The Low-Lying Glueball Spectrum

Total Page:16

File Type:pdf, Size:1020Kb

The Low-Lying Glueball Spectrum Physics Letters B 577 (2003) 61–66 www.elsevier.com/locate/physletb The low-lying glueball spectrum Adam P. Szczepaniak a, Eric S. Swanson b,c a Department of Physics and Nuclear Theory Center, Indiana University, Bloomington, IN 47405, USA b Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA c Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606, USA Received 2 September 2003; accepted 4 October 2003 Editor: H. Georgi Abstract The complete low-lying positive charge conjugation glueball spectrum is obtained from QCD. The formalism relies on the construction of an efficient quasiparticle gluon basis for Hamiltonian QCD in Coulomb gauge. The resulting rapidly convergent Fock space expansion is exploited to derive quenched low-lying glueball masses with no free parameters which are in remarkable agreement with lattice gauge theory. 2003 Published by Elsevier B.V. 1. Introduction Previous models of glueballs have relied on ad hoc effective degrees of freedom such as flux tubes [3], The scalar glueball has been called the fundamental bags [4], or constituent gluons [5]. We note that some particle of QCD [1]. Indeed, its existence and nonzero of the models listed in Ref. [5] construct states with mass are a direct consequence of the non-Abelian massive gluons, while others either use transverse glu- nature of QCD and the confinement phenomenon. It ons or dynamically generated gluons masses. Models is clear that finding and understanding the scalar (and in the former category contain spurious states due to other) glueballs is a vital step in mastering low-energy the presence of unphysical longitudinal gluon modes. QCD. Sum rule computations of glueball properties exist [6], Recently quenched lattice gauge theory has been however, they are based on phenomenological proper- able to determine the low-lying glueball spectrum ties of the spectrum. Finally, the conjectured duality with reasonable accuracy [2] (only very preliminary between supergravity and large-N gauge theories has determinations of other matrix elements have been been used to compute the glueball spectrum in non- attempted). These data serve as a useful benchmark in supersymmetric Yang–Mills theory by solving the su- the development of a qualitative model of the emergent pergravity wave equations in a black hole geometry properties of low-energy QCD. The models may then [7]. Unfortunately all of these approaches suffer from be used to guide experimental glueball searches. weak or conjectured connections to QCD. We present a computation of the positive charge conjugation glueball spectrum which arises from QCD E-mail address: [email protected] (A.P. Szczepaniak). and is systematically improvable. The computation 0370-2693/$ – see front matter 2003 Published by Elsevier B.V. doi:10.1016/j.physletb.2003.10.008 62 A.P. Szczepaniak, E.S. Swanson / Physics Letters B 577 (2003) 61–66 is based on the formalism presented in Ref. [8] with the variational parameter ω(k) determined by in which the QCD Hamiltonian in Coulomb gauge minimizing the vev of H . The correction terms in is employed as a starting point. Coulomb gauge is δH include V3g and V4g which are the three- and efficacious for the study of bound states because all four-gluon operators originating from the difference degrees of freedom are physical (there are no ghost between the full and the Abelian chromomagnetic fields in this gauge) and a positive definite norm field. VJ denotes a contribution from the Faddeev– exists [9]. Furthermore, resolving the Coulomb gauge Popov determinant in the kinetic term. The effects constraint produces an instantaneous interaction (the of VJ and the Faddeev–Popov determinant in the non-Abelian analogue of the Coulomb interaction) functional integrals have recently being studied in which, as shown in Ref. [8] may be used to generate Ref. [10] where it was found that its effects can be bound states. Because the temporal component of the effectively included in the variational parameter ω(k). vector potential is renormalization group invariant in Finally, VC is the difference between the Coulomb Coulomb gauge (this is not true in other gauges), operator and its vev, K0. In the calculation of the the instantaneous potential does not depend on the glueball spectrum it results in operators mixing two ultraviolet regulator or the renormalization scale [12]. and three, quasiparticle wave functions. We note that This fact permits a physical interpretation of the after renormalization the coupling g is absorbed into instantaneous potential which is a central aspect of our the Faddeev–Popov operator, which then defines the formalism. Coulomb gauge analog of a ghost propagator [8, The pure gauge QCD Hamiltonian may be written 10]. The renormalized effective potential K0 is fixed as [9] HQCD = H0 + δH with by comparing with the quenched lattice QCD static potential. A very accurate representation of the static 1 2 2 H0 = dx E + B confinement potential is achieved [8]. 2 The variational vacuum defined above also spec- 1 ifies a Fock space of quasiparticle excitations cor- + dx dy ρa(x)K(0)(x − y)ρa(y) (1) 2 responding to effective gluonic degrees of freedom (which we call quasigluons). Such quasigluons obey and “massive” dispersion relation in the variational vac- uum and therefore improve the description of gluonic δH = V3g + V4g + VJ + VC. (2) bound states since mixing between states with differ- Here B =∇×A is the Abelian part of the chromo- ent number of quasiparticles is suppressed due to their magnetic field and E =−∂/∂tA is the chromoelec- effective mass. tric field. The third term in H0 represents the non- The calculation of the vev of the Hamiltonian and Abelian, instantaneous Coulomb interaction between the properties of the quasiparticle excitations were color charges, ρa =−f abcEb · Ac, mediated by an ef- discussed in Refs. [8,10,11]. These require solving a fective potential K0 computed by taking a vacuum ex- set of coupled integral Dyson equations and as a result pectation value of the Coulomb kernel, one finds that the function ω(k), which in a free theory is given by ω(k) = k, becomes finite as k → 0. The K0(x − y)δ ab value ω(0) can be related to the slope of the static = 2 | ∇ · −1 −∇2 ∇ · −1 | potential at large distances. g Ψ ( D) ( D) x,a;y,b Ψ , (3) with Dab = δab∇ − gf abcAc being the covariant 2. Fock space expansion and the glueball derivative in the adjoint representation. For the vac- spectrum uum wave functional, Ψ [A]=A|Ψ we take a varia- tional ansatz, The quasigluons which emerge in the analysis of 3 Ref. [8] set the QCD scale parameter via the low 1 d k → = [A]= − a a − momentum dispersion relation r0ω(k 0) 1.4, Ψ exp 3 A (k)ω(k)A ( k) , (4) 2 (2π) where r0 is the lattice Sommer parameter. Using the A.P. Szczepaniak, E.S. Swanson / Physics Letters B 577 (2003) 61–66 63 Regge string tension or ρ mass to fix the scale then with gives ω(0) = 600–650 MeV. It is natural to interpret 3J 2 + 3J − 2 this scale as a dynamical gluon mass.1 Thus the K = V 11 − + J formalism of Ref. [8] provides a justification of a (2J 1)(2J 3) − Fock space expansion in terms of quasigluons and J(J 1) + VJ −2 gives the leading instantaneous interaction between 2(2J − 1)(2J + 1) the quasigluons. In view of this it is natural to attempt (J + 1)(J + 2) + VJ + , (6) a description of low-lying glueballs in the pure gauge 2(2J + 3)(2J + 1) 2 sector of QCD. 3(J + 2)(J − 1) In this approach positive charge conjugation glue- K22 = VJ (2J − 1)(2J + 3) balls are dominated by the two quasigluon contribu- (J + 2)(J + 1) tion. These may mix with three and higher quasigluon + V − + − J 2 states via transverse gluon exchange (and, in general, 2(2J 1)(2J 1) − via any term in δH). Mixing with single quasigluon J(J 1) + VJ +2 (7) states is excluded because color nonsinglet states are 2(2J + 1)(2J + 3) removed from the spectrum due to infrared diver- and gences in the color nonsinglet spectrum [11]. Finally, the scalar glueball is orthogonal to the vacuum due to K = K 12 21 the form of the gap equation. = (J − 1)J (J + 1)(J + 2) The resulting bound state equations are shown in 1 Eq. (5). There is one orbital component of glueball × V + + + + J 2 wave function for J P = 0 and two for J P = (even 2(2J 3)(2J 1) 2)+. These are denoted by ψ (k), i = 1, 2. The first 1 i + V − + − J 2 term on the right-hand side of Eq. (5) represents the 2(2J 1)(2J 1) quasigluon kinetic energy (the gluon gap equation has 1 − VJ . (8) been employed to simplify the expression), the second (2J + 3)(2J − 1) term is the quasigluon self energy, and third represents the interaction between quasigluons in the channel of The bound state equations for other glueballs are as interest. in Eq. (5), with the exception that the wave function index takes on a single value. For these cases the 2 k dk 2 interaction kernels are as follows: 2ω(k)|ψi(k)| (2π)3 J P = (odd 3)+ (there is no 1+ gg glueball): 2 2 + NC k dk q dq ω(k) J + 2 J − 1 3 3 K = V − + V + ; (9) 2 (2π) (2π) ω(q) J + J 1 J + J 1 i 2 1 2 1 − 4 2 2 J P = (even 0) : × V + V |ψi(k)| 3 0 3 2 J J + 1 N k2 dk q2 dq (ω(k) + ω(q))2 K = VJ −1 + VJ +1; (10) − C 2J + 1 2J + 1 3 3 4 (2π) (2π) ω(k)ω(q) + ∗ J P = 0 : × ψ (q)Kij (q, k)ψj (k) i 2 2 V2 k dk 2 K = V0 + .
Recommended publications
  • Baryon Resonances and Pentaquarks on the Lattice ✩
    Nuclear Physics A 754 (2005) 248c–260c Baryon resonances and pentaquarks on the lattice ✩ F.X. Lee a,b,∗, C. Bennhold a a Center for Nuclear Studies, George Washington University, Washington, DC 20052, USA b Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA Received 17 December 2004; accepted 22 December 2004 Available online 21 January 2005 Abstract We review recent progress in computing excited baryons and pentaquarks in lattice QCD. 2004 Elsevier B.V. All rights reserved. 1. QCD primer Quantum Chromodynamics (QCD) is widely accepted as the fundamental theory of the strong interaction. The QCD Lagrangian density can be written down simply in one line (in Euclidean space) 1 L = Tr F F µν +¯q γ µD + m q, (1) QCD 2 µν µ q where Fµν = ∂Aµ − ∂Aν + g[Aµ,Aν] is the gluon field strength tensor and Dµ = ∂µ + gAµ is the covariant derivative which provides the interaction between the gluon and quark terms. The action of QCD is the integral of the Lagrangian density over space– 4 time: SQCD = LQCD d x. QCD is a highly non-linear relativistic quantum field theory. It is well known that the theory has chiral symmetry in the mq = 0 limit and the symmetry is spontaneously broken in the vacuum. At high energies, it exhibits asymptotic freedom, ✩ Based on plenary talk by F.X. Lee at HYP2003, JLab. * Corresponding author. E-mail address: [email protected] (F.X. Lee). 0375-9474/$ – see front matter 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.nuclphysa.2004.12.072 F.X.
    [Show full text]
  • Ghost-Free Scalar-Fermion Interactions
    PHYSICAL REVIEW D 98, 044043 (2018) Ghost-free scalar-fermion interactions † ‡ Rampei Kimura,1,2,* Yuki Sakakihara,3, and Masahide Yamaguchi2, 1Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku, Tokyo 169-8050, Japan 2Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan 3Department of Physics, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan (Received 15 June 2018; published 28 August 2018) We discuss a covariant extension of interactions between scalar fields and fermions in a flat space-time. We show, in a covariant theory, how to evade fermionic ghosts appearing because of the extra degrees of freedom behind a fermionic nature even in the Lagrangian with first derivatives. We will give a concrete example of a quadratic theory with up to the first derivative of multiple scalar fields and a Weyl fermion. We examine not only the maximally degenerate condition, which makes the number of degrees of freedom correct, but also a supplementary condition guaranteeing that the time evolution takes place properly. We also show that proposed derivative interaction terms between scalar fields and a Weyl fermion cannot be removed by field redefinitions. DOI: 10.1103/PhysRevD.98.044043 I. INTRODUCTION scalar-tensor theories [4–6,13–20], vector-tensor theories [21–29], and form fields [30–32]. Construction of general theory without ghost degrees of On the other hand, generic theory with fermionic d.o.f. freedom (d.o.f.) has been discussed for a long time. has not yet been investigated well. If we could find such According to Ostrogradsky’s theorem, a ghost always appears in a higher (time) derivative theory as long as it fermionic theories which have not been explored, some is nondegenerate [1] (see also Ref.
    [Show full text]
  • The Ghost Particle 1 Ask Students If They Can Think of Some Things They Cannot Directly See but They Know Exist
    Original broadcast: February 21, 2006 BEFORE WATCHING The Ghost Particle 1 Ask students if they can think of some things they cannot directly see but they know exist. Have them provide examples and reasoning for PROGRAM OVERVIEW how they know these things exist. NOVA explores the 70–year struggle so (Some examples and evidence of their existence include: [bacteria and virus- far to understand the most elusive of all es—illnesses], [energy—heat from the elementary particles, the neutrino. sun], [magnetism—effect on a com- pass], and [gravity—objects falling The program: towards Earth].) How do scientists • relates how the neutrino first came to be theorized by physicist observe and measure things that cannot be seen with the naked eye? Wolfgang Pauli in 1930. (They use instruments such as • notes the challenge of studying a particle with no electric charge. microscopes and telescopes, and • describes the first experiment that confirmed the existence of the they look at how unseen things neutrino in 1956. affect other objects.) • recounts how scientists came to believe that neutrinos—which are 2 Review the structure of an atom, produced during radioactive decay—would also be involved in including protons, neutrons, and nuclear fusion, a process suspected as the fuel source for the sun. electrons. Ask students what they know about subatomic particles, • tells how theoretician John Bahcall and chemist Ray Davis began i.e., any of the various units of mat- studying neutrinos to better understand how stars shine—Bahcall ter below the size of an atom. To created the first mathematical model predicting the sun’s solar help students better understand the neutrino production and Davis designed an experiment to measure size of some subatomic particles, solar neutrinos.
    [Show full text]
  • Arxiv:1908.02416V2 [Hep-Th] 21 Aug 2019
    ACFI-T19-08 Unitarity, stability and loops of unstable ghosts John F. Donoghue∗ Department of Physics, University of Massachusetts Amherst, MA 01003, USA Gabriel Menezesy Department of Physics, University of Massachusetts Amherst, MA 01003, USA and Departamento de F´ısica, Universidade Federal Rural do Rio de Janeiro, 23897-000, Serop´edica, RJ, Brazil We present a new understanding of the unstable ghost-like resonance which appears in theories such as quadratic gravity and Lee-Wick type theories. Quantum corrections make this resonance unstable, such that it does not appear in the asymptotic spectrum. We prove that these theories are unitary to all orders. Unitarity is satisfied by the inclusion of only cuts from stable states in the unitarity sum. This removes the need to consider this as a ghost state in the unitarity sum. However, we often use a narrow-width approximation where we do include cuts through unstable states, and ignore cuts through the stable decay products. If we do this with the unstable ghost resonance at one loop, we get the correct answer only by using a contour which was originally defined by Lee and Wick. The quantum effects also provide damping in both the Feynman and the retarded propagators, leading to stability under perturbations. 1. INTRODUCTION Theories such as quadratic gravity [1{19] and Lee-Wick theories [20{28] have propagators which contain both quadratic and quartic momentum dependence. In addition to the pole at q2 = 0, this combination will produce a high mass pole, via 1 1 1 = − : (1) 2 q4 q2 q2 − µ2 q − µ2 The negative sign for the second term implies that this pole is ghost-like, i.e.
    [Show full text]
  • QCD Lagrangian Gauge Invariance Colour Algebra Feynman Rules 2.Tree Level Amplitudes Application of Feynman Rules Polarisation Sums 3
    QCD and precision calculations Lecture 1: basics Gudrun Heinrich Max Planck Institute for Physics, Munich [email protected] PREFIT School, March 2, 2020 1 Outline 1. Basics of QCD QCD Lagrangian Gauge invariance Colour algebra Feynman rules 2.Tree level amplitudes Application of Feynman rules Polarisation sums 3. NLO calculations (details see lectures 2-4) 4. Beyond NLO 2 Some literature 3 QCD QCD is a very rich field! asymptotic freedom confinement strong CP-problem QCD at finite temperature quark-gluon-plasma flavour puzzles spectroscopy lattice gauge theory disclaimer: I am not doing justice to it by just considering perturbative QCD, and even that only at fixed order However, as the focus will be on precision calculations, I will make a (highly biased) choice 4 Motivation • at hadron colliders, QCD is everywhere • without QCD corrections, (most of) the data are not well described , Grazzini, Kallweit, Rathlev ‘17 GH, Jahn, Jones, Kerner, Pires ‘17 5 QCD corrections perturbation theory in the strong coupling next-to-next-to-leading order leading order next-to-leading order NLO corrections typically NNLO corrections typically a few % but there are prominent exceptions (e.g. Higgs production, NLO corr. ~100%) Why can we do such an expansion at all? important concepts: • asymptotic freedom • factorisation 6 Factorisation parton distribution functions partonic cross power-suppressed non-perturbative (PDFs) section corrections factorisation scale (separate short- and long-distance dynamics) renormalisation scale (UV divergences from loops,
    [Show full text]
  • How to Modify LAMMPS: from the Prospective of a Particle Method Researcher
    chemengineering Article How to Modify LAMMPS: From the Prospective of a Particle Method Researcher Andrea Albano 1,* , Eve le Guillou 2, Antoine Danzé 2, Irene Moulitsas 2 , Iwan H. Sahputra 1,3, Amin Rahmat 1, Carlos Alberto Duque-Daza 1,4, Xiaocheng Shang 5 , Khai Ching Ng 6, Mostapha Ariane 7 and Alessio Alexiadis 1,* 1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (I.H.S.); [email protected] (A.R.); [email protected] (C.A.D.-D.) 2 Centre for Computational Engineering Sciences, Cranfield University, Bedford MK43 0AL, UK; Eve.M.Le-Guillou@cranfield.ac.uk (E.l.G.); A.Danze@cranfield.ac.uk (A.D.); i.moulitsas@cranfield.ac.uk (I.M.) 3 Industrial Engineering Department, Petra Christian University, Surabaya 60236, Indonesia 4 Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia 5 School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 6 Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; [email protected] 7 Department of Materials and Engineering, Sayens-University of Burgundy, 21000 Dijon, France; [email protected] * Correspondence: [email protected] or [email protected] (A.A.); [email protected] (A.A.) Citation: Albano, A.; le Guillou, E.; Danzé, A.; Moulitsas, I.; Sahputra, Abstract: LAMMPS is a powerful simulator originally developed for molecular dynamics that, today, I.H.; Rahmat, A.; Duque-Daza, C.A.; also accounts for other particle-based algorithms such as DEM, SPH, or Peridynamics.
    [Show full text]
  • Exploring Hyperons and Hypernuclei with Lattice
    UNH-03-01 LBNL-53972 NT@UW-03-031 Exploring Hyperons and Hypernuclei with Lattice QCD S.R. Beane,1, 2 P.F. Bedaque,3 A. Parre˜no,4 and M.J. Savage5 1Department of Physics, University of New Hampshire, Durham, NH 03824-3568. 2Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606. 3Lawrence-Berkeley Laboratory, Berkeley, CA 94720. 4Dept. ECM, Facultat de F´ısica, Universitat de Barcelona, E-08028, Barcelona, Spain. 5Department of Physics, University of Washington, Seattle, WA 98195-1560. Abstract In this work we outline a program for lattice QCD that would provide a first step toward under- standing the strong and weak interactions of strange baryons. The study of hypernuclear physics has provided a significant amount of information regarding the structure and weak decays of light nuclei containing one or two Λ’s, and Σ’s. From a theoretical standpoint, little is known about the hyperon-nucleon interaction, which is required input for systematic calculations of hypernuclear structure. Furthermore, the long-standing discrepancies in the P wave amplitudes for nonleptonic − hyperon decays remain to be understood, and their resolution is central to a better understanding of the weak decays of hypernuclei. We present a framework that utilizes L¨uscher’s finite-volume techniques in lattice QCD to extract the scattering length and effective range for ΛN scattering in both QCD and partially-quenched QCD. The effective theory describing the nonleptonic decays of hyperons using isospin symmetry alone, appropriate for lattice calculations, is constructed. arXiv:nucl-th/0311027v1 7 Nov 2003 1 I. INTRODUCTION Nuclear physics is a fascinating field that remains poorly understood at a fundamental level.
    [Show full text]
  • Hyperon-Nucleon Force from Lattice
    UTCCS-P-43, TKYNT-08-07, UTHEP-564 Hyperon-Nucleon Force from Lattice QCD a, ,1 b c,d e Hidekatsu Nemura ∗ , Noriyoshi Ishii , Sinya Aoki , and Tetsuo Hatsuda aAdvanced Meson Science Laboratory, Nishina Center for Accelerator-Based Science, RIKEN,Wako 351-0198, Japan bCenter for Computational Sciences, University of Tsukuba, Tsukuba 305-8571, Japan cGraduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan dRiken BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA eDepartment of Physics, The University of Tokyo, Tokyo 113-0033, Japan Abstract We calculate potentials between a proton and a Ξ0 (hyperon with strangeness −2) through the equal-time Bethe- Salpeter wave function, employing quenched lattice QCD simulations with the plaquette gauge action and the Wilson quark action on (4.5 fm)4 lattice at the lattice spacing a ≃ 0.14 fm. The ud quark mass in our study corresponds to 0 mπ ≃ 0.37 and 0.51 GeV, while the s quark mass corresponds to the physical value of mK . The central pΞ potential 1 3 has a strong (weak) repulsive core in the S0 ( S1) channel for r ∼< 0.6 fm, while the potential has attractive well at 0 medium and long distances (0.6 fm ∼< r ∼< 1.2 fm) in both channels. The sign of the pΞ scattering length and its quark mass dependence indicate a net attraction in both channels at low energies. Key words: Lattice QCD, Hyperon-nucleon interaction, Nuclear forces, Hypernuclei PACS: 12.38.Gc, 13.75.Ev, 21.30.-x, 21.80.+a 1.
    [Show full text]
  • Three-Point Vertex Functions in Yang-Mills Theory and QCD in Landau Gauge
    EPJ Web of Conferences 137, 03001 (2017) DOI: 10.1051/ epjconf/201713703001 XIIth Quark Confinement & the Hadron Spectrum Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge Adrian L. Blum1;a, Reinhard Alkofer1;b, Markus Q. Huber1;c, and Andreas Windisch2;d 1Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, Austria 2Department of Physics, Washington University, St. Louis, MO, 63130, USA Abstract. Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks (“unquenching”) change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the three- gluon vertex the “unquenching” effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared. 1 Introduction All the information about a quantum field theory is contained in its n-point functions. E.g., once the n-point functions of quantum chromodynamics (QCD) are computed, they can be used in a next step to calculate hadron properties. On the level of three-point functions, especially the three-gluon and quark-gluon vertices are of interest and they have thus been the objectives of many non-perturbative studies in recent years. For instance, in the Landau gauge they have been studied using lattice [1–9] and continuum methods [10–37].
    [Show full text]
  • A Route Towards Ghost Imaging with Inelastically Scattered Electrons
    One-dimensional ghost imaging with an electron microscope: a route towards ghost imaging with inelastically scattered electrons E. Rotunno1, S. Gargiulo2, G. M. Vanacore3, C. Mechel4, A. H. Tavabi5, R. E. Dunin-Borkowski5, F. Carbone2,I Maidan2, M. Zanfrognini6, S. Frabboni6, T. Guner7, E. Karimi7, I. Kaminer4 and V. Grillo1* 1 Centro S3, Istituto di Nanoscienze-CNR, 41125 Modena, Italy 2 Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne, Station 6, Lausanne, 1015, Switzerland 3 Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20121, Milano, Italy 4 Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel 5 Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany 6 Dipartimento FIM, Universitá di Modena e Reggio Emilia, 41125 Modena, Italy 7 Department of Physics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada *email: [email protected] In quantum mechanics, entanglement and correlations are not sporadic curiosities but ubiquitous phenomena that are at the basis of interacting quantum systems. In electron microscopy, such concepts have not yet been explored extensively. For example, inelastic scattering can be reanalyzed in terms of correlations between an electron beam and a sample. Whereas classical inelastic scattering results in a loss of coherence in the electron beam, a joint measurement performed on both the electron beam and the sample excitation could restore the coherence and “lost information.” Here, we propose to exploit joint measurement in electron microscopy to achieve a counterintuitive application of the concept of ghost imaging, which was first proposed in quantum photonics.
    [Show full text]
  • Perturbative Quantum Gravity and Yang-Mills Theories in De Sitter Spacetime
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by White Rose E-theses Online Perturbative Quantum Gravity and Yang-Mills Theories in de Sitter Spacetime Mir Faizal A Thesis Submitted for the Degree of PhD Department of Mathematics University of York October 2009 Abstract This thesis consists of three parts. In the first part we review the quantization of Yang-Mills theories and perturbative quantum gravity in curved spacetime. In the second part we calculate the Feynman propagators of the Faddeev- Popov ghosts for Yang-Mills theories and perturbative quantum gravity in the covariant gauge. In the third part we investigate the physical equivalence of covariant Wightman graviton two-point function with the physical graviton two-point function. The Feynman propagators of the Faddeev-Popov ghosts for Yang-Mills theories and perturbative quantum gravity in the covariant gauge are infrared (IR) divergent in de Sitter spacetime. We point out, that if we regularize these divergences by introducing a finite mass and take the zero mass limit at the end, then the modes responsible for these divergences will not con- tribute to loop diagrams in computations of time-ordered products in either Yang-Mills theories or perturbative quantum gravity. We thus find effec- tive Feynman propagators for ghosts in Yang-Mills theories and perturbative quantum gravity by subtracting out these divergent modes. It is known that the covariant graviton two-point function in de Sitter spacetime is infrared divergent for some choices of gauge parameters. On the other hand it is also known that there are no infrared problems for the physical graviton two-point function obtained by fixing all gauge degrees of freedom, in global coordinates.
    [Show full text]
  • Arxiv:2006.01140V3 [Cond-Mat.Str-El] 28 Jul 2020
    arXiv:2006.01140 Deconfined criticality and ghost Fermi surfaces at the onset of antiferromagnetism in a metal Ya-Hui Zhang and Subir Sachdev Department of Physics, Harvard University, Cambridge, MA 02138, USA (Dated: July 29, 2020) Abstract We propose a general theoretical framework, using two layers of ancilla qubits, for deconfined criticality between a Fermi liquid with a large Fermi surface, and a pseudogap metal with a small Fermi surface of electron-like quasiparticles. The pseudogap metal can be a magnetically ordered metal, or a fractionalized Fermi liquid (FL*) without magnetic order. A critical `ghost' Fermi surface emerges (alongside the large electron Fermi surface) at the transition, with the ghost fermions carrying neither spin nor charge, but minimally coupled to (U(1) × U(1))=Z2 or (SU(2) × U(1))=Z2 gauge fields. The (U(1) × U(1))=Z2 case describes simultaneous Kondo breakdown and onset of magnetic order: the two gauge fields induce nearly equal attractive and repulsive interactions between ghost Fermi surface excitations, and this competition controls the quantum criticality. Away from the transition on the pseudogap side, the ghost Fermi surface absorbs part of the large electron Fermi surface, and leads to a jump in the Hall co-efficient. We also find an example of an \unnecessary quantum critical point" between a metal with spin density wave order, and a metal with local moment magnetic order. The ghost fermions contribute an enhanced specific heat near the transition, and could also be detected in other thermal probes. We relate our results to the phases of correlated electron compounds.
    [Show full text]