnke , Brian J. Tindall a Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany b Deutsches Zentrum für Infektionsforschung (DZIF), Standort Braunschweig-Hannover, Braunschweig, Germany c German Center for Integrative Biodiversity Research (iDiv) Jena Halle Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany a r t i c l e i n f o a b s t r a c t Keywords: To date, far less than 1% of the estimated global species of Bacteria and Archaea have been described and Not-yet-cultured microorganisms their names validly published. Aside from these quantitative limitations, our understanding of phenotypic Taxonomy and functional diversity of prokaryotes is also highly biased as not a single species has been described Nomenclature for 85 of the 118 phyla that are currently recognized. Due to recent advances in sequencing technology Candidatus and capacity, metagenomic datasets accumulate at an increasing speed and new bacterial and archaeal International Code of Nomenclature of Prokaryotes genome sequences become available at a faster rate than newly described species. The growing gap between the diversity of Bacteria and Archaea held in pure culture and that detected by molecular methods has led to the proposal to establish a formal nomenclature for not-yet-cultured taxa primarily based on sequence information.
    [Show full text]
  • Pinpointing the Origin of Mitochondria Zhang Wang Hanchuan, Hubei
    Pinpointing the origin of mitochondria Zhang Wang Hanchuan, Hubei, China B.S., Wuhan University, 2009 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Biology University of Virginia August, 2014 ii Abstract The explosive growth of genomic data presents both opportunities and challenges for the study of evolutionary biology, ecology and diversity. Genome-scale phylogenetic analysis (known as phylogenomics) has demonstrated its power in resolving the evolutionary tree of life and deciphering various fascinating questions regarding the origin and evolution of earth’s contemporary organisms. One of the most fundamental events in the earth’s history of life regards the origin of mitochondria. Overwhelming evidence supports the endosymbiotic theory that mitochondria originated once from a free-living α-proteobacterium that was engulfed by its host probably 2 billion years ago. However, its exact position in the tree of life remains highly debated. In particular, systematic errors including sparse taxonomic sampling, high evolutionary rate and sequence composition bias have long plagued the mitochondrial phylogenetics. This dissertation employs an integrated phylogenomic approach toward pinpointing the origin of mitochondria. By strategically sequencing 18 phylogenetically novel α-proteobacterial genomes, using a set of “well-behaved” phylogenetic markers with lower evolutionary rates and less composition bias, and applying more realistic phylogenetic models that better account for the systematic errors, the presented phylogenomic study for the first time placed the mitochondria unequivocally within the Rickettsiales order of α- proteobacteria, as a sister clade to the Rickettsiaceae and Anaplasmataceae families, all subtended by the Holosporaceae family.
    [Show full text]
  • Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations
    fmicb-09-02879 December 1, 2018 Time: 14:0 # 1 ORIGINAL RESEARCH published: 04 December 2018 doi: 10.3389/fmicb.2018.02879 Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations Klervi Crenn, Delphine Duffieux and Christian Jeanthon* CNRS, Sorbonne Université, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Roscoff, France Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community- level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and Edited by: collection cultures, regarded here as short- and long-term associations, respectively. Matthias Wietz, Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning- Alfred Wegener Institut, Germany sequencing of 16S rRNA genes obtained from whole-genome amplification products. Reviewed by: The prevalence of epibiotic bacteria was higher in cultures and dependent of the host Lydia Jeanne Baker, Cornell University, United States species. Culture approaches demonstrated that both diatoms carry distinct bacterial Bryndan Paige Durham, communities in short- and long-term associations. Bacterial epibonts, commonly University of Washington, United States associated with phytoplankton, were repeatedly isolated from cells of diatom collection *Correspondence: cultures but were not recovered from environmental cells.
    [Show full text]
  • Catalogue of Bacteria Shapes
    We first tried to use the most general shape associated with each genus, which are often consistent across species (spp.) (first choice for shape). If there was documented species variability, either the most common species (second choice for shape) or well known species (third choice for shape) is shown. Corynebacterium: pleomorphic bacilli. Due to their snapping type of division, cells often lie in clusters resembling chinese letters (https://microbewiki.kenyon.edu/index.php/Corynebacterium) Shown is Corynebacterium diphtheriae Figure 1. Stained Corynebacterium cells. The "barred" appearance is due to the presence of polyphosphate inclusions called metachromatic granules. Note also the characteristic "Chinese-letter" arrangement of cells. (http:// textbookofbacteriology.net/diphtheria.html) Lactobacillus: Lactobacilli are rod-shaped, Gram-positive, fermentative, organotrophs. They are usually straight, although they can form spiral or coccobacillary forms under certain conditions. (https://microbewiki.kenyon.edu/index.php/ Lactobacillus) Porphyromonas: A genus of small anaerobic gram-negative nonmotile cocci and usually short rods thatproduce smooth, gray to black pigmented colonies the size of which varies with the species. (http:// medical-dictionary.thefreedictionary.com/Porphyromonas) Shown: Porphyromonas gingivalis Moraxella: Moraxella is a genus of Gram-negative bacteria in the Moraxellaceae family. It is named after the Swiss ophthalmologist Victor Morax. The organisms are short rods, coccobacilli or, as in the case of Moraxella catarrhalis, diplococci in morphology (https://en.wikipedia.org/wiki/Moraxella). *This one could be changed to a diplococcus shape because of moraxella catarrhalis, but i think the short rods are fair given the number of other moraxella with them. Jeotgalicoccus: Jeotgalicoccus is a genus of Gram-positive, facultatively anaerobic, and halotolerant to halophilicbacteria.
    [Show full text]
  • Porphyromonas Gingivalis, Strain F0566 Catalog
    Product Information Sheet for HM-1141 Porphyromonas gingivalis, Strain F0566 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-1141 Growth Conditions: For research use only. Not for human use. Media: Supplemented Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% defibrinated sheep blood or Floyd E. Dewhirst, D.D.S., Ph.D., Senior Member of the Staff, Supplemented Tryptic Soy agar or equivalent Department of Microbiology and Jacques Izard, Assistant Incubation: Member of the Staff, Department of Molecular Genetics, The Temperature: 37°C Forsyth Institute, Cambridge, Massachusetts, USA Atmosphere: Anaerobic Propagation: Manufacturer: 1. Keep vial frozen until ready for use, then thaw. BEI Resources 2. Transfer the entire thawed aliquot into a single tube of broth. Product Description: 3. Use several drops of the suspension to inoculate an Bacteria Classification: Porphyromonadaceae, agar slant and/or plate. Porphyromonas 4. Incubate the tube, slant and/or plate at 37°C for 24 to Species: Porphyromonas gingivalis 72 hours. Broth cultures should include shaking. Strain: F0566 Original Source: Porphyromonas gingivalis (P. gingivalis), Citation: strain F0566 was isolated in October 1987 from the tooth Acknowledgment for publications should read “The following of a patient diagnosed with moderate periodontitis in the reagent was obtained through BEI Resources, NIAID, NIH as United States.1 part of the Human Microbiome Project: Porphyromonas Comments: P. gingivalis, strain F0566 (HMP ID 1989) is a gingivalis, Strain F0566, HM-1141.” reference genome for The Human Microbiome Project (HMP). HMP is an initiative to identify and characterize Biosafety Level: 2 human microbial flora.
    [Show full text]
  • Methylamine As a Nitrogen Source for Microorganisms from a Coastal Marine
    Methylamine as a Nitrogen Source for Microorganisms from a Coastal Marine Environment Martin Tauberta,b, Carolina Grobb, Alexandra M. Howatb, Oliver J. Burnsc, Jennifer Pratscherb, Nico Jehmlichd, Martin von Bergend,e,f, Hans H. Richnowg, Yin Chenh,1, J. Colin Murrellb,1 aAquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany bSchool of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK cSchool of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany eInstitute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 32, 04103 Leipzig, Germany fDepartment of Chemistry and Bioscience, University of Aalborg, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark. gDepartment of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany hSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK 1To whom correspondence should be addressed. J. Colin Murrell, Phone: +44 (0)1603 59 2959, Email: [email protected], and Yin Chen, Phone: +44 (0)24 76528976, Email: [email protected] Keywords: marine methylotrophs, 15N stable isotope probing, methylamine, metagenomics, metaproteomics Classification: BIOLOGICAL SCIENCES/Microbiology Short title: Methylamine as a Nitrogen Source for Marine Microbes This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1462-2920.13709 This article is protected by copyright.
    [Show full text]
  • Genome Sequence of the Lotus Spp. Microsymbiont Mesorhizobium Loti
    Kelly et al. Standards in Genomic Sciences 2014, 9:7 http://www.standardsingenomics.com/content/9/1/7 SHORT GENOME REPORT Open Access Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain NZP2037 Simon Kelly1, John Sullivan1, Clive Ronson1, Rui Tian2, Lambert Bräu3, Karen Davenport4, Hajnalka Daligault4, Tracy Erkkila4, Lynne Goodwin4, Wei Gu4, Christine Munk4, Hazuki Teshima4, Yan Xu4, Patrick Chain4, Tanja Woyke5, Konstantinos Liolios5, Amrita Pati5, Konstantinos Mavromatis6, Victor Markowitz6, Natalia Ivanova5, Nikos Kyrpides5,7 and Wayne Reeve2* Abstract Mesorhizobium loti strain NZP2037 was isolated in 1961 in Palmerston North, New Zealand from a Lotus divaricatus root nodule. Compared to most other M. loti strains, it has a broad host range and is one of very few M. loti strains able to form effective nodules on the agriculturally important legume Lotus pedunculatus. NZP2037 is an aerobic, Gram negative, non-spore-forming rod. This report reveals that the genome of M. loti strain NZP2037 does not harbor any plasmids and contains a single scaffold of size 7,462,792 bp which encodes 7,318 protein-coding genes and 70 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. Keywords: Root-nodule bacteria, Nitrogen fixation, Symbiosis, Alphaproteobacteria Introduction whether the polysaccharide is necessary for nodulation Mesorhizobium loti strain NZP2037 (ICMP1326) was of L. pedunculatus has not been established. isolated in 1961 from a root nodule off a Lotus divarica- Nodulation and nitrogen fixation genes in Mesorhizo- tus plant growing near Palmerston North airport, New bium loti strains are encoded on the chromosome on Zealand [1].
    [Show full text]
  • Introduction to Bacteriology and Bacterial Structure/Function
    INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century.
    [Show full text]
  • Evaluation of a New High-Throughput Method for Identifying Quorum
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography OPEN Evaluation of a new high-throughput SUBJECT AREAS: method for identifying quorum BACTERIA APPLIED MICROBIOLOGY quenching bacteria HIGH-THROUGHPUT SCREENING Kaihao Tang1, Yunhui Zhang1, Min Yu1, Xiaochong Shi1, Tom Coenye2, Peter Bossier3 & Xiao-Hua Zhang1 MICROBIOLOGY TECHNIQUES 1College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China, 2Laboratory of Pharmaceutical 3 Received Microbiology, Ghent University, 9000 Gent, Belgium, Laboratory of Aquaculture & Artemia Reference Center, Ghent University, 29 April 2013 9000 Gent, Belgium. Accepted 25 September 2013 Quorum sensing (QS) is a population-dependent mechanism for bacteria to synchronize social behaviors such as secretion of virulence factors. The enzymatic interruption of QS, termed quorum quenching (QQ), Published has been suggested as a promising alternative anti-virulence approach. In order to efficiently identify QQ 14 September 2013 bacteria, we developed a simple, sensitive and high-throughput method based on the biosensor Agrobacterium tumefaciens A136. This method effectively eliminates false positives caused by inhibition of growth of biosensor A136 and alkaline hydrolysis of N-acylhomoserine lactones (AHLs), through normalization of b-galactosidase activities and addition of PIPES buffer, respectively. Our novel approach Correspondence and was successfully applied in identifying QQ bacteria among 366 strains and 25 QQ strains belonging to 14 requests for materials species were obtained. Further experiments revealed that the QQ strains differed widely in terms of the type should be addressed to of QQ enzyme, substrate specificity and heat resistance. The QQ bacteria identified could possibly be used to X.-H.Z.
    [Show full text]
  • Reclassification of Agrobacterium Ferrugineum LMG 128 As Hoeflea
    International Journal of Systematic and Evolutionary Microbiology (2005), 55, 1163–1166 DOI 10.1099/ijs.0.63291-0 Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Alvaro Peix,1 Rau´l Rivas,2 Martha E. Trujillo,2 Marc Vancanneyt,3 Encarna Vela´zquez2 and Anne Willems3 Correspondence 1Departamento de Produccio´n Vegetal, Instituto de Recursos Naturales y Agrobiologı´a, Encarna Vela´zquez IRNA-CSIC, Spain [email protected] 2Departamento de Microbiologı´a y Gene´tica, Lab. 209, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain 3Laboratory of Microbiology, Dept Biochemistry, Physiology and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium Members of the species Agrobacterium ferrugineum were isolated from marine environments. The type strain of this species (=LMG 22047T=ATCC 25652T) was recently reclassified in the new genus Pseudorhodobacter, in the order ‘Rhodobacterales’ of the class ‘Alphaproteobacteria’. Strain LMG 128 (=ATCC 25654) was also initially classified as belonging to the species Agrobacterium ferrugineum; however, the nearly complete 16S rRNA gene sequence of this strain indicated that it does not belong within the genus Agrobacterium or within the genus Pseudorhodobacter. The closest related organism, with 95?5 % 16S rRNA gene similarity, was Aquamicrobium defluvii from the family ‘Phyllobacteriaceae’ in the order ‘Rhizobiales’. The remaining genera from this order had 16S rRNA gene sequence similarities that were lower than 95?1 % with respect to strain LMG 128. These phylogenetic distances suggested that strain LMG 128 belonged to a different genus. The major fatty acid present in strain LMG 128 was mono-unsaturated straight chain 18 : 1v7c.
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]