A Two-Component Regulatory System with Opposite Effects on Glycopeptide Antibiotic Biosynthesis and Resistance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DAIANI CRISTINA SAVI.Pdf
1 UNIVERSIDADE FEDERAL DO PARANÁ DAIANI CRISTINA SAVI GÊNERO Microbispora: RECLASSIFICAÇÃO FILOGENÉTICA, BIOPROSPECÇÃO E IDENTIFICAÇÃO DE METABÓLITOS SECUNDÁRIOS CURITIBA 2015 2 UNIVERSIDADE FEDERAL DO PARANÁ DAIANI CRISTINA SAVI GÊNERO Microbispora: RECLASSIFICAÇÃO FILOGENÉTICA, BIOPROSPECÇÃO E IDENTIFICAÇÃO DE METABÓLITOS SECUNDÁRIOS Tese apresentada ao Programa de Pós- Graduação em Microbiologia, Parasitologia e Patologia, Setor de Ciências Biológicas, Universidade Federal do Paraná como requisito parcial à obtenção de título de Doutora em Microbiologia. Orientadora: Profª Drª Chirlei Glienke Co-Orientadores: Drª Josiane Gomes Figueiredo e Dr Jurgen Rohr CURITIBA 2015 3 4 AGRADECIMENTOS A Deus pela oportunidade e ensinamentos; Aos meus pais e irmã pelo apoio, compreensão e incentivo; Ao Programa de Pós-graduação em Microbiologia, Parasitologia e Patologia pela oportunidade; À Profª Drª Chirlei Glienke pela confiança, respeito, paciência e ensinamentos que ajudaram a me moldar tanto quando pesquisadora como pessoa, gratidão eterna; À Profa Dra Lygia Vitória Galli Terasawa e à Profa Dra Vanessa Kava-Cordeiro por todo o ensinamento, paciência e disponibilidade dentro e fora do laboratório; Ao Prof Dr Jurgen Rohr, pela oportunidade, por me receber tão bem, paciência e orientação na parte química; À Drª Josiane Gomes Figueiredo, pela co-orientação, auxílio, ensinamentos e pela amizade; Ao Dr Khaled Shaaban por todo auxílio e ensinamentos no desenvolvimento da parte de identificação de compostos; Ao Rodrigo Aluízio pela amizade e auxílio -
Download (6Mb)
A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/81849 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Unlocking the potential of novel taxa – a study on Actinoallomurus João Carlos Santos Cruz Submitted for the degree of Doctor of Philosophy School of Life Sciences, University of Warwick March, 2016 1 TABLE OF CONTENTS Table of Contents .......................................................................................................... i Acknowledgments...................................................................................................... iv List of Figures ................................................................................................................. v List of Tables ................................................................................................................. ix Declaration .................................................................................................................. xi Summary ....................................................................................................................... xii Abbreviations ............................................................................................................. -
Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms
molecules Review Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms Hiroshi Ogawara 1,2 1 HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan; [email protected]; Tel.: +81-3-3832-3474 2 Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan Received: 4 May 2018; Accepted: 15 June 2018; Published: 18 June 2018 Abstract: Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance. Keywords: drug resistance; self-resistance; phycotoxin; marine animal; terrestrial animal; plant; fungus; bacterium; antibiotic resistance 1. Introduction Antimicrobial agents, including antibiotics, once eliminated the serious infectious diseases almost completely from the Earth [1]. -
Sphaerosporangium Gen. Nov., a New Member of the Family Streptosporangiaceae, with Descriptions of Three New Species As Sphaerosporangium Melleum Sp
Actinomycetologica Copyright Ó 2007 The Society for Actinomycetes Japan Sphaerosporangium gen. nov., a new member of the family Streptosporangiaceae, with descriptions of three new species as Sphaerosporangium melleum sp. nov., Sphaerosporangium rubeum sp. nov. and Sphaerosporangium cinnabarinum sp. nov., and transfer of Streptosporangium viridialbum Nonomura and Ohara 1960 to Sphaerosporangium viridialbum comb. nov. Ismet Ara1;2Ã and Takuji Kudo1 1Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center 2-1 Hirosawa, Wako, Saitama 351-0198, Japan 2Present address: Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan (Received Sep. 12, 2006 / Accepted Dec. 20, 2006 / Published May 18, 2007) The taxonomic status of five actinomycete strains, 3-28(8)T, 4-20(13), 3D-70(20), 5-81(36) and 3D-72(35)T, isolated from sandy soil was studied using the polyphasic approach. All isolates produced branching substrate mycelia and developed spherical spore vesicles on aerial hyphae containing non-motile spores. They contained meso-diaminopimelic acid and the N-acetyl type of peptidoglycan. The predominant menaquinones were MK-9(H4) and MK-9(H6). Madurose, mannose, ribose, galactose and glucose were Advancedetected in the whole-cell hydrolysate. The diagnostic phospholipids were phosphatidylethanolamine and ninhydrin-positive phosphoglycolipids, and iso-C16:0 and 10 methyl C17:0 were detected as the major cellular fatty acids. These morphological and chemotaxonomic data were related to those of the genus Streptosporangium in the family Streptosporangiaceae. Phylogenetic analysis based on 16S rDNA sequence data suggested that the strains belong to the family Streptosporangiaceae, but not to any known genus, and form a monophyletic clade with Streptosporangium viridialbum and ‘‘Streptosporangium cinnabarinum’’. -
Download Download
The Journal of Chulabhorn Royal Academy eISSN 2697-5203 (online) Research article Genomic characterization for secondary metabolite biosynthetic genes of Microbispora sp. KK1-11 Suchada Kittisrisopit1, Sarin Tadtong2, Somboon Tanasupawat3, Chitti Thawai1,4* 1Department of Biology, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand. 2Faculty of Pharmacy, Srinakharinwirot University, Nakhon-nayok, Thailand. 3Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand. 4Actinobacterial research unit, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand *Corresponding Author, e-mail: [email protected] Received: 13 October 2020; Revised: 20 December 2020; Accepted: 11 January 2021 Abstract Background: Rare actinomycetes, especially genus Microbispora, have attracted attention because of their ability to produce various bioactive secondary metabolites. Many valuable secondary metabolites, such as bispolides, linfuranone A, and microbiaeratin, produced by Microbispora spp. have been reported, and there is great interest in efforts to discover new Microbispora spp. with the ability to produce such metabolites. The application of in silico biosynthetic predictions from genome mining data is usually used to identify promising Microbispora spp. in nature. In this study, we used existing genomic data to characterize the taxonomic position of Microbispora sp. KK1-11 and to identify biosynthetic gene clusters (BGCs) in the genome. Methods: An actinomycete strain KK1-11 was taxonomically characterized using a polyphasic approach. To confirm the taxonomic classification of the strain at the genus level, morphological, chemotaxonomic, and 16S rRNA gene sequence analyses were performed. Whole-genome shotgun sequencing was carried out using an Illumina MiSeq 1TB platform. The genomic data were evaluated for the production of secondary metabolites using the antiSMASH platform and the antibacterial activity of metabolites was also assessed. -
Provided for Non-Commercial Research and Educational Use. Not for Reproduction, Distribution Or Commercial Use
Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Encyclopedia of Microbiology published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial E M Wellington. Actinobacteria. Encyclopedia of Microbiology. (Moselio Schaechter, Editor), pp. 26-[44] Oxford: Elsevier. Author's personal copy BACTERIA Contents Actinobacteria Bacillus Subtilis Caulobacter Chlamydia Clostridia Corynebacteria (including diphtheria) Cyanobacteria Escherichia Coli Gram-Negative Cocci, Pathogenic Gram-Negative Opportunistic Anaerobes: Friends and Foes Haemophilus Influenzae Helicobacter Pylori Legionella, Bartonella, Haemophilus Listeria Monocytogenes Lyme Disease Mycoplasma and Spiroplasma Myxococcus Pseudomonas Rhizobia Spirochetes Staphylococcus Streptococcus Pneumoniae Streptomyces -
New Antimicrobials to Target Gut and Food Pathogens
New antimicrobials to target gut and food pathogens Enriqueta Garcia-Gutierrez A thesis submitted for the degree of Doctor of Philosophy to the University of East Anglia Quadram Institute Bioscience Teagasc September 2019 ©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. PhD Thesis 2019 Enriqueta Garcia-Gutierrez New Antimicrobials to Target Gut and Food Pathogens ABSTRACT There is a pressing need for the discovery of new antimicrobials to fight antibiotic resistant bacteria. The aim of this thesis was the discovery and characterisation of new bacteriocins from two sources, fermented foods and human faeces, testing the hypothesis that bacteria from the same niche will produce antimicrobials uniquely suited to act in this niche. Isolates from culture collections and new isolates from food and faecal samples were screened against a panel of pathogens responsible for food spoilage and human disease. Promising candidates were selected for genome sequencing, antimicrobial characterisation and biological study. The genome of Lactobacillus gasseri LM19 showed the presence of antimicrobial genes encoding, among others, a new bacteriocin, gassericin M. L. gasseri LM19 could survive and express its bacteriocin genes under colonic conditions. Its administration modulated the effects of Clostridium perfringens on the gut microbiota composition. Streptococcus agalactiae DPC7040 was previously shown to produce the natural variant nisin P. MALDI-ToF analysis confirmed that nisin P is three amino acids shorter than nisin A and that two lanthionine rings were absent in 50% of molecules. -
A Novel Diterpene Agent Isolated from Microbispora Hainanensis Strain
www.nature.com/scientificreports OPEN A novel diterpene agent isolated from Microbispora hainanensis strain CSR‑4 and its in vitro and in silico inhibition efects on acetylcholine esterase enzyme Chitti Thawai1,2,3*, Nantiya Bunbamrung4, Pattama Pittayakhajonwut4, Sumet Chongruchiroj5, Jaturong Pratuangdejkul5, Ya‑Wen He6, Sarin Tadtong7, Vipaporn Sareedenchai7, Pinidphon Prombutara8 & Yang Qian9 An actinomycete strain CSR‑4 was isolated from the rhizosphere soil of Zingiber montanum. Taxonomic characterization revealed strain CSR‑4 was a member of the genus Microbispora. Whole‑ genome sequence analysis exhibited the highest average nucleotide identity (ANI) value (95.34%) and digital DNA–DNA hybridization (DDH) value (74.7%) between strain CSR‑4 and the closest relative M. hainanensis DSM 45428T, which was in line with the assignment to same species. In addition, a new diterpene compound, 2α‑hydroxy‑8(14), 15‑pimaradien‑17, 18‑dioic acid, and nine known compounds were isolated from the ethyl acetate crude extract of fermentation broth. Interestingly, a new diterpene displayed the suppressive efect on the recombinant human acetylcholinesterase (rhAChE) enzymes (IC50 96.87 ± 2.31 μg/ml). In silico studies based on molecular docking and molecular dynamics (MD) simulations were performed to predict a binding mode of the new compound into the binding pocket of the rhAChE enzyme and revealed that some amino acids in the peripheral anions site (PAS), anionic subsite, oxyanion site and catalytic active site (CAS) of the rhAChE have interacted with the compound. Therefore, our new compound could be proposed as a potential active human AChE inhibitor. Moreover, the new compound can protect signifcantly the neuron cells (% neuron viability = 88.56 ± 5.19%) from oxidative stress induced by serum deprivation method at 1 ng/ml without both neurotoxicities on murine P19‑derived neuron cells and cytotoxicity against Vero cells. -
Molecular Ecology of Denitrifiers Laurent Philippot
Molecular ecology of denitrifiers Laurent Philippot To cite this version: Laurent Philippot. Molecular ecology of denitrifiers. Society for General Microbiology (SGM) Con- ference, Sep 2009, Edimbourg, United Kingdom. hal-01231278 HAL Id: hal-01231278 https://hal.archives-ouvertes.fr/hal-01231278 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Microbiologysociety for general Autumn Meeting Edinburgh Conference Centre Heriot-Watt University 7–10 September 2009 e enc l sci obia g modern micr verin eli d PUTTING MICROBES TO WORK: the latest in translational and applied microbial science ABSTRACTS sgmconferencessociety for general microbiology Abstract Booklet Cover.indd 1 Poster modified for abs book cover.indd 1 28/07/200922/07/2009 15:56 11:26 CONTENTS SPONSORS ii DARWIN’S TREE OF LIFE HW01 1 PUTTING MICROBES TO WORK HW02 4 MICROBIAL POLYSACCHARIDES HW03 7 MICROBIAL FACTORIES HW04 10 ALTERNATIVE MODELS TO STUDY MAMMALIAN PATHOGENS HW07 12 CULTIVATING AND SENSING MICROBES IN MICRO-SCALE DEVICES HW08 14 GLYCOENGINEERING HW09