Computational Prediction of CRISPR-Impaired Non-Coding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 16P11.2 Homologs Fam57ba and Doc2a Generate Certain Brain and Body Phenotypes Jasmine M
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace@MIT Human Molecular Genetics, 2017, Vol. 26, No. 19 3699–3712 doi: 10.1093/hmg/ddx255 Advance Access Publication Date: 7 July 2017 Original Article ORIGINAL ARTICLE The 16p11.2 homologs fam57ba and doc2a generate certain brain and body phenotypes Jasmine M. McCammon1, Alicia Blaker-Lee1, Xiao Chen2 and Hazel Sive1,2,* 1Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA and 2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *To whom correspondence should be addressed at: 455 Main Street, Cambridge, MA 02142, USA. Tel: 617 2588242; Fax: 617 2585578; Email: [email protected] Abstract Deletion of the 16p11.2 CNV affects 25 core genes and is associated with multiple symptoms affecting brain and body, including seizures, hyperactivity, macrocephaly, and obesity. Available data suggest that most symptoms are controlled by haploinsufficiency of two or more 16p11.2 genes. To identify interacting 16p11.2 genes, we used a pairwise partial loss of function antisense screen for embryonic brain morphology, using the accessible zebrafish model. fam57ba, encoding a ceramide synthase, was identified as interacting with the doc2a gene, encoding a calcium-sensitive exocytosis regulator, a ge- netic interaction not previously described. Using genetic mutants, we demonstrated that doc2aþ/À fam57baþ/À double heterozy- gotes show hyperactivity and increased seizure susceptibility relative to wild-type or single doc2aÀ/À or fam57baÀ/À mutants. Additionally, doc2aþ/À fam57baþ/À double heterozygotes demonstrate the increased body length and head size. Single doc2aþ/À and fam57baþ/À heterozygotes do not show a body size increase; however, fam57baÀ/À homozygous mutants show a strongly increased head size and body length, suggesting a greater contribution from fam57ba to the haploinsufficient interaction be- tween doc2a and fam57ba. -
Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father. -
Environmental Influences on Endothelial Gene Expression
ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community. -
Product Description SALSA® MLPA® Probemix P463-A2 MRKH to Be Used with the MLPA General Protocol
MRC-Holland ® Product Description version A2-01; Issued 16 July 2020 MLPA Product Description SALSA® MLPA® Probemix P463-A2 MRKH To be used with the MLPA General Protocol. Version A2. As compared to version A1, five reference probes have been replaced and one probe length has been adjusted. For complete product history see page 7. Catalogue numbers: P463-025R: SALSA MLPA Probemix P463 MRKH, 25 reactions. P463-050R: SALSA MLPA Probemix P463 MRKH, 50 reactions. P463-100R: SALSA MLPA Probemix P463 MRKH, 100 reactions. To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mlpa.com). Certificate of Analysis: Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mlpa.com. Precautions and warnings: For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mlpa.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product. General information: The SALSA MLPA Probemix P463 MRKH is a research use only (RUO) assay for the detection of deletions or duplications in the TBX6, LHX1, HNF1B, and TBX1 genes, which are associated with Mayer-Rokitansky-Küster-Hauser syndrome (MRKH). MRKH is characterised by normal physical development of the secondary sexual characteristics and a normal female 46,XX karyotype but with complete aplasia of the uterus, cervix, and superior parts of vagina leading to failure to menstruate and infertility. -
DOC2B (NM 003585) Human Tagged ORF Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC218949L2 DOC2B (NM_003585) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: DOC2B (NM_003585) Human Tagged ORF Clone Tag: mGFP Symbol: DOC2B Synonyms: DOC2BL Vector: pLenti-C-mGFP (PS100071) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: None ORF Nucleotide The ORF insert of this clone is exactly the same as(RC218949). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_003585 ORF Size: 1236 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 DOC2B (NM_003585) Human Tagged ORF Clone – RC218949L2 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_003585.1 RefSeq Size: 2030 bp RefSeq ORF: 1239 bp Locus ID: 8447 UniProt ID: Q14184 MW: 45.8 kDa Gene Summary: There are at least two protein isoforms of the Double C2 protein, namely alpha (DOC2A) and beta (DOC2B), which contain two C2-like domains. -
Associated 16P11.2 Deletion in Drosophila Melanogaster
ARTICLE DOI: 10.1038/s41467-018-04882-6 OPEN Pervasive genetic interactions modulate neurodevelopmental defects of the autism- associated 16p11.2 deletion in Drosophila melanogaster Janani Iyer1, Mayanglambam Dhruba Singh1, Matthew Jensen1,2, Payal Patel 1, Lucilla Pizzo1, Emily Huber1, Haley Koerselman3, Alexis T. Weiner 1, Paola Lepanto4, Komal Vadodaria1, Alexis Kubina1, Qingyu Wang 1,2, Abigail Talbert1, Sneha Yennawar1, Jose Badano 4, J. Robert Manak3,5, Melissa M. Rolls1, Arjun Krishnan6,7 & 1234567890():,; Santhosh Girirajan 1,2,8 As opposed to syndromic CNVs caused by single genes, extensive phenotypic heterogeneity in variably-expressive CNVs complicates disease gene discovery and functional evaluation. Here, we propose a complex interaction model for pathogenicity of the autism-associated 16p11.2 deletion, where CNV genes interact with each other in conserved pathways to modulate expression of the phenotype. Using multiple quantitative methods in Drosophila RNAi lines, we identify a range of neurodevelopmental phenotypes for knockdown of indi- vidual 16p11.2 homologs in different tissues. We test 565 pairwise knockdowns in the developing eye, and identify 24 interactions between pairs of 16p11.2 homologs and 46 interactions between 16p11.2 homologs and neurodevelopmental genes that suppress or enhance cell proliferation phenotypes compared to one-hit knockdowns. These interac- tions within cell proliferation pathways are also enriched in a human brain-specific network, providing translational relevance in humans. Our study indicates a role for pervasive genetic interactions within CNVs towards cellular and developmental phenotypes. 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA. 2 Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA. -
High-Throughput Bioinformatics Approaches to Understand Gene Expression Regulation in Head and Neck Tumors
High-throughput bioinformatics approaches to understand gene expression regulation in head and neck tumors by Yanxiao Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in The University of Michigan 2016 Doctoral Committee: Associate Professor Maureen A. Sartor, Chair Professor Thomas E. Carey Assistant Professor Hui Jiang Professor Ronald J. Koenig Associate Professor Laura M. Rozek Professor Kerby A. Shedden c Yanxiao Zhang 2016 All Rights Reserved I dedicate this thesis to my family. For their unfailing love, understanding and support. ii ACKNOWLEDGEMENTS I would like to express my gratitude to Dr. Maureen Sartor for her guidance in my research and career development. She is a great mentor. She patiently taught me when I started new in this field, granted me freedom to explore and helped me out when I got lost. Her dedication to work, enthusiasm in teaching, mentoring and communicating science have inspired me to feel the excite- ment of research beyond novel scientific discoveries. I’m also grateful to have an interdisciplinary committee. Their feedback on my research progress and presentation skills is very valuable. In particular, I would like to thank Dr. Thomas Carey and Dr. Laura Rozek for insightful discussions on the biology of head and neck cancers and human papillomavirus, Dr. Ronald Koenig for expert knowledge on thyroid cancers, Dr. Hui Jiang and Dr. Kerby Shedden for feedback on the statistics part of my thesis. I would like to thank all the past and current members of Sartor lab for making the lab such a lovely place to stay and work in. -
Novel ENU-Induced Mutation in Tbx6 Causes Dominant Spondylocostal Dysostosis-Like Vertebral Malformations in the Rat
RESEARCH ARTICLE Novel ENU-Induced Mutation in Tbx6 Causes Dominant Spondylocostal Dysostosis-Like Vertebral Malformations in the Rat Koichiro Abe1*, Nobuhiko Takamatsu2, Kumiko Ishikawa1, Toshiko Tsurumi3, Sho Tanimoto1, Yukina Sakurai2, Thomas Lisse4, Kenji Imai1, Tadao Serikawa3, Tomoji Mashimo3¤ 1 Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan, 2 Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan, 3 Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan, 4 MDI Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, Maine, United States of America ¤ Current address: Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan. * [email protected] OPEN ACCESS Abstract Citation: Abe K, Takamatsu N, Ishikawa K, Tsurumi T, Tanimoto S, Sakurai Y, et al. (2015) Novel ENU- Congenital vertebral malformations caused by embryonic segmentation defects are rela- Induced Mutation in Tbx6 Causes Dominant tively common in humans and domestic animals. Although reverse genetics approaches in Spondylocostal Dysostosis-Like Vertebral mice have provided information on the molecular mechanisms of embryonic somite seg- Malformations in the Rat. PLoS ONE 10(6): e0130231. doi:10.1371/journal.pone.0130231 mentation, hypothesis-driven approaches cannot adequately reflect human dysmorphology within the population. In a N-ethyl-N-nitrosourea (ENU) mutagenesis project in Kyoto, the Editor: Tom J. Carney, Institute of Molecular and Cell Oune Biology, SINGAPORE mutant rat strain was isolated due to a short and kinked caudal vertebra phenotype. Skeletal staining of heterozygous rats showed partial loss of the cervical vertebrae as well Received: July 27, 2014 as hemivertebrae and fused vertebral blocks in lumbar and sacral vertebrae. -
Temporal Proteomic Analysis of HIV Infection Reveals Remodelling of The
1 1 Temporal proteomic analysis of HIV infection reveals 2 remodelling of the host phosphoproteome 3 by lentiviral Vif variants 4 5 Edward JD Greenwood 1,2,*, Nicholas J Matheson1,2,*, Kim Wals1, Dick JH van den Boomen1, 6 Robin Antrobus1, James C Williamson1, Paul J Lehner1,* 7 1. Cambridge Institute for Medical Research, Department of Medicine, University of 8 Cambridge, Cambridge, CB2 0XY, UK. 9 2. These authors contributed equally to this work. 10 *Correspondence: [email protected]; [email protected]; [email protected] 11 12 Abstract 13 Viruses manipulate host factors to enhance their replication and evade cellular restriction. 14 We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a 15 comprehensive time course analysis of >6,500 viral and cellular proteins during HIV 16 infection. To enable specific functional predictions, we categorized cellular proteins regulated 17 by HIV according to their patterns of temporal expression. We focussed on proteins depleted 18 with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be 19 necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the 20 B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). 21 Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent 22 hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. 23 The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral 2 24 lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and 25 conserved Vif function. -
1 Substitution Mapping in Dahl Rats Identifies Two Distinct Blood
Genetics: Published Articles Ahead of Print, published on October 8, 2006 as 10.1534/genetics.106.061747 1 Substitution Mapping in Dahl Rats Identifies Two Distinct Blood Pressure Quantitative Trait Loci within 1.12 Mb and 1.25 Mb Intervals on Chromosome 3. Soon Jin Lee, Jun Liu, Allison M. Westcott, Joshua A. Vieth, Sarah J. DeRaedt, Siming Yang, Bina Joe, and George T. Cicila Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences University of Toledo College of Medicine, 3035 Arlington Avenue Toledo, Ohio 43614 2 Running Head: Congenic Substrains and Blood Pressure Correspondence to: George T. Cicila, Ph.D. University of Toledo College of Medicine Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences 3035 Arlington Avenue Toledo, Ohio 43614 Phone: (419) 383-4171 Fax: (419) 383-6168 e-mail: [email protected] Key Words: genetic hypertension, inbred rat strains, Dahl salt-sensitive rat, Dahl salt- resistant rat, salt-sensitivity 3 Abstract Substitution mapping was used to refine the localization of blood pressure (BP) quantitative trait loci (QTLs) within the congenic region of S.R-Edn3 rats located at the q-terminus of rat chromosome 3 (RNO3). An F2(SxS.R-Edn3) population (n=173) was screened to identify rats having crossovers within the congenic region of RNO3 and six congenic substrains were developed that carry shorter segments of R-rat derived RNO3. Five of the six congenic substrains had significantly lower BP compared to the parental S rat. The lack of BP lowering effect demonstrated by the S.R(ET3x5) substrain and the BP lowering effect retained by S.R(ET3x2) substrain, together define the RNO3 BP QTL-containing region as approximately 4.64 Mb. -
Gene Ontology Functional Annotations and Pleiotropy
Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question -
The Genetics of Bipolar Disorder
Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF.