Jamaica Hiking Trails
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydropower Resource Assessment at Non-Powered Usace Sites
HYDROPOWER RESOURCE ASSESSMENT AT NON-POWERED USACE SITES Prepared by the Hydropower Analysis Center for USACE Headquarters July 2013 Final Report Hydropower Resource Assessment at Non-Powered USACE Sites EXECUTIVE SUMMARY The U.S. Army Corps of Engineers (USACE) is the largest owner-operator of hydropower plants in the United States, with 75 plants and an installed capability of 21,000 megawatts (MW), or about 24% of the total hydroelectric capacity. This report describes a national hydropower resource assessment study that assessed the potential and economic feasibility of adding hydroelectric power to these non- powered USACE projects over a 50-year period of analysis. Site Selection In selecting non-powered USACE projects with hydropower potential, the study employed a 2012 report by the Oak Ridge National Laboratory (ORNL) that identified the hydropower potential of 54,000 non- powered dams in the United States. Among these dams, 419 were USACE non-powered dams. This number was reduced to 223 sites using the following screening, as shown on the table below. • Generate 1 MW or more of potential hydropower. • No current Federal Energy Regulatory Commission (FERC) license. • No obvious hindrances in developing hydropower. Distribution of USACE Sites with Potential Hydropower Capability FERC Preliminary or No FERC Permits Total Projects Pending Preliminary Permit Division Identified Total Percentage Total Percent Number of Total Number of Total Great Lakes & Ohio River (LRD) 71 40 56% 31 44% Mississippi Valley (MVD) 50 28 56% 22 44% Southwestern (SWD) 39 7 18% 32 82% North Atlantic (NAD) 21 2 10% 19 90% South Atlantic (SAD) 19 8 42% 11 58% Northwestern (NWD) 12 5 42% 7 58% South Pacific (SPD) 11 2 18% 9 82% USACE Total 223 92 41% 131 59% Data Collection To improve the study data, the daily hydraulic head and flow values for all 223 sites were obtained. -
The Shopper 05-02-18
56 FREE Years We’ve Acquired the Message Treat your ECRWSS PRSRT STD US Postage Mom for PAID Permit #2 North Haverhill, NH See Page 3B POSTAL CUSTOMER Our Contact Information is on Page 6A Independently Owned & Locally Operated MAY 02, 2018 | WWW.VERMONTJOURNAL.COM VOLUME 56, ISSUE 49 Apple Blossom Cotillion See Pages 8A - 10A KMA Publications Inc. Construction on Woolson acquires The Message of the Block building expected to Week start in the fall REGION – Robert Miller of 1970s. “I feel like The Message BY PATRICK ADRIAN include the Springfield Housing Au- “This is a complicated project,” KMA Publications Inc., owner and is home again, back to where it The Shopper thority, Springfield Regional Devel- Morelock told the Select Board. publisher of The Vermont Journal VermontTHE started,” he said. Miller recalled opment Corporation, Springfield on “We’ve been lucky to get partners and The Shopper, announced Fri- feeling the same way when he SPRINGFIELD, Vt. – The Wool- the Move, and several social services in this particular project. If it wasn’t day, April 27, 2018 that he has pur- purchased The Shopper back in son Block building renovation organizations. for [them] we wouldn’t be doing this chased The Message of the Week. 2009, acquiring another paper has come with hurdles, including The amendment, which the Se- project. Nobody would be doing this The sale will merge the newspa- Journal his parents had started years al- revenue shortfalls and added con- lect Board unanimously approved, project.” pers but continue to be published most 57 years ago. “I grew up in struction costs, but despite chal- changes the original loan terms from Needed architectural revisions only under The Vermont Journal & the newspaper business work- lenges developers say they expect repayment over 20 years with a one have resulted in $200,000 additional and The Shopper banners. -
The New Deal Versus Yankee Independence: the Failure of Comprehensive Development on the Connecticut River, and Its Long-Term Consequences
The New Deal versus Yankee independence: The failure of comprehensive development on the Connecticut River, and its long-term consequences Eve Vogel1 Department of Geosciences, UMass Amherst With assistance from Alexandra Lacy 2011 alumna (BS, Environmental Sciences), UMass Amherst Adapted from: Vogel, Eve and Alexandra Lacy. Forthcoming. The New Deal versus Yankee independence: The failure of comprehensive development on the Connecticut River, and its long-term consequences. The Northeastern Geographer 4 (2) Introduction For a person familiar with federal dams on major rivers in the American West or South, a visit to an Army Corps of Engineers dam in New England’s largest river basin, the Connecticut, can be a startling experience. Instead of an extended reservoir, one looks down from the empty heights and on both sides sees only a small river far below. Nor is there the fanfare – the visitors center, the historical information, the celebratory propaganda. Simply finding one of the Connecticut River’s federal dams can take some effort. None are on the mainstem. One must drive through the bucolic New England byways and forested hills to find a dam on a tributary (See Figure 1). For New Englanders, the near-invisibility of federal dams may not seem surprising. New England’s history and identity, including the Connecticut Valley’s, seem to rest with the small- to medium-scale development of rivers with mill dams during the 17th thru 19th centuries (e.g. Delaney 1983; Steinberg 1991). It might be more startling for many to learn that during the mid- twentieth century, the federal government did build a series of very large dams in the Connecticut Basin, which have had profound effect on the river. -
Connecticut River Flow Restoration Study Report
Connecticut River Flow Restoration Study STUDY REPORT A watershed-scale assessment of the potential for flow restoration through dam re-operation THE NATURE CONSERVANCY, U.S. ARMY CORPS OF ENGINEERS, UNIVERSITY OF MASSACHUSETTS AMHERST The Connecticut River Flow Restoration Study A watershed-scale assessment of the potential for flow restoration through dam re-operation Katie Kennedy, The Nature Conservancy Kim Lutz, The Nature Conservancy Christopher Hatfield, U.S. Army Corps of Engineers Leanna Martin, U.S. Army Corps of Engineers Townsend Barker, U.S. Army Corps of Engineers Richard Palmer, University of Massachusetts Amherst Luke Detwiler, University of Massachusetts Amherst Jocelyn Anleitner, University of Massachusetts Amherst John Hickey, U.S. Army Corps of Engineers Kennedy, K., K. Lutz, C. Hatfield, L. Martin, T. Barker, R. Palmer, L. Detwiler, J. Anleitner, J. Hickey. 2018. The Connecticut River Flow Restoration Study: A watershed-scale assessment of the potential for flow restoration through dam re-operation. The Nature Conservancy, U.S. Army Corps of Engineers, and University of Massachusetts Amherst. Northampton, MA. Available: http://nature.org/ctriverwatershed For a quick, easy-to-read overview of the Connecticut River Watershed Study, see our companion “Study Overview” document, available at: http://nature.org/ctriverwatershed June 2018 Table of Contents Table of Contents ..................................................................................................................................................................................................1 -
Progress Report on River Basin Water Quality Management Planning During 2010
PROGRESS REPORT ON RIVER BASIN WATER QUALITY MANAGEMENT PLANNING DURING 2010 A REPORT FOR: HOUSE & SENATE COMMITTEE ON AGRICULTURE HOUSE & SENATE COMMITTEE ON NATURAL RESOURCES AND ENERGY JANUARY 2011 PREPARED BY: VERMONT AGENCY OF NATURAL RESOURCES DEPARTMENT OF ENVIRONMENTAL CONSERVATION WATER QUALITY DIVISION 103 SOUTH MAIN STREET WATERBURY, VT 05671 www.vtwaterquality.org Introduction..........................................................................................................................................................3 Section 1) Statewide Surface Water Management Strategy - a Framework for Statewide Efforts to Guide Surface Water Management.................................................................................................................................5 Protecting & Improving Surface Waters by Managing Stressors ....................................................................5 What are the 10 Major Stressors affecting Vermont’s surface waters? ...........................................................6 Using the Stressor Approach to Evaluate Program Effectiveness ...................................................................6 Tactical Basin Planning: Managing waters along a gradient of condition.......................................................6 WQD Ambient Surface Water Monitoring & Assessment Strategy................................................................6 Public Input......................................................................................................................................................6 -
WEST RIVER WATERSHED MANAGEMENT PLAN Prepared by AUGUST 2015 Acknowledgements
WEST RIVER WATERSHED MANAGEMENT PLAN prepared by AUGUST 2015 Acknowledgements We would like to thank the following individuals and organizations for their contributions of time and effort to the development of this plan: Project Steering Committee Chelsea Auerback, West River Watershed Coalition, New Haven Resident, Student, Yale Law Lynne Bonnett, Greater New Haven Waterworks Coalition, New Haven Environmental Justice Network Frank Cochran, New Haven, Friends of Edgewood Park Frank Deleo, Woodbridge Resident, West River Watershed Coalition Member Kathy Fay, Neighborhood Housing Services, New Haven Chris Malik, Connecticut Department of Energy and Environmental Protection Adam Marchand, Alderman, Ward 25, New Haven Courtney McGinnis, Hamden Resident, Assistant Professor of Biology at Quinnipiac University Mary Mushinsky, River Advocates of South Central Connecticut (formerly with Mill River Watershed Association) Stacy R. Spell, West River Community Member, Civic Leader Ron Walters, South Central Connecticut Regional Water Authority Giovanni Zinn, City Engineer, City of New Haven Gary Zrelak, Greater New Haven Water Pollution Control Authority Other Involved Stakeholders City of New Haven – Karyn Gilvarg, Executive Director, City Plan Department; Rebecca Bombero, Director New Haven Parks, Recreation and Trees City of West Haven – Gail Burns, City Council Member, 10th District; Rob Librandi, Assistant City Planner Common Ground High School – David Edgeworth, Joel Toleman and the Common Ground West River Stewards Friends of Beaver Ponds -
Appendices for the West, Williams and Saxtons Rivers and Adjacent Connecticut River Tributaries
Appendices for the West, Williams and Saxtons Rivers and adjacent Connecticut River Tributaries Contents Appendices for the West, Williams and Saxtons Rivers and adjacent Connecticut River Tributaries ....................................... 1 Appendix A – Existing Uses ........................................................................................................................................................................................ 2 Appendix B. 1 – Dams in the Basin ............................................................................................................................................................................ 9 Appendix B. 2 – Coordination Plan ......................................................................................................................................................................... 12 Appendix B – 3. How a Dam Affects a River ............................................................................................................................................................ 19 Appendix B – 4. Whitewater Paddling Releases on the West River ........................................................................................................................ 20 Appendix B – 5. VDFW Whitewater Release Memo ................................................................................................................................................ 22 Appendix C – Fisheries Assessment Summary ........................................................................................................................................................ -
WATERS THAT DRAIN VERMONT the Connecticut River Drains South
WATERS THAT DRAIN VERMONT The Connecticut River drains south. Flowing into it are: Deerfield River, Greenfield, Massachusetts o Green River, Greenfield, Massachusetts o Glastenbury River, Somerset Fall River, Greenfield, Massachusetts Whetstone Brook, Brattleboro, Vermont West River, Brattleboro o Rock River, Newfane o Wardsboro Brook, Jamaica o Winhall River, Londonderry o Utley Brook, Londonderry Saxtons River, Westminster Williams River, Rockingham o Middle Branch Williams River, Chester Black River, Springfield Mill Brook, Windsor Ottauquechee River, Hartland o Barnard Brook, Woodstock o Broad Brook, Bridgewater o North Branch Ottauquechee River, Bridgewater White River, White River Junction o First Branch White River, South Royalton o Second Branch White River, North Royalton o Third Branch White River, Bethel o Tweed River, Stockbridge o West Branch White River, Rochester Ompompanoosuc River, Norwich o West Branch Ompompanoosuc River, Thetford Waits River, Bradford o South Branch Waits River, Bradford Wells River, Wells River Stevens River, Barnet Passumpsic River, Barnet o Joes Brook, Barnet o Sleepers River, St. Johnsbury o Moose River, St. Johnsbury o Miller Run, Lyndonville o Sutton River, West Burke Paul Stream, Brunswick Nulhegan River, Bloomfield Leach Creek, Canaan Halls Stream, Beecher Falls 1 Lake Champlain Lake Champlain drains into the Richelieu River in Québec, thence into the Saint Lawrence River, and into the Gulf of Saint Lawrence. Pike River, Venise-en-Quebec, Québec Rock River, Highgate Missisquoi -
Investigating Tradeoffs Between Flood Control and Ecological Flow Benefits in the Connecticut River Basin Jocelyn Anleitner
University of Massachusetts Amherst ScholarWorks@UMass Amherst Environmental & Water Resources Engineering Civil and Environmental Engineering Masters Projects 5-2014 Investigating Tradeoffs Between Flood Control And Ecological Flow Benefits in the Connecticut River Basin Jocelyn Anleitner Follow this and additional works at: https://scholarworks.umass.edu/cee_ewre Part of the Environmental Engineering Commons Anleitner, Jocelyn, "Investigating Tradeoffs Between Flood Control And Ecological Flow Benefits in the onneC cticut River Basin" (2014). Environmental & Water Resources Engineering Masters Projects. 64. https://doi.org/10.7275/8vfa-s912 This Article is brought to you for free and open access by the Civil and Environmental Engineering at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Environmental & Water Resources Engineering Masters Projects by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. INVESTIGATING TRADEOFFS BETWEEN FLOOD CONTROL AND ECOLOGICAL FLOW BENEFITS IN THE CONNECTICUT RIVER BASIN A Master’s Project Presented By: Jocelyn Anleitner Submitted to the Department of Civil and Environmental Engineering of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering April 2014 INVESTIGATING TRADEOFFS BETWEEN FLOOD CONTROL AND ECOLOGICAL FLOW BENEFITS IN THE CONNECTICUT RIVER BASIN A Master's Project Presented by JOCELYN ANLEITNER Approved as to style and content by: ~~tor Civil and Environmental Engineering Department ACKNOWLEDGEMENTS I would like to thank The Nature Conservancy (TNC) for funding this work through the Connecticut River Project. This work would not have been possible without, not only their funding, but the support and expertise they have provided. -
FINAL REPORT 7 Hazen Drive, PO Box 483 Concord, NH 03302-0483 14
Technical Report Documentation Page 1. Report No. 2. Gov. 3. Recipient's Catalog No. FHWA-NH-RD-14282F Accession No. 4. Title and Subtitle 5. Report Date Estimation of Flood Discharges at Selected Recurrence Intervals for Streams in New 2008 Hampshire 7. Author(s) 8. Performing Organization Report No. Scott A. Olson 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) U. S. Geological Survey New Hampshire-Vermont Water Science Center 361 Commerce Way Pembroke, NH 03275 11. Contract or Grant No. 14282F, X-A000 (601) 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered New Hampshire Department of Transportation FINAL REPORT 7 Hazen Drive, PO Box 483 Concord, NH 03302-0483 14. Sponsoring Agency Code 15. Supplementary Notes In cooperation with the U. S. Department of Transportation, Federal Highway Administration 16. Abstract This report provides estimates of flood discharges at selected recurrence intervals for streamgages in and adjacent to New Hampshire and equations for estimating flood discharges at recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, and 500-years for ungaged, unregulated, rural streams in New Hampshire. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 117 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, mean April precipitation, percentage of wetland area, and main channel slope. The average standard error of prediction for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval flood discharges with these equations are 30.0, 30.8, 32.0, 34.2, 36.0, 38.1, and 43.4 percent, respectively. -
Update Report for Vermont
Update Report for Vermont Current as of 696 Virginia Road, Concord, Massachusetts 01742-2751 August 31, 2020 Public Affairs Office, 978-318-8264 Home Page: www.nae.usace.army.mil Mission Index Both the New England and New York districts of the U.S. Army Corps of • Defense Environmental Engineers (Corps) provide service to the residents of the Green Mountain state. Restoration Program New England District (District) is responsible for all civil works activities within the (DERP) Connecticut River Basin, while New York District handles activities in the Lake • Environmental Restoration Champlain drainage area (https://www.nan.usace.army.mil/). The District is responsible for the entire state for the Regulatory and Defense Environmental • Flood Damage Reduction Restoration Programs, all Emergency Operations and is the Corps’ lead for the Planning Assistance to States Program. This division of responsibility between • Flood Plain Management the New York and New England districts is seamless to our stakeholders because the Corps strives to provide access to all our capabilities through a "One-Door- • Flood Risk Management to-the-Corps" policy. Unless specifically noted, all activities included in this report are managed by the New England District. • Interagency and International Support The missions of the District include flood risk management, emergency • Mission preparedness and response to natural disasters and national emergencies, environmental remediation and restoration, natural resource management, • Natural Resources streambank and shoreline protection, navigation maintenance and improvement, Management support to military facilities and installations, and engineering and construction support to other government agencies. The six New England states cover 66,000 • Navigation square miles and have 6,100 miles of coastline, 170 federal navigation projects (13 deep draft commercial waterways), 13 major river basins, and thousands of • Planning Assistance miles of navigable rivers and streams. -
Variation in Operational Objectives and Associated Biophysical Effects, with Focus on Northern New England
Variation in Operational Objectives and Associated Biophysical Effects, with Focus on Northern New England Mike Burke, Nick Nelson, and Kristen Coveleski Motivations • Explore dam operations and associated biophysical effects • Explore regional trends in dam operational objectives and characteristics • Review selected screening-level tools for assessing potential for impacts. Outline • Concepts of Operational Effects • Regional Trends • Case Study Operational Effects Adapted from Burke et al. 2009 Operational Effects Source: Grant et al. 2003 Source: Poff et al. 1997 Regional Trends • Active Dams • Maine: 616 • New Hampshire: 2615 • Vermont: 650 Data from most recent online dam safety data GIS coverages for each state. Regional Trends • Active Dams • Maine: 616 • New Hampshire: 2615 • Vermont: 650 ME NH VT Hydropower 82 119 85 Water Supply 64 66 41 Flood Control664615 Recreation 229 1215 277 Other 175 1169 232 Detention 251 Conservation/Ag 635 Fire Protection 200 Regional Trends • Active Dams • Maine: 616 • New Hampshire: 2615 • Vermont: 650 ME NH VT Hydropower 82 119 85 Water Supply 64 66 41 Flood Control664615 Recreation 229 1215 277 Other 175 1169 232 Detention 251 Conservation/Ag 635 Fire Protection 200 Regional Trends Height ME NH VT 0‐25 161 146 70 26‐50 39 55 43 50‐100 10 25 14 101‐150 2 5 5 151‐260 1 2 5 Case Study • West River, Vermont • 423 mi2 tributary to the Connecticut • Flood Control Act 1961 • Ball Mountain Dam • 93,000 Ac Ft Storage • 260 ft height • 172 mi2 • Townshend Dam • 56,000 Ac Ft Storage • 133 ft height • 278