Guidelines for Groundwater Protection in Australia

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for Groundwater Protection in Australia National Water Quality Management Strategy Guidelines for Groundwater Protection in Australia September 1995 Agriculture and Resource Management Council of Australia and New Zealand Australian and New Zealand Environment and Conservation Council i Copies of this publication may be obtained from: Australian Water and Wastewater Association PO Box 388 ARTARMON NSW 2064 Telephone (02) 9413 1288 Facsimile (02) 9413 1047 or: Commonwealth Government bookshops in the States and Territories Telephone: 132 447 For further information, contact: The Secretary Agriculture and Resource Management Council of Australia and New Zealand Department of Primary Industries and Energy GPO Box 858 CANBERRA ACT 2600 Tel: (06) 272 5216 Fax: (06) 272 4772 or: The Secretary Australian and New Zealand Environment and Conservation Council GPO Box 787 CANBERRA ACT 2600 (02) 6274 1428 Fax: (02) 6274 1858 (c) Commonwealth of Australia 1995 ISBN 0 642 19558 7 ISSN 1038 7072 Printed on recycled paper. Printed in Australia for the Agriculture and Resource Management Council of Australia and New Zealand, and the Australian and New Zealand Environment and Conservation Council. Web Version prepared 25 September 2001 ii SUMMARY These guidelines are part of the National Water Quality Management Strategy. The objective of these guidelines is to provide a framework for protecting groundwater from contamination in Australia. This framework will enable each State, Territory and the Commonwealth to develop policies and strategies which are tailored to their specific legislative and resource management situations. One million people in 600 communities around Australia enjoy great benefits from their groundwater resources. Groundwater is an important source of water for major cities, industries and rural towns. For many isolated communities and rural properties, their very existence relies on the availability of good groundwater. Many features on our landscape, such as wetlands and lakes, are directly linked to the groundwater beneath. A benchmark report. The Status of Groundwater Contamination and Regulation in Australia, was published in 1990. The report showed that for most of the States and Territories there was adequate legislation available to protect groundwater, even if it was fragmented across several areas of government in some States and Territories. However, little protective action was actually taking place. The protection framework outlined in these guidelines involves the identification of specific beneficial uses and values for every major aquifer, i.e. the classification of groundwater bodies. Depending upon specific circumstances, there are a number of protection strategies which can emerge to protect each aquifer, but all involve monitoring. A public planning process is required in order to examine possible options and select the best set of strategies. The protection strategies which emerge will mainly be pro-active in nature but some current problems will also require remedial action. The major types of protection strategies are classified into three 'legislative' groups. First, there is a whole range of traditional groundwater management measures available, such as vulnerability maps, aquifer classification systems and wellhead protection plans. Secondly, there is a range of land-use planning measures which can help prevent contamination occurring at inappropriate locations. Finally, there is a variety of environmental protection measures emerging which tackle modern waste management problems in progressive ways. Nearly all protection strategies will rely on government intervention backed by community support. Protection planning processes are at an early stage of evolution in Australia. These guidelines assist by providing a case example of the steps involved in developing a regional protection plan for groundwater. This case study aims to assist and guide managers and the community towards a successful outcome from their planning. Finally, a national goal is set for all groundwater managers in Australia. The goal is for all States Territories and the Commonwealth to have a beneficial use classification in place for all significant aquifers by the end of the decade. Consequently, this goal will help ensure that the first step is talon towards adequately planning for the protection of Australia's groundwater resource. iii Contents Page SUMMARY i Acknowledgments iv 1. INTRODUCTION 1 1.1 Background 1 1.2 Objectives of Guidelines 1 1.3 Scope of Guidelines 2 1.4 National Water Quality Management Strategy 3 1.5 Terminology 3 2. THE NEED FOR GROUNDWATER PROTECTION 5 2.1 The Benefits of Groundwater 5 2.2 Groundwater Contamination Sources 6 2.3 Groundwater Protection in Australia 7 2.4 The Need for Protection 8 3. UNDERLYING PRICIPLES FOR GUIDELINES 9 3.1 Groundwater: A pervasive Resource 9 3.2 Beneficial Use Framework and Polluter Pays Principle 10 3.3 Achieving Equity 12 4. APPROACHES TO GROUNDWATER PROTECTION 14 4.1 Forms of Intervention 14 4.2 Types of Protection Strategies 16 4.3 Groundwater Management Measures 18 4.4 Land Use Planning Measures 27 4.5 Environment Protection Measures 29 4.6 Other Measures 31 5. DEVELOPMENT OF A PROTECTION PLAN 33 5.1 Background 33 5.2 Public Involvement 35 5.3 Strategic Assessment of Grounwater Resources 38 5.4 Protection Objectives and Beneficial Uses 39 5.5 Identifying Beneficial Uses and Appropriate Criteria 40 5.6 Narrative and Prescriptive Criteria 41 5.7 Point of Application Criteria 42 5.8 Land Use Planning Options 43 5.9 Environment Protection Options 45 5.10 Monitoring and Review 46 5.11 Contingency Measures 47 5.12 Selection and Implementation of Preferred Options 48 iv 6. CONCLUSION 50 APPENDICES I. Types and Sources of Contaminants 51 II. Water Quality Criteria 55 III. Technical Guidance Documentation 58 Glossary 73 Chapter Notes 76 Bibliography 81 Tables 1. Groundwater use and vulnerability categories 22 2. Example of a wellhead protection zone for public water supplies 27 3. Examples of some protection measures 32 Figures* 3. Examples of steps in developing a regional protection plan f or groundwater 37 4. Adaptive management approach to protection 39 Appendices I-1 Contaminants and sources 52 I-2 Priority contaminants in industrial waste streams 54 III-1 Prevention and remedial measures 70 III-2 Methodologies for aquifer clean-up 72 [* For technical reasons, Figures 1 and 2 have not been reproduced in this downloadable web version] i ACKNOWLEDGMENTS The preparation of these guidelines was undertaken by the Water Resources Management Committee of ARMCANZ. Appreciation is extended to the numerous contributions to the various versions of these guidelines since the first draft appeared in 1958. Editing and writing was carried out by Jim Keary. Harry Ventriss wrote the original version of Chapter 5. ii I INTRODUCTION 1.1 Background Contamination of Australia's groundwater resources and the resultant undesirable effects on the environment and humans has been a growing concern among water managers in all States and Territories of Australia for some years. In the first comprehensive publication on groundwater in Australia published by the Australian Water Resources Council (AWRC) in 1975, the threat of contamination from 'waste chemicals…percolating from the surface…’ was clearly recognised1. In 1979 a conference in Perth sponsored by AWRC documented numerous cases of groundwater contamination and showed the general level of concern about these matters in the water sector2. Work on these guidelines was initiated by the AWRC Water Resources Management Committee following a recommendation from the former AWRC Groundwater Technical Committee. This committee had earlier commissioned an inventory study of incidents of groundwater contamination in Australia. It was recognised that while that study gathered a substantial database and illustrated that the issue of groundwater contamination is of concern across Australia, the study needed to be supplemented by further work which assessed the significance of this contamination since groundwater and its environment vary widely across Australia. It was also evident that a number of significant incidents and types of contamination were not reported thus giving a distorted view of the distribution of contamination across Australia. Since there were general concerns among Australian groundwater managers regarding contamination which needed to be addressed, the primary purpose of further work was to be directed towards development of groundwater protection guidelines. These guidelines could then be used to assist State, Territory and Commonwealth Governments in the formulation of policies to protect groundwater from pollution. These national guidelines were developed to address this common need. They provide the common national framework under which each State, Territory and the Commonwealth can create appropriate management arrangements to protect this continent's groundwater resource from undesirable degradation. These guidelines focus on a specific part of groundwater management, viz. the protection of the quality of groundwater from contamination, and also focus on land-based management of the groundwater resource. Whilst the scope of any guidelines is limited, it is important to recognise the boundaries of guidelines from the outset and realise that these guidelines need to be viewed as a small but important step towards better management of this nation's water resource. 1.2 Objectives of Guidelines The objective of these guidelines is to provide a national framework
Recommended publications
  • 'Drought-Free' Maharashtra? Politicising Water Conservation for Rain-Dependent Agriculture
    www.water-alternatives.org Volume 14 | Issue 2 Shah, S.H.; Harris, L.M.; Johnson, M.S. and Wittman, H. 2021. A 'drought-free' Maharashtra? Politicising water conservation for rain-dependent agriculture. Water Alternatives 14(2): 573-596 A 'Drought-Free' Maharashtra? Politicising Water Conservation for Rain-Dependent Agriculture Sameer H. Shah Institute for Resources, Environment & Sustainability (IRES), The University of British Columbia, Vancouver, Canada; [email protected] Leila M. Harris Institute for Resources, Environment & Sustainability (IRES) and the Institute for Gender, Race, Sexuality and Social Justice (GRSJ), The University of British Columbia, Vancouver, Canada; [email protected] Mark S. Johnson Institute for Resources, Environment & Sustainability (IRES) and the Department of Earth, Ocean & Atmospheric Sciences, The University of British Columbia, Vancouver, Canada; [email protected] Hannah Wittman Institute for Resources, Environment & Sustainability (IRES) and the Centre for Sustainable Food Systems, The University of British Columbia, Vancouver, Canada; [email protected] ABSTRACT: Soil moisture conservation ('green water') and runoff capture ('blue water') can reduce agricultural risks to rainfall variation. However, little is known about how such conjoined initiatives articulate with social inequity when up-scaled into formal government programmes. In 2014, the Government of Maharashtra institutionalised an integrative green-blue water conservation campaign to make 5000 new villages drought-free each year (2015- 2019). This paper analyses the extent to which the campaign, Jalyukt Shivar Abhiyan, enhanced the capture, equity, and sustainability of water for agricultural risk reduction. We find government interests to demonstrate villages as 'drought-free' affected the character and implementation of this integrative campaign.
    [Show full text]
  • Optimization of Groundwater Remediation Strategies in Aquifers Affected by Slow Desorption Processes
    Optimization of Groundwater Remediation Strategies in Aquifers Affected by Slow Desorption Processes By Thomas C. Harmon, William W-G. Yeh Dung Kong, Jose A. Saez and Yung-Hsin Sun Department of Civil and Environmental Engineering University of California, Los Angeles Los Angeles, CA 90095-1593 TECHNICAL COMPLETION REPORT Project Number UCAL-WRC-W-81S September, 1996 University of California Water Resources Center ,...:<) c; (), 'i '_.',,,\"~' i 'V!-~S The research leading to this report was supported jointly by the National Water Research Institute and by the University of California, Water Resources Center, as part of Water Resources Center Project UCAL-WRC-W-81S. , W') L- - ( IIV) Of (~" .r .~. , ~ ~"-) Optimization of Groundwater Remediation Strategies in Aquifers Affected by Slow Desorption Processes TABLE OF CONTENTS LIST OF FIGURES iii ABSTRACT iv 1. PROBLEM AND RESEARCH OBJECTIVES 1 2. METHODOLOGy 2 2.1 Flow and Transport Model Formulation 3 2.2 Numerical Method 3 2.3 Simulated Domain 4 2.4 Moment Analysis 7 2.5 Remediation Management Model 8 2.5.1 Background 8 2.5.2 Management Algorithm 9 3. PRINCIPLE FINDINGS AND SIGNIFICANCE 12 3.1 Simulated Spatial Distributions 12 3.2 Simulated Mass Recovery 13 3.3 Moment Analysis 14 3.4 Two Phase Pumping Scheme 14 3.6 Optimal Management of Two Phase Pumping 15 4. CONCLUSIONS AND RECOMMENDATIONS 16 5. SUMMARY 18 6. Ph.D. DISSERTATIONS 19 7. SOURCES CONSULTED 19 11 LIST OF FIGURES Figure Caption Page Figure 1 Computational domains, parameter zonation and 23 extraction well location for heterogeneous and homogeneous cases. Figure 2 Heterogeneous domain simulated mobile zone 24 concentrations lines under (a) 20 year source term under natural-gradient flow conditions for 20 years mobile zone concentrations, and (b) 20 years forced gradient flow conditions.
    [Show full text]
  • Federal Groundwater Protection Programs
    University of Colorado Law School Colorado Law Scholarly Commons Uncovering the Hidden Resource: Groundwater Law, Hydrology, and Policy in the 1990s 1992 (Summer Conference, June 15-17) 6-17-1992 Setting the Standards: Federal Groundwater Protection Programs Katharine (Joni) Teter Follow this and additional works at: https://scholar.law.colorado.edu/groundwater-law-hydrology-policy Part of the Environmental Health and Protection Commons, Environmental Law Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, State and Local Government Law Commons, Water Law Commons, and the Water Resource Management Commons Citation Information Teter, Katharine (Joni), "Setting the Standards: Federal Groundwater Protection Programs" (1992). Uncovering the Hidden Resource: Groundwater Law, Hydrology, and Policy in the 1990s (Summer Conference, June 15-17). https://scholar.law.colorado.edu/groundwater-law-hydrology-policy/39 Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. Katharine (Joni) Teter, Setting the Standards: Federal Groundwater Protection Programs, in UNCOVERING THE HIDDEN RESOURCE: GROUNDWATER LAW, HYDROLOGY, AND POLICY IN THE 1990S (Natural Res. Law Ctr., Univ. of Colo. Sch. of Law 1992). Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. SETTING THE STANDARDS: FEDERAL GROUNDWATER PROTECTION PROGRAMS Katharine (Joni) Teter Gorsuch, Kirgis, Campbell, Walker and Grover Attorneys at Law 1401 Seventeenth Street, Suite 1100 Denver, Colorado UNCOVERING THE HIDDEN RESOURCE: GROUNDWATER LAW, HYDROLOGY AND POLICY IN THE 1990s University of Colorado at Boulder Natural Resources Law Center June 15-17, 1992 SETTING THE STANDARDS: FEDERAL GROUNDWATER PROTECTION PROGRAMS I.
    [Show full text]
  • Groundwater and Soil Remediation Guidelines for Nuclear Power Plants Public Edition
    Groundwater and Soil Remediation Guidelines for Nuclear Power Plants Public Edition 2011 TECHNICAL REPORT Electric Power Research Institute 3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 USA 800.313.3774 • 650.855.2121 • [email protected] • www.epri.com Groundwater and Soil Remediation Guidelines for Nuclear Power Plants Public Edition 1023464 Final Report, July 2011 EPRI Project Manager K. Kim EPRI Staff Contributor R. McGrath This document does NOT meet the requirements of 10CFR50 Appendix B, 10CFR Part 21, ANSI N45.2-1977 and/or the intent of ISO-9001 (1994) ELECTRIC POWER RESEARCH INSTITUTE 3420 Hillview Avenue, Palo Alto, California 94304-1338 ▪ PO Box 10412, Palo Alto, California 94303-0813 ▪ USA 800.313.3774 ▪ 650.855.2121 ▪ [email protected] ▪ www.epri.com DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM: (A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR (B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.
    [Show full text]
  • Groundwater Remediation Discharge Facilities Permit Reissuance Fact
    NPDES Fact Sheet Page 1 of 84 Idaho Groundwater Remediation Discharge Facilities IDG911000 FACT SHEET The United States Environmental Protection Agency (EPA) proposes to reissue a National Pollutant Discharge Elimination System (NPDES) General Permit to discharge pollutants pursuant to the provisions of the Clean Water Act, 33 USC §1251 et seq. to: Groundwater Remediation Discharge Facilities Permit Number: IDG911000 (Formerly IDG910000) Public Comment Period Start Date: April 3, 2014 End Date: May 19, 2014 Technical Contact Contact: Jill A. Nogi, MPH Email: [email protected] Phone: (206) 553-1841, or call 1-800-424-4372 and request x-1841 EPA PROPOSES NPDES PERMIT REISSUANCE The U.S. Environmental Protection Agency (EPA) proposes to reissue the NPDES General Permit to discharge pollutants from Groundwater Remediation Facilities to waters of the United States (U.S.) in Idaho. In order to ensure the protection of water quality and human health, the Groundwater Remediation Discharge Facilities General Permit (GWGP) establishes limits on the types and amounts of pollutants that can be discharged as well as other conditions on facilities authorized to discharge under the Permit. This GWGP does not provide coverage for discharges from mining operations which are now covered by an administrative extension of the previous General Permit (NPDES Permit No. IDG910000; expired as of June 30, 2012). However, the EPA intends to issue a mining-specific general permit at a later date. Those mining facilities which have extended coverage under the previous permit must continue to operate in compliance with the limits and conditions of IDG910000 until a new permit is issued.
    [Show full text]
  • Groundwater Statistics Tool Users Guide
    GROUNDWATER STATISTICS TOOL USER’S GUIDE U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE OFFICE OF SUPERFUND REMEDIATION AND TECHNOLOGY INNOVATION WASHINGTON, D.C. 20460 September 2018 Groundwater Statistics Tool User’s Guide TABLE OF CONTENTS Section Page 1.0 BACKGROUND/PURPOSE ............................................................................................ 1 1.1 Remediation Monitoring Phase ............................................................................ 1 1.2 Attainment Monitoring Phase ............................................................................... 3 2.0 OVERVIEW OF THE GROUNDWATER STATISTICS TOOL .......................................... 5 2.1 Outlier Testing ..................................................................................................... 5 2.2 Normality Testing ................................................................................................. 5 2.3 Calculations of the Mean, Linear Trend and Upper Confidence Band .................. 5 2.4 Data Sets with No Detected Values ..................................................................... 6 3.0 STEP-BY-STEP INSTRUCTIONS FOR USING THE GROUNDWATER STATISTICS TOOL .............................................................................................................................. 7 4.0 EXAMPLES ................................................................................................................... 16 5.0 REFERENCES .............................................................................................................
    [Show full text]
  • Groundwater Management in Mining Areas
    GROUNDWATER MANAGEMENT IN MINING AREAS Proceedings of the 2nd IMAGE-TRAIN Advanced Study Course Pécs, Hungary, June 23-27, 2003 EUROPEAN COMMISSION RESEARCH DIRECTORATE-GENERAL CONFERENCE PAPERS/TAGUNGSBERICHTE CP-035 Wien/Vienna, 2004 Projektleitung/Project Management Gundula Prokop Editors Gundula Prokop, Umweltbundesamt, Spittelauer Lände 5, 1090 Vienna, Austria e-mail: [email protected] Paul Younger, University of Newcastle upon TyneNE1 7RU Newcastle upon Tyne, UK e-mail: [email protected] Karl Ernst Roehl, Karlsruhe University, Kaiserstrasse 12, 76128 Karlsruhe, Germany e-mail: [email protected] Veranstaltungsorganisation/Event Organisation The Umweltbundesamt being responsible for the overall co-ordination of the meeting. University of Newcastle upon being responsible for the course programme. Karlsruhe University being responsible for the on-site organisation. Mecsekerc Rt. functioning as host and being responsible for the excursion to the aban- doned uranium mining areas near Pécs. Veranstaltungsfinanzierung/Event Funding The European Commission Research Directorate General Satz und Layout/Typesetting and Layout Elisabeth Lössl, Umweltbundesamt Danksagung/Acknowledgement Special thanks are due to Dr. Mihaly Csövári and his team from Mecsek Ore Environ- ment Corporation in Pécs for organising and supporting this course and for providing their expertise for the on-site excursions. Impressum Medieninhaber und Herausgeber: Umweltbundesamt GmbH Published by: Spittelauer Lände 5, 1090 Wien/Vienna, Austria Die unverändert abgedruckten Einzelreferate geben die Fachmeinung ihrer Autoren und nicht notwendigerweise die offizielle Meinung des Umweltbundessamtes wieder. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.
    [Show full text]
  • Maharashtra State on Water Conservation
    Inter Ministrial Committee on Water Conservation Efforts of Maharashtra state on water conservation Vasundhara Watershed Developmet Agency, Pune Date: 1.5. 2019 PMKSY Components and Convergence I. Accelerated Irrigation Benefits Programme (AIBP) II. Har Khet ko Pani III. Per Drop More Crop IV. Watershed Development • Convergence Programme with Central and State Schemes I. Jalyukt Shivar Abhiyan (Field filled with Water) II. MGNREGS III. Magel Tyala Shettale (Farm Pond on Demand) Summary of PMKSY-WDC Maharashtra State---Till 31 March. 2019 Year of Appraisal Sr. Total Particulars Batch- No Batch-II Batch-III Batch IV Batch V Batch VI I (2009- (2010-11) (2011-12) (2012-13) (2013-14) (2014-15) 10) 1. No. of Projects for 239 359 212 118 113 121 1162 implementation 2. Project Area 9.51 14.52 8.79 4.97 4.93 5.37 48.09 3. Project Cost (Rs. Cr.) 1213 1853 1127 646 634 690 6163 4. Funds received (Rs. in Cr.) Central+ 800 1174 582 182 111 50 3035 State+Int 5. Total Expenditure 799 1173 580 179 109 48 2890 (Rs. in Cr. and %) (99%) (98%) (97%) (97%) (98%) (96%) (96%) 6. DPRs sanctioned 239 359 214 113 81 20 1026 7. Projects Cancelled/ 4 11 3 7 34 97 156 Hold 8. Phy Ach Lakh Hect 7.21 10.35 4.93 1.31 0.56 0.08 24.44 9 WDF Amt in Cr. 6.51 11.46 17.97 10 Exited Projects Mar 17 Mar -18 Mar- 19 Mar -20 Mar-21 Mar -22 11 Administrative 239 348 Closure Report PMKSY –WD implementation strategy.
    [Show full text]
  • Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: a Review
    water Review Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review Motasem Y. D. Alazaiza 1,* , Ahmed Albahnasawi 2 , Gomaa A. M. Ali 3 , Mohammed J. K. Bashir 4 , Nadim K. Copty 5 , Salem S. Abu Amr 6 , Mohammed F. M. Abushammala 7 and Tahra Al Maskari 1 1 Department of Civil and Environmental Engineering, College of Engineering, A’Sharqiyah University, Ibra 400, Oman; [email protected] 2 Department of Environmental Engineering-Water Center (SUMER), Gebze Technical University, Kocaeli 41400, Turkey; [email protected] 3 Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; [email protected] 4 Department of Environmental Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; [email protected] 5 Institute of Environmental Sciences, Bogazici University, Istanbul 34342, Turkey; [email protected] 6 Faculty of Engineering, Demir Campus, Karabuk University, Karabuk 78050, Turkey; [email protected] 7 Department of Civil Engineering, Middle East College, Knowledge Oasis Muscat, Muscat 135, Oman; [email protected] * Correspondence: [email protected] Abstract: Nanotechnology has been widely used in many fields including in soil and groundwater remediation. Nanoremediation has emerged as an effective, rapid, and efficient technology for Citation: Alazaiza, M.Y.D.; soil and groundwater contaminated with petroleum pollutants and heavy metals. This review Albahnasawi, A.; Ali, G.A.M.; Bashir, provides an overview of the application of nanomaterials for environmental cleanup, such as soil M.J.K.; Copty, N.K.; Amr, S.S.A.; and groundwater remediation. Four types of nanomaterials, namely nanoscale zero-valent iron Abushammala, M.F.M.; Al Maskari, T.
    [Show full text]
  • Remediation Techniques for Soil and Groundwater - X.H
    POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT’S CONTROL – Vol. II - Remediation Techniques for Soil and Groundwater - X.H. Zhang REMEDIATION TECHNIQUES FOR SOIL AND GROUNDWATER X.H. Zhang Department of Environmental Science & Engineering, Tsinghua University, Beijing, China Keywords: Remediation, soil, groundwater, aquifer, contamination, hazardous materials, volatile organic chemicals, degradation, transformation, containment, pump and treat, air stripping, soil vapor extraction, solidification, soils washing, vitrification, desorption, bioremediation, China Contents 1. Introduction 2. Containment 3. Pump-and-Treat 4. Soil Vapor Extraction 5. Solidification/Stabilization 6. Soil Washing 7. Bioremediation 8. Air Stripping 9. Precipitation 10. Vitrification 11. Thermal Desorption 12. Strategy for Technique Selections 13. Future Development Glossary Bibliography Biographical Sketch Summary Rapid development of China in social and economic areas has created an environment of serious contamination of soils and groundwater. Major contamination sources from industry, agriculture and urban areas have not been put under strict control. The accumulation, mobilization and toxicity of various contaminants in soils and groundwater are threatening the natural environment as well as the sustainable development of China. Remediation is the only way to clean up the contaminants in soils and groundwater. General technical methodologies include transfer of contaminants solely by themselves, with contaminated soils, or groundwater to other places for
    [Show full text]
  • Coordinating Water Resources in the Federal System: the Groundwater-Surface Water Connection
    Members of the U.S. Advisory Commission on Intergovernmental Relations (October 1991) Private Citizens Daniel J. Elazar, Philadelphia, Pennsylvania Robert B. Hawkins, Jr., Chaimzn, San Francisco, California Mary Ellen Joyce, Arlington, Viginia Members of the U.S. Senate Daniel K. Akaka, Hawaii Dave Durenberger, Minnesota Charles S. Robb, Viginia Members of the U.S. Hour of Representatives Donald M. Payne, New Jersey Craig Tbow Wyoming Ted MUSS, New York Officers of the Executive Branch, U.S. Government Debra Rae Anderson, Deputy As&ant to the Resident, Director of Intergovernmental Affairs Samuel K. Skinner, Secretaq of Transportation vocaney Governors John Ashcroft, Missouri Booth Gardner, WAshington George A. Sinner, North Dakota Stan Stephens, Montana Mayors Victor II. Ashe, Knoxville Tbnnessee Robert M. Isaac$ colorado springs, Colorado Joseph A. Leafe, Norfolk, Viginia *f=Y Members of State Legislatures David E. Nething, North Dakota Senate Samuel B. Nuneq Jr., President, Louisiana Senate Ted L. Strickbmd, Colorado Senate Elected County Offkials Ann Klinger, Merced County, California, Board of Supervisors James J. Snyder, Cattaraugus County, New York, County Legislature D. Michael Stewart, Salt Lake County, Utah, County Commission Coordinating Water Resources in the Federal System: The Groundwater-Surface Water Connection U.S. Advisory Commission on Intergovernmental Relations October 1991 l A-l 18 U.S. Advisory Commission on Intergovernmental Relations 800 K Street, NW South Building Suite 450 Washington, DC 20575 (202) 6533640 FAX (202) 653-5429 ii U.S. Advisory Commission on Intergovernmental Relations Executive Summary Groundwater appears in basins throughout the Management is defined in terms of functions,not United States. It serves half of the nation’s population in terms of the types of organizations that perform with drinking water and provides significant those functions, thereby recognizing that multiple amounts of the water used for irrigation, livestock, organizational and interorganizational forms maybe and industry.
    [Show full text]
  • Addressing Nitrate in California's Drinking
    Addressing Nitrate in California’s Drinking Water With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Report for the State Water Resources Control Board Report to the Legislature California Nitrate Project, Implementation of Senate Bill X2 1 Center for Watershed Sciences University of California, Davis http://groundwaternitrate.ucdavis.edu Prepared for the California State Water Resources Control Board The health of our waters is the principal measure of how we live on the land. —Luna Leopold Addressing Nitrate in California’s Drinking Water With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Report for the State Water Resources Control Board Report to the Legislature This Report and its associated eight Technical Reports were prepared by Thomas Harter and Jay R. Lund Dylan B. Boyle, Holly E. Canada, Nicole (Principal Investigators) DeLaMora, Kristin N. Dzurella, Anna Fryjoff- Hung, Allan D. Hollander, Kristin L. Honeycutt, Jeannie Darby, Graham E. Fogg, Richard Howitt, Marion W. Jenkins, Vivian B. Jensen, Aaron M. Katrina K. Jessoe, G. Stuart Pettygrove, King, George Kourakos, Daniel Liptzin, Elena M. James F. Quinn, and Joshua H. Viers Lopez, Megan M. Mayzelle, Alison McNally, Josue (Co-Investigators) Medellin-Azuara, and Todd S. Rosenstock With project management support from Cathryn Lawrence and Danielle V. Dolan Center for Watershed Sciences • University of California, Davis Groundwater Nitrate Project, Implementation of Senate Bill X2 1 Prepared for California State Water Resources Control Board • January 2012 http://groundwaternitrate.ucdavis.edu Copyright ©2012 The Regents of the University of California Suggested citation: Harter, T., J. R. Lund, J. Darby, G. E. Fogg, R.
    [Show full text]