Eigenvalues on Riemannian

Publicações Matemáticas

Eigenvalues on Riemannian Manifolds

Changyu Xia UnB

o 29 Colóquio Brasileiro de Matemática

Copyright  2013 by Changyu Xia

Impresso no Brasil / Printed in Brazil

Capa: Noni Geiger / Sérgio R. Vaz

29o Colóquio Brasileiro de Matemática

• Análise em Fractais – Milton Jara • Asymptotic Models for Surface and Internal Waves - Jean-Claude Saut • Bilhares: Aspectos Físicos e Matemáticos - Alberto Saa e Renato de Sá Teles • Controle Ótimo: Uma Introdução na Forma de Problemas e Soluções - Alex L. de Castro • Eigenvalues on Riemannian Manifolds - Changyu Xia • Equações Algébricas e a Teoria de Galois - Rodrigo Gondim, Maria Eulalia de Moraes Melo e Francesco Russo • Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra - Alexandre Baraviera, Renaud Leplaideur e Artur Lopes • Expansive Measures - Carlos A. Morales e Víctor F. Sirvent • Funções de Operador e o Estudo do Espectro - Augusto Armando de Castro Júnior • Introdução à Geometria Finsler - Umberto L. Hryniewicz e Pedro A. S. Salomão • Introdução aos Métodos de Crivos em Teoria dos Números - Júlio Andrade • Otimização de Médias sobre Grafos Orientados - Eduardo Garibaldi e João Tiago Assunção Gomes

Distribuição: IMPA Estrada Dona Castorina, 110 22460-320 Rio de Janeiro, RJ E-mail: [email protected] ISBN: 978-85-244-0354-5 http://www.impa.br

“eigenvaluecm i i 2013/9/2 page 3 i i

Contents

1 Eigenvalue problems on Riemannian manifolds 1 1.1 Introduction ...... 1 1.2 Some estimates for the first eigenvalue of the Laplacian 5

2 Isoperimetric inequalities for eigenvalues 14 2.1 Introduction ...... 14 2.2 The Faber-Krahn Inequality ...... 16 2.3 The Szeg¨o-Weinberger Inequality ...... 17 2.4 The Ashbaugh-Benguria Theorem ...... 19 2.5 The Hersch Theorem ...... 23

3 Universal Inequalities for Eigenvalues 29 3.1 Introduction ...... 29 3.2 Eigenvalues of the Clamped Plate Problem . . . . 34 3.3 Eigenvalues of the Polyharmonic Operator . . . 46 3.4 Eigenvalues of the Buckling Problem ...... 57

4 P´olya Conjecture and Related Results 73 4.1 Introduction ...... 73 4.2 The Kr¨oger’sTheorem ...... 77 4.3 A generalized P´olya conjecture by Cheng-Yang . . 81 4.4 Another generalized P´olya conjecture ...... 85

5 The Steklov eigenvalue problems 94 5.1 Introduction ...... 94 5.2 Estimates for the Steklov eigenvalues ...... 95

3

i i

i i “eigenvaluecm i i 2013/9/2 page 4 i i

4 CONTENTS

Bibliography 103

i i

i i “eigenvaluecm i i 2013/9/2 page 1 i i

Chapter 1

Eigenvalue problems on Riemannian manifolds

1.1 Introduction

Let (M, g) be an n-dimensional Reimannian with boundary (possibly empty). The most important operator on M is the Lapla- n cian ∆. In local coordinate system xi i=1, the Laplacian is given by { }

1 n ∂ ∂ ∆ = √Ggij √ ∂x ∂x G i,j=1 i j X   ij 1 ∂ ∂ where (g ) is the inverse matrix (g )− , g = g( , ) are the ij ij ∂xi ∂xj coefficients of the Riemannian metric in the local coordinates, and G = det(gij ). In local coordinates, the Riemannian measure dv on (M, g) is given by

dv = √Gdx 1...dxn.

Let φ C∞(M) and set ∈

φ 2 = φ 2 + φ 2. || ||1 |∇ | | | ZM ZM 1

i i

i i “eigenvaluecm i i 2013/9/2 page 2 i i

2 [CAP. 1: EIGENVALUE PROBLEMS ON RIEMANNIAN MANIFOLDS

Here and in the future, the integrations on M are always taken with 2 respect to the Riemannian measure on M. Let us denote by H1 (M) o 2 and H1 (M) the completion of C∞(M) and C0∞(M) with respect to o 2 2 . The theory of Sobolev spaces tells us that H1 (M) = H1 (M) when|| || M is complete. Our purpose is to study some eigenvalue prob- lems associated to the Laplacian operator on a compact manifold M. When ∂M = , we consider the closed eigenvalue problem: ∅ ∆u + λu = 0. (1.1)

When ∂M = , we are interested in the following eigenvalue prob- lems. 6 ∅

The : • ∆u = λu in M, (1.2) u = 0.  |∂M

The Neumannn problem: • ∆u = λu in M, (1.3) ∂u = 0,  ∂ν ∂M

where ν is the unit outward normal to ∂M. The clamped plate problem: • ∆2u = λu in M, (1.4) u = ∂u = 0,  |∂M ∂ν ∂M The buckling problem: • ∆2u = λ∆u in M, − (1.5) u = ∂u = 0,  |∂M ∂ν ∂M The eigenvalue problem of poly-harmonic operator: • ( ∆)lu = λu in M, − ∂u− ∂l−1u (1.6) u ∂M = ∂ν = = l−1 = 0, l 2. ( | ∂M ··· ∂ν ∂M ≥

i i

i i “eigenvaluecm i i 2013/9/2 page 3 i i

[SEC. 1.1: INTRODUCTION 3

The buckling problem of arbitrary order: • ( ∆)lu = λ∆u in M, − ∂u− ∂l−1u (1.7) u ∂M = ∂ν = = l−1 = 0, l 2. ( | ∂M ··· ∂ν ∂M ≥

The Steklov problem of second order : • ∆u = 0 in M, (1.8) ∂u = λu on ∂M.  ∂ν The Steklov problem of fourth order: • ∆2u = 0 in M, (1.9) u = ∆u λ ∂u = 0 on ∂M.  − ∂ν

Let us denote by λ1 the first non-zero eigenvalue of the above prob- lems. We can arrange the eigenvalues of these problems as follows:

0 < λ λ + . 1 ≤ 2 ≤ · · · → ∞ For many reasons in and Physics, it is important to obtain nice estimates for the λ′s. We will concentrate our attention on this problem. Let us list some basic facts in this direction.

Theorem 1.1 (Weyl’s asymptotic formula, [97]). In each of the eigenvalue problems (1.1), (1.2), (1.3), let N(λ) be the number of eigenvalues, counted with multiplicity, λ. Then ≤ N(λ) ω M λn/2/(2π)n (1.10) ∼ n| | n as λ , where ωn is the volume of the unit ball in R and M is the volume→ ∞ of M. In particular, | |

λn/2 (2π)n/ω k/ M (1.11) k ∼ { n} | | as λ + . → ∞ There are similar asymptotic formulas for the other eigenvalue problems above (Cf. [1], [79], [80]). Define a space H as follows:

i i

i i “eigenvaluecm i i 2013/9/2 page 4 i i

4 [CAP. 1: EIGENVALUE PROBLEMS ON RIEMANNIAN MANIFOLDS

For the closed eigenvalue problem (1.1),

H = f H2(M) f = 0 . (1.12) ∈ 1  ZM 

For the Dirichlet eigenvalue problem (1.2), o 2 H = H1 (M). (1.13) For the Neumann eigenvalue problem (1.3),

H = f H2(M) f = 0 . (1.14) ∈ 1  ZM 

A fundamental fool in the theory of eigenvalues is the Mini-Max principle. We can find a countable orthonormal ba- sis fi , fi C∞(M) for the problems (1.1), (1.2) and (1.3) such that{ } ∈

f 2 M |∇ | λ1 = inf f 2 f H , R M | ∈ f 2 (1.15) n MR |∇ | o λi = inf f 2 f H, M ffj = 0, j = 1, , i 1 . R M | ∈ ··· − n o In particular, weR have the R

Poincar´einequality:

f 2 λ f 2, f H. (1.16) |∇ | ≥ 1 ∀ ∈ ZM ZM

For other eigenvalue problems above, similar mini-max principles also hold.

Theorem 1.2 (The Co-Area formula, [17]). Let M be a compact Riemannian manifold with boundary, f H1(M). Then for any non-negative function g on M, ∈

∞ g g = dσ (1.17) M f=σ f ! Z Z−∞ Z{ } |∇ |

i i

i i “eigenvaluecm i i 2013/9/2 page 5 i i

[SEC. 1.2: SOME ESTIMATES FOR THE FIRST EIGENVALUE OF THE LAPLACIAN 5 1.2 Some estimates for the first eigenvalue of the Laplacian

In this section, we will prove some estimates for the first eigenvalue of the Laplacian.

Theorem 1.3 ([73]). Let M be an n-dimensional complete Rie- mannian manifold with Ricci curvature RicM n 1. Then the first non-zero eigenvalue of the closed eigenvalue≥ problem− (1.1) of M satisfies λ (M) n. 1 ≥ The proof of Theorem 1.3 can be carried out by substituting a first eigenfunction into the Bochner formula and integrating on M the resulted equality (see the proof of theorem 1.6 below). An important classical result about eigenvalue is the following

Theorem 1.4 (Cheng’s Comparison Theorem, [18]). Let M be an n-dimensional complete Riemannian manifold with Ricci curva- ture satisfying RicM (n 1)c and let BR(p) be an open geodesic ball of radius R around≥ a− point p in M, where R < π/√c , when c > 0. Then the first eigenvalue of the Dirichlet problem (1.2) of BR(p) satisfies

λ (B (p)) λ (B (c)), (1.18) 1 R ≤ 1 R

with equality holding if and only if BR(p) is isometric to BR(c), where BR(c) is a geodesic ball of radius R in a complete simply connected Riemannian manifold of constant curvature c and of dimension n.

An immediate application of Cheng’s eigenvalue comparison the- orem is a rigidity theorem for compact manifolds of positive Ricci curvature.

Theorem 1.5 (The Maximal Diameter Theorem, [18]). Let M be an n-dimensional complete Riemannian manifold with Ricci cur- vature RicM n 1. If the diameter of M satisfies d(M) π, then M is isometric≥ to− an n-dimensional unit sphere. ≥

Proof. Take two points p, q M so that d(p, q) π; then B (p) B (q) = . Let f and g∈be the first eigenfunctions≥ corre- π/2 ∩ π/2 ∅

i i

i i “eigenvaluecm i i 2013/9/2 page 6 i i

6 [CAP. 1: EIGENVALUE PROBLEMS ON RIEMANNIAN MANIFOLDS

sponding to the first Dirichlet eigenvalues of Bπ/2(p) and Bπ/2(q), re- spectively. We extend f and g on the whole M by setting f M B (p) = | \ π/2 g M B (q) = 0 and take two non-zero constants a and b such that | \ π/2

(af + bg) = 0 ZM Observe that the first Dirichlet eigenvalue of an n-dimensional unit hemisphere is n. The mini-max principle and Cheng’s comparison theorem then imply that

n λ (M) ≤ 1 (af + bg) 2 M |∇ | ≤ (af + bg)2 R M a2 f 2 + b2 g 2 R B 2(p) B 2(q) = π/ |∇ | π/ |∇ | a2 f 2 + b2 g2 R Bπ/2(p) RBπ/2(q) 2 2 2 2 a λ1(BR π/2(p)) B (p)Rf + b λ1(Bπ/2(q)) B (q) g = π/2 π/2 a2 f 2 + b2 g2 RBπ/2(p) Bπ/2(q) R 2 2 2 2 na B (p) f R+ nb B (q) gR π/2 π/2 = n. ≤ a2 f 2 + b2 g2 RBπ/2(p) BRπ/2(q) R R We conclude from the equality case of the mini-max principle and Cheng’s comparison theorem that each of Bπ/2(p) and Bπ/2(q) is isometric to the n-dimensional unit hemisphere and

M = B (p) B (q) π/2 ∪ π/2 Consequently, M is isometric to a unit n-sphere.

The maximal diameter theorem can be also used to prove the Obata theorem below.

Theorem 1.6 ([76]). Let M be an n-dimensional complete Rie- mannian manifold with Ricci curvature RicM n 1. If the first non-zero eigenvalue of the closed eigenvalue problem≥ − (1.1) of M is n, then M is isometric to a unit n-sphere.

i i

i i “eigenvaluecm i i 2013/9/2 page 7 i i

[SEC. 1.2: SOME ESTIMATES FOR THE FIRST EIGENVALUE OF THE LAPLACIAN 7

Proof. Let f be a first eigenfunction corresponding to the first eigenvalue n of M. From the Bochner formula, we get

1 ∆ f 2 = 2f 2 + f, (∆f) + Ric( f, f) (1.19) 2 |∇ | |∇ | h∇ ∇ i ∇ ∇ (∆f)2 n f 2 + (n 1) f 2 = nf 2 f 2. ≥ n − |∇ | − |∇ | − |∇ |

2 2 Integrating on M and noticing M (nf f ) = 0, we conclude that the inequalities in 1.19 should take equality− |∇ | sign. Thus, we have R 1 1 1 ∆( f 2 + f 2) = ∆ f 2 + ∆f 2 2 |∇ | 2 |∇ | 2 = nf 2 f 2 + f∆f + f 2 = 0 − |∇ | |∇ | and so f 2 + f 2 is a constant. Without lose of generality, we can assume|∇ that| f 2 + f 2 = 1 and so |∇ | f |∇ | = 1. 1 f 2 − Let p and q be points of Mp such that f(p) = f(q) = 1 and take a unit speed minimizing geodesic γ : [0, l] M from− p to−q. Integrating the above equation along γ, we obtain →

f 1 dt l = ds = |∇ | ds = π. 2 2 γ γ 1 f ≥ 1 √1 t Z Z − Z− − It then follows from thep maximal diameter theorem that M is iso- metric to an unit n-sphere.

Remark 1.1. Let M n be a compact Riemannian manifold with Ricci curvature RicM n 1 and nonempty boundary. If the mean curvature of ∂M is nonnegative,≥ − then the first Dirichlet eigenvalue n of M satisfies λ1 n with equality holding if and only if M is isometric to an n-dimensional≥ unit hemisphere [82]. Similarly, if the boundary of M is convex, then the first non-zero Neumann eigenvalue n of M must satisfy λ1 n with equality holding if and only if M is isometric to an n-dimensional≥ unit hemisphere [34, 100].

i i

i i “eigenvaluecm i i 2013/9/2 page 8 i i

8 [CAP. 1: EIGENVALUE PROBLEMS ON RIEMANNIAN MANIFOLDS

We now prove another rigidity theorem using the techniques of eigenvalues.

Theorem 1.7 ([101]). Let M be an n-dimensional complete Rie- mannian manifold with Ricci curvature RicM n 1 and let N be a closed minimal hypersurface which divides M ≥into− two disjoint open domains Ω1 and Ω2. If there exists a point p M such that d(p, N), the distance from p to N, is no less than π/2,∈ then the pair (M,N) is n n 1 n isometric to the pair (S (1), S − (1), being S (1) the unit n-sphere.

Proof. Assume without lose of generality that p Ω1. We know from d(p, N) π/2 that B (p) Ω . It then follows∈ from the do- ≥ π/2 ⊂ 1 main monotonicity [17] that the first Dirichlet eigenvalues of Bπ/2(p) and Ω1 satisfy

λ B (p) λ (Ω ). (1.20) 1 π/2 ≥ 1 1 On the other hand, Cheng’s comparison theorem tells us that

λ B (p) n (1.21) 1 π/2 ≤ and Reilly’s estimate implies that λ (Ω ) n. Thus, the inequalities 1 1 ≥ in (1.20) and (1.21) should be equalities. Consequently, Bπ/2(p) = Ω1 is isometric to an n-dimensional unit hemisphere and so N = ∂Ω1 = n 1 S − (1) is totally geodesic. It then follows from a result of [39] that Ω2 is also isometric to an n-dimensional unit hemisphere. 

Let λ1 be the least nontrivial eigenvalue of an n-dimensional com- pact manifold M and let φ be the corresponding eigenfunction. By multiplying with a constant it is possible to assume that

a 1 = inf φ; a + 1 = sup φ − M M where 0 a(φ) < 1 is the median of φ. Suppose≤ that M n is a compact manifold without boundary of nonnegative Ricci curvature and of diameter d. Li-Yau [72] showed that the first nontrivial eigenvalue satisfies

π2 λ 1 ≥ (1 + a)d2

i i

i i “eigenvaluecm i i 2013/9/2 page 9 i i

[SEC. 1.2: SOME ESTIMATES FOR THE FIRST EIGENVALUE OF THE LAPLACIAN 9

and conjectured that

π2 λ . (1.22) 1 ≥ d2 Li-Yau’s conjecture was proved by Zhong and Yang in [103]. Let us provide a proof of (1.22) given by Li in [71].

Lemma 1.1. The function 2 z(u) = arcsin(u) + u 1 u2 u π − −  p  defined on [-1, 1] satisfies

2 uz′ + z′′(1 u ) + u = 0; (1.23) −

2 z′ 2zz′′ + z′ 0; (1.24) − ≥

2z uz′ + 1 0; (1.25) − ≥ and

1 u2 2 z . (1.26) − ≥ | | Proof. Differentiating yields

4 2 4u z′ = 1 u 1, z′′ = − . π − − π√1 u2 p − Thus (1.23) is satisfied. To see (1.24), we note that

2 4 4 2 2 z′ 2zz′′ + z′ = 1 u + u arcsin u (1 + u ) . − π√1 u2 π − − −  p   Since the right hand side is an even function, it suffices to check that 4 1 u2 + u arcsin u (1 + u2) 0 π − − ≥ p 

i i

i i “eigenvaluecmb” i i 2013/9/2 page 10 i i

10 [CAP. 1: EIGENVALUE PROBLEMS ON RIEMANNIAN MANIFOLDS

on [0, 1]. It is easy to see that d 4 4 1 u2 + u arcsin u (1 + u2) = arcsin u 2u du π − − π −  p   which is nonpositive on [0, 1]. Hence 4 1 u2 + u arcsin u (1 + u2) π − − 4p  1 u2 + u arcsin u (1 + u2) ≥ π − −   u=1 p  = 0.

Inequality (1.25) follows easily because 4 2z uz′ + 1 = arcsin u + 1 u 0. − π − ≥ To see (1.26), let us consider the cases 1 u 0 and 0 u 1 separately. It is clearly that the inequality− ≤ is valid≤ at -1,≤ 0 and≤ 1. Setting 4 f(u) = 1 u2 arcsin u + u 12 u2 + u; − − π −  p  then

4 2 f ′ = 2u (2 1 u ) +2, − − π − p 8u f ′′ = 2 + , − π√1 u2 − and 8 f ′′′ = . π1( u2)3/2 − When 1 u 0, f ′′ 0. Hence f(u) min f( 1), f(0) = 0. For − ≤ ≤ ≤ ≥ { − } the case 0 u 1, f ′′′ 0. Thus ≤ ≤ ≥ 8 f ′ max f ′(0), f ′(1) = max 2 , 0 = 0. ≤ { } − π  

i i

i i “eigenvaluecm i i 2013/9/2 page 11 i i

[SEC. 1.2: SOME ESTIMATES FOR THE FIRST EIGENVALUE OF THE LAPLACIAN 11

Therefore f(u) f(1) which proves (1.26). ≥ Lemma 1.2. Suppose M is a compact manifold without boundary of nonnegative Ricci curvature. Assume that a nontrivial eigenfunc- tion φ corresponding to the eigenvalue λ is normalized so that for 0 a < 1, a + 1 = sup φ and a 1 = inf φ. If u = φ a, then ≤ M − M − 2 λ(1 u2) + 2aλz(u) (1.27) |∇| ≤ − where 2 z(u) = arcsin u + u 1 u2 u. (1.28) π − −  p 

Proof. We need only to prove an estimate similar to (1.27) for u = ǫ(φ a) where 0 < ǫ < 1. The lemma will follow by letting ǫ 0. By− the definition of u; we have → ∆u = λ(u + ǫa) − with ǫ u ǫ. We may assume a > 0. Consider the function − ≤ ≤ Q = u 2 c(1 u2) 2aλz(u), |∇ | − − −

We can choose c large enough so that supM Q = 0. The lemma follows if c λ ; for a sequence of ǫ 1, hence we may assume that c > λ. ≤ → Let the maximizing point of Q be x0. We claim that u(x0) > 0 since otherwise u(x ) = 0 and |∇ | ∇ 0 0 = Q(x ) = c(1 u2)(x ) 2aλz(x ) (c aλ)(1 ǫ2) 0 − − 0 − 0 ≤ − − − by (1.26), which is a contradiction. Differentiating in the ei direction gives 1 Q = u u + cuu aλz′u . (1.29) 2 i j ji i − i

We can assume at x0 that u(x0) = u(x0) and using Qi = 0, we have |∇ |

2 2 u u u = (cu aλz′) . (1.30) ji ji ≥ 11 −

i i

i i “eigenvaluecm i i 2013/9/2 page 12 i i

12 [CAP. 1: EIGENVALUE PROBLEMS ON RIEMANNIAN MANIFOLDS

Differentiating again, using the commutation formula, Q(x0) = 0, (1.26), (1.29), and (1.30), we get

1 0 ∆Q(x ) (1.31) ≥ 2 0 = ujiuji + uj(∆u)j + Ric( u, u) + (c aλz′′) + (cu aλz′)∆u 2 ∇ ∇ −2 − (cu aλz′) + (c λ aλz′′)(c(1 u ) + 2aλz) ≥ − − − − λ(cu aλz′)(u + ǫa) − − 2 2 2 2 = acλ((1 u )z′′ + uz′ + ǫu) + a λ ( 2zz′′ + z′ + ǫz′) − − − +aλ(c λ)( uz′ + 2z + 1) + (c λ)(c aλ). − − − − However by (1.23), (1.24), and (1.25), we conclude that

2 2 0 acλ(1 ǫ)u a λ (1 ǫ)z′ + (c λ)(c aλ) (1.32) ≥ − − − − − 4 acλ(1 ǫ) a2λ2(1 ǫ) 1 + (c λ)(c aλ) ≥ − − − − π − − −   (c + λ)λ(1 ǫ) + (c λ)2. ≥ − − − This implies that

2 + (1 ǫ) + (1 ǫ)(9 ǫ) c λ − − − . ≤ ( p2 ) Taking ǫ 0 one gets the desired estimate. → Theorem 1.8. ([103]) Suppose M is a compact manifold without boundary whose Ricci curvature is nonnegative. Let a u 0 be the ≥ median of a normalized first eigenfunction with a + 1 = supM φ and a 1 = infM φ; and let d be the diameter. Then the first non-zero eigenvalue− of M satisfies

6 π 4 d2λ π2 + 1 a2 π2(1 + 0.02a2). (1.33) 1 ≥ π 2 − ≥  

Proof. Let u = φ a and let γ be the shortest geodesic from the minimizing point of u−to the maximizing point with length at most

i i

i i “eigenvaluecm i i 2013/9/2 page 13 i i

[SEC. 1.2: SOME ESTIMATES FOR THE FIRST EIGENVALUE OF THE LAPLACIAN 13

d. Integrating the gradient estimate (1.27) along this segment with respect to arc-length and using oddness, we have

dλ1/2 ds ≥ Zγ u ds |∇ | 2 ≥ γ √12 u + az Z − 1 1 1 + du 2 2 ≥ 0 √12 u + az √1z u 2a Z  − − −  1 1 3a2z2 2 + du ≥ √1 u2 1 u2 Z0   − − 2 1 z π + 3a2 2 ≥ 0 √1 u Z −  3a2 π 4 = π + 1 . π2 2 −   Remark 1.2. It has been shown by Hang-Wang [40] that if the equality holds in (1.33) then M is isometric to a circle.

Remark 1.3. Let M n be a compact manifold with smooth boundary and nonnegative Ricci curvature. Suppose that the sec- ond fundamental form of M is nonnegative. Then the first nontrivial eigenvalue of the Laplacian with Neumann boundary conditions also satisfies the inequality (1.27). The proof runs the same as Lemma 1.1 except that the possibility of the maximum of the test function Q at the boundary must be handled. In fact, the boundary convex- ity assumption implies that the maximum of Q cannot occur on the boundary.

i i

i i “eigenvaluecm i i 2013/9/2 page 14 i i

Chapter 2

Isoperimetric inequalities for eigenvalues

2.1 Introduction

In this chapter, we will prove some isoperimetric inequalities for eigen- values on manifolds which have always been important problems in geometric analysis. Owing to the limitation on the materials, we only select some of the results in the area. For more interesting results, we refer to [3] , [8], [17] and the references therein. The isoperimetric inequalities to be proved are : the Faber-Krahn inequality for the first eigenvalue of the Dirichlet eigenvalue; the Szeg¨o-Weinberger inequal- ity for the first nontrivial Neumann eigenvalue; the Hersch theorem for the first closed eigenvalue on a compact Riemannian surface of genus zero; the Ashbaugh-Benguria theorem; etc. For the conve- nience of later use, we recall now the notion of spherically symmetric rearrangement. Suppose that f is a bounded measurable function on the bounded measurable set Ω Rn. Consider the distribution ⊂ function µf (t) defined by

µ (t) = x Ω f(x) > t (2.1) f |{ ∈ || | }| 14

i i

i i “eigenvaluecmb” i i 2013/9/2 page 15 i i

[SEC. 2.1: INTRODUCTION 15

where denotes Lebesgue measure. The distribution function can be viewed| · | as a function from [0, ) to [0, Ω ] and is nonincreasing. ∞ | | The decreasing rearrangement f ∗ of f, is the inverse of µf and is defined by

f ∗(s) = inf t 0 µ (t) < s . (2.2) { ≥ | f } It is a nonincreasing function on [0, Ω ]. For a bounded measurable n | | set Ω R , its spherical rearrangement Ω∗ is defined as the ball centered⊂ at the origin having the same measure as Ω. The spherically ⋆ (symmetric) decreasing rearrangement f :Ω∗ R is defined by → ⋆ n ⋆ f (x) = f ∗(C x ) for x Ω (2.3) n| | ∈ n/2 n Rn where Cn = π /Γ 2 + 1 is the volume of the unt ball in . An important fact we will use is that  Ω 2 | | 2 ⋆ 2 f = (f ∗(s)) ds = (f ) . (2.4) ∗ ZΩ Z0 ZΩ 1 It is known that for any function f in the H0 (Ω), ⋆ 1 f H (Ω∗) and ∈ 0

f ⋆ 2 f 2. (2.5) ∗ |∇ | ≤ |∇ | ZΩ ZΩ For two nonnegative measurable functions f and g on Ω we have

fg f ⋆g⋆. (2.6) ≤ ∗ ZΩ ZΩ Let us recall the notion of spherically (symmetric) increasing rear- rangement, which we denote by a lower ⋆. The definition is almost identical to that of spherically decreasing rearrangement, except that g⋆ should be radially increasing (in the weak sense) on Ω∗. In this case, we have

⋆ fg f g⋆. (2.7) ≥ ∗ ZΩ ZΩ

i i

i i “eigenvaluecmb” i i 2013/9/2 page 16 i i

16 [CAP. 2: ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES 2.2 The Faber-Krahn Inequality

In this section, we will prove the Faber-Krahn inequality which is one of the oldest isoperimetric inequalities for an eigenvalue.

Theorem 2.1 (Faber-Krahn [36],[61]). For a bounded domain Ω Rn, the first Dirichlet eigenvalue satisfies ⊂

λ (Ω) λ (Ω∗) (2.8) 1 ≥ 1

with equality if and only if Ω = Ω∗.

Proof. Let u1 be a first Dirichlet eigenfunction for Ω. We have from (2.4), (2.5) and the mini-max principle that

2 u1 λ (Ω) = Ω |∇ | (2.9) 1 u2 R Ω 1 2 u1 = ΩR|∇ | (u )2 R Ω∗ 1∗ u 2 RΩ∗ |∇ 1| ≥ (u )2 R Ω∗ 1∗ λ (Ω∗). ≥ R1 For the characterization of the case of equality, we refer to [56].  The Faber-Krahn inequality is valid for more general manifolds. Let M be an n-dimensional complete Riemannian manifold and for a fixed κ R, let Mκ be the complete simply connected n-dimensional space form∈ of constant sectional curvature κ. To each bounded do- main Ω in M, associate the geodesic ball D in Mκ satisfying

Ω = D . (2.10) | | | | If κ > 0 then only consider those Ω for which Ω < M . | | | κ| Theorem 2.2. If, for all such Ω in M, equality (2.10) implies the isoperimetric inequality

∂Ω ∂D , (2.11) | | ≥ | |

i i

i i “eigenvaluecm i i 2013/9/2 page 17 i i

[SEC. 2.3: THE SZEGO¨-WEINBERGER INEQUALITY 17

with equality in (2.11) if and only if Ω is isometric to D, then we also have, for every bounded domain Ω in M, that equality (2.10) implies the inequality for the first Dirichlet eigenvalue

λ (Ω) λ (D), (2.12) 1 ≥ 1 with equality holding if and only if Ω is isometric to D.

For a proof of Theorem 2.2, we refer to [17].

2.3 The Szeg¨o-Weinberger Inequality

In this section, we prove the Szeg¨o-Weinberger inequality which is a counterpart to the first non-zero Neumann eigenvalue of the Faber- Krahn inequality.

Theorem 2.3 ([96]). Let Ω be a bounded domain in Rn. Then the first non-zero Neumann eigenvalue of Ω satisfies

λ (Ω) λ (Ω∗) (2.13) 1 ≤ 1

with equality holding if and only if Ω = Ω∗.

Proof. Let R be the radius of Ω∗ and let g be the solution of the equation

n 1 n 1 g′′ + − g′ −2 g + λ (Ω∗)g = 0 r − r 1 (2.14) g(0) = 0, g′(R) = 0 

By a topological argument, we can take as trial functions , such that P = 0 for i = 1, , n, with Ω i ··· R x P (x) = h(r) i , i r Rn where the xi′ s are Cartesian coordinates, x = (x1, , xn) , r = x , and ··· ∈ | | g(r) for 0 r R h(r) = g(R) for r≤ R.≤  ≥

i i

i i “eigenvaluecm i i 2013/9/2 page 18 i i

18 [CAP. 2: ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES

Observe that by an appropriate choice of sign, g(r) is increasing on [0,R] and hence that h is everywhere nondecreasing for r 0. By ≥ substituting our trial functions Pi into the mini-max inequality for λ1, we find

λ (Ω) P 2 P 2. 1 i ≤ |∇ i| ZΩ ZΩ Summing this in i for 1 i n, we arrive at ≤ ≤ n 2 Pi λ (Ω) Ω i=1 |∇ | (2.15) 1 ≤ n P 2 R PΩ i=1 i 2 n 1 2 h′(r) + −2 h(r) = ΩR P r h(r)2 R Ω  A(r) = Ω R h(r)2 RΩ where R

2 n 1 2 A(r) = h′(r) + − h(r) . (2.16) r2 A(r) is easily seen to be decreasing for 0 r R by differentiating and using the differential equation (2.14).≤ One≤ finds

2 3 A′(r) = 2(λ (Ω∗)hh′ + (n 1)(rh′ h) /r ) < 0, 0 < r < R.(2.17) − 1 − − Also, A(r) = (n 1)g(R)2/r2 for r R shows that A is decreasing for r > R. Since−A is continuous for≥ all r 0, it is also decreasing there. Observe that ≥

A(r) A(r) (2.18) ≤ ∗ ZΩ ZΩ since the volumes integrated over are the same in both cases, while in passing from the left to right hand sides we are exchanging integrating over Ω Ω∗ for integrating over Ω∗ Ω which are sets of equal volume. Since A\ is (strictly) decreasing this\ clearly increases the value of the integral unless Ω = Ω∗, when equality obtains. Similarly we find that

h(r)2 h(r)2 (2.19) ≥ ∗ ZΩ ZΩ

i i

i i “eigenvaluecm i i 2013/9/2 page 19 i i

[SEC. 2.4: THE ASHBAUGH-BENGURIA THEOREM 19

since h is nondecreasing. Thus we arrive at

Ω∗ A(r) λ (Ω) = λ (Ω∗), (2.20) 1 ≤ h(r)2 1 RΩ∗ R since each Pi is precisely a Neumann eigenfunction of ∆ with eigen- value λ1(BR) for the domain BR = Ω∗. This completes the proof of the Szeg¨o-Weinberger inequality, including the characterization of the case of equality.

2.4 The Ashbaugh-Benguria Theorem

In this section we consider the sharp upper bound for λ2/λ1 for the Dirichlet eigenvalue problem proved by Ashbaugh-Benguria. In 1955 and 1956, Payne, P´olya and Weinberger [77], [78], proved that

λ 2 3 for Ω R2 λ1 ≤ ⊂ and conjectured that

λ λ j2 2 2 = 1,1 λ ≤ λ j2 1 1 disk 0,1

with equality if and only if Ω is a disk and where jp,k denotes the th k positive zero of the Bessel function Jp(t). For general dimension n 2, the analogous statements are ≥ λ 4 2 1 + for Ω Rn, λ1 ≤ n ⊂ and the PPW conjecture

λ λ j2 2 2 = n/2,1 , (2.21) λ ≤ λ j2 1 1 n ball n/2 1,1 − −

with equality if and only if Ω is an n-ball. This important conjecture was proved by Ashbaugh-Benguria (see [5], [6], [7]).

i i

i i “eigenvaluecm i i 2013/9/2 page 20 i i

20 [CAP. 2: ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES

We proceed now with the proof of (2.21). Let us start from the variational principle for λ2

2 Ω φ λ2(Ω) = min |∇ | , (2.22) 1 2 φ H (Ω),0=φ u1 φ ∈ 0 6 ⊥ R Ω which, by integration by parts, leads to R

λ (Ω) λ (Ω) (2.23) 2 − 1 P 2u2 Ω |∇ | 1 , P u H1(Ω), P u2 = 0,P = 0. ≤ P 2u2 1 ∈ 0 1 6 R Ω 1 ZΩ To get the isoperimetricR result out of (2.23), one must make very special choices of the function P , in particular, choices for which (2.23) is an equality if Ω is a ball. Thus we shall use n trial functions P = P , such that P u2 = 0 for i = 1, , n where i Ω i 1 ··· x R P = g(r) i (2.24) i r and f(r) = “right” radial function on B for 0 r R, g(r) = R (2.25) f(R) for r R. ≤ ≤  ≥ The right R in this case turns out to be the unique R such that λ1(BR) = λ1(Ω). Substituting Pi into (2.23) and summing on i, we find B(r)u2 λ (Ω) λ (Ω) Ω 1 (2.26) 2 − 1 ≤ f(r)2u2 RΩ 1 where R

2 n 1 2 B(r) = f ′(r) + − f(r) . (2.27) r2

Now the equation (2.26) does not depend on the Pi′s and so we are in a position to define the function f. The idea is to take f as a properly quotient of Bessel functions so that the equality occur if Ω is a ball in Rn. This motivates the choice of :

f(r) = w(γr), (2.28)

i i

i i “eigenvaluecm i i 2013/9/2 page 21 i i

[SEC. 2.4: THE ASHBAUGH-BENGURIA THEOREM 21

where

jn/2(βx) , if 0 x < 1, w(x) = jn/2−1(αx) ≤ (2.29) ( w(1) limx 1 w(x), if x 1, ≡ → ≥

with α = jn/2 1,1, β = jn/2,1 and γ = √λ1/α. − Lemma 2.1. The equality occurs in (2.26) when Ω is a ball with λ1 as the first Dirichlet eigenvalue and f is given by (2.28).

n Proof. If S1 is a closed ball of R of appropriate radius centered in the origin in which the problem

∆z = λz in S , 1 (2.30) z =− 0.  |∂S1

has λ1 as the first eigenvalue, then

S = x Rn; x α/ λ1 = /γ . 1 { ∈ | | ≤ 1 } p ˜ β2 The second eigenvalue of the problem (2.30) is λ2 = α2 λ1. The first eigenfunction of S1 is

1 n/2 z(x) = c x − jn/2 1( λ1 x ), | | − | | p and the eigenfunctions corresponding to λ˜2 are:

1 n/2 xi f (x) = c x − j ( λ˜ x ) , i = 1, , n, i | | n/2 2| | x ··· q | | where c is a non-zero constant. Let

˜ jn/2 √λ2r , if 0 r < 1/γ, Q(r) = jn/2−1(√λ1r) ≤ (2.31)  ˜ jn/2 √λ2r  limr 1/γ , if r 1/γ, → jn/2−1(√λ1r) ≥ Observe that Q(r) = w(γr) = g(r) and let x x Q (x) = Q( x ) i = g(r) i , i | | x x | | | |

i i

i i “eigenvaluecm i i 2013/9/2 page 22 i i

22 [CAP. 2: ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES

then

Q z2 = 0, i = 1, , n i ··· ZS1

and Qiz are eigenfunctions of λ˜2. Thus, we have

2 (Qiz) ˜ S1 |∇ | λ2 = 2 , i = 1, , n. (Qiz) ··· R S1 Summing over i and simplifying,R we get

2 2 f (r) 2 (f (r)) + (n 1) 2 z S1 ′ r λ˜ λ = − . (2.32) 2 − 1  f 2(r)z2  R S1 This completes the proof of LemmaR 3.1. Substituting (2.28) into (2.26), we get

2 λ1 B(γr)u λ λ Ω 1 (2.33) 2 − 1 ≤ w2(γr)u2 ΩR 1 where R 2 2 w (x) B(x) = (w′(x)) + (n 1) . (2.34) − x2 From the definition of w and the properties of Bessel functions one can prove that w(t) is nondecreasing and B(t) is non-increasing. There- fore, we have

2 2 2 B(γr)u1 B(γr)∗(u1∗) B(γr)(u1∗) (2.35) ≤ ∗ ≤ ∗ ZΩ ZΩ ZΩ and

2 2 2 2 w(γr) u1 w(γr) (u1∗) w(γr)(u1∗) (2.36) ≥ ∗ ∗ ≤ ∗ ZΩ ZΩ ZΩ In order to continue the proof, we need a result of Chiti: If c is chosen so that

2 2 2 u1 = u1 = z , (2.37) ∗ ZΩ ZΩ ZS1

i i

i i “eigenvaluecm i i 2013/9/2 page 23 i i

[SEC. 2.5: THE HERSCH THEOREM 23

then

2 2 f(r)(u1∗) f(r)z , (2.38) ∗ ≥ ZΩ ZS1 if f is increasing, and the reverse inequality if f is decreasing. It follows from (2.38) and the monotonicity properties of B and w that

2 2 B(γr)(u1∗) B(γr)z (2.39) ∗ ≤ ZΩ ZS1 and

2 2 2 w(γr)(u1∗) w(γr) z . (2.40) ∗ ≥ ZΩ ZS1 Combining (2.33), (2.35), (2.36), (2.39), (2.40), and using the defini- tion of z, we finally get

2 λ1 B(γr)z λ λ λ S1 = 1 (β2 α2). (2.41) 2 − 1 ≤ αr 2 w2(γ )z2 α2 − RS1 From here the inequalityR

2 λ2 jn/2,1 2 (2.42) λ1 ≤ jn/2 1,1 − follows immediately. Also, it is clear from the proof that the equality holding in (2.42) if and only if Ω is a ball.

2.5 The Hersch Theorem

In 1974, Hersch proved an isoperimetric inequality for the first non- trivial eigenvalue on the 2-dimensional sphere S2.

Theorem 2.5 ([48]). For any metric on S2, the first non-trivial eigenvalue satisfies 8π λ . (2.43) 1 ≤ A(S2)

i i

i i “eigenvaluecm i i 2013/9/2 page 24 i i

24 [CAP. 2: ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES

Proof. For any metric ds˜2 on S2, we can construct a conformal map S2 2 S2 2 2 S2 φ :( , ds˜ ) ( , ds0), here ds0 denotes the standard metric on . From the mini-max→ principle, we have 2 2 f dv˜ S |∇ | λ1 = inf 2 , (2.44) 2 fdv˜=0 2 f dv˜ S R S R where dv˜ is the area element withR respect to ds˜2. Take the coordi- i S2 2 i nate functions x (i = 1, 2, 3) on ( , ds0); then x φ, i = 1, 2, 3, are functions on (S2, ds˜2). ◦ Observe that φ is a conformal map and that in the case of surfaces, the Dirichlet integral of a function is a conformal invariant. Thus we have 8π (xi φ) 2dv˜ = xi 2dv = xi∆xi = 2 (xi)2 = . S2 |∇ ◦ | S2 |∇ | − S2 S2 3 Z Z Z Z Since 3 Area(S2) = dv˜ = (xi φ)2dv,˜ S2 S2 ◦ i=1 Z X Z there exists at least one i such that Area(S2) (xi φ)2dv˜ . S2 ◦ ≥ 3 Z i Also, we can choose φ satisfying 2 x φdv˜ = 0 [85]. Thus S ◦ i 2 2 (x φR) dv˜ 8π S |∇ ◦ | λ1 i 2 2 . (2.45) ≤ 2 (x φ) dv˜ ≤ A(S ) R S ◦ For the discussion of equalityR case, we refer to [48]. 

Remark 2.1. S2 is a Riemann surface of genus g = 0. For Riemannian surface Σg of genus g > 0, Yang-Yau obtained a similar result.

Theorem 2.6 ([99]). For any metric on Σg, the first eigenvalue satisfies 8π(1 + g) λ (2.46) 1 ≤ Σ | g|

i i

i i “eigenvaluecm i i 2013/9/2 page 25 i i

[SEC. 2.5: THE HERSCH THEOREM 25

Remark 2.2. Hersch’s theorem can’t be generalized directly to the case of higher dimensions [86]. That is, one can’t expect that

λ Vol(M)2/n C, 1 ≤

with a constant depending only on n. It must depend also on other geometric invariants of M. Here is an interesting application of Hersch’s theorem.

Theorem 2.7 ([19]). Suppose that M is homeomorphic to S2 and φ1, φ2, φ3 are three first eigenfunctions such that their square sum is a constant. Then M is actually isometric to a sphere with constant sectional curvature.

Proof. The assumption of Theorem 2.7 says that

∆φi + λ1(M)φi = 0, i = 1, 2, 3, 3 φ2 = c, c is a constant.  i=1 i P Thus,

3 3 3 0 = ∆ φ2 = 2 φ 2 + 2 φ ∆φ i |∇ i| i i i=1 ! i=1 i=1 X X X 3 3 = 2 φ 2 2λ (M) φ2 |∇ i| − 1 i i=1 i=1 X X which gives

3 φ 2 = cλ (M). (2.47) |∇ i| 1 i=1 X Taking the Laplacian of both sides of (2.47) and using the Bochner

i i

i i “eigenvaluecm i i 2013/9/2 page 26 i i

26 [CAP. 2: ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES

formula, we get

1 3 0 = ∆ φ 2 (2.48) 2 |∇ i| i=1 X 3 3 3 = 2φ 2 + φ (∆φ ) + Ric( φ , φ ) |∇ i| ∇ i · ∇ i ∇ i ∇ i i=1 i=1 i=1 X X X 3 3 3 = 2φ 2 λ (M)2 φ2 + K φ 2 |∇ i| − 1 i |∇ i| i=1 i=1 i=1 X X X 3 ∆φ 2 | i| cλ (M)2 + Kcλ (M) ≥ 2 − 1 1 i=1 X = λ (M)2/2 + Kcλ (M), − 1 1 where K is the sectional curvature of M. Thus we have

λ (M) 2K. (2.49) 1 ≥ Integrating (2.49) and using the Gauss-Bonnet formula, we have

λ (M) area(M) 8π. (2.50) 1 × ≥ Combining (2.50) and Hersch’s theorem we know that M is a 2- sphere. 

We have an isoperimetric upper bound for the first eigenvalue of the Laplacian of a closed (compact without boundary) hypersurface embedded in Rn.

Theorem 2.8 ([92]). Let M be a connected closed hypersurface embedded in Rn(n 3). Let Ω be the region bounded by M. Denote by V and A the volume≥ of Ω and the area of M, respectively. Then the first non-zero eigenvalue λ1 of the Laplacian acting on functions on M satisfies

(n 1)A ω 1/n λ − n . (2.51) 1 ≤ nV V   with equality holding if and only if M is an (n 1)-sphere. −

i i

i i “eigenvaluecm i i 2013/9/2 page 27 i i

[SEC. 2.5: THE HERSCH THEOREM 27

Proof. Let us denote by x1, , xn, the coordinate functions on Rn. By choosing the coordinates··· origin properly, we can assume that

x = 0, i = 1, , n. i ··· ZM Since M cannot be contained in any hyperplane, each xi is not a con- stant function, i = 1, , n. It follows from the Poincar´einequality that for each fixed i ···1, , n ∈ { ··· } λ x2 x 2, 1 i ≤ |∇ i| ZM ZM with equality holding if and only if ∆xi = λ1xi. Summing over i from 1 to n, we get −

n n λ x2 x 2 = (n 1) = (n 1)A, (2.52) 1 i ≤ |∇ i| − − M i=1 M i=1 M Z X Z X Z with equality if and only if

∆x = λ x , i 1, , n . (2.53) i − 1 i ∀ ∈ { ··· } Take a ball B in Rn of radius R centered at the origin so that vol(B) = V ; then

V 1/n R = . ω  n  By using the weighted isoperimetric inequality proved in [14], we have

n n x2 x2 (2.54) i ≥ i M i=1 ∂B i=1 Z X Z X = area(∂B) R2 · V 1/n = nV . ω  n  Substituting (2.54) into (2.52), one gets (2.51). If the equality holds in (2.51), then the inequalities (2.52) and (2.54) must take equality sign.

i i

i i “eigenvaluecm i i 2013/9/2 page 28 i i

28 [CAP. 2: ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES

It follows that the position vector x = (x1, , xn) when restricted on M satisfies ···

∆x =: (∆x , , ∆x ) = λ (x , , x ). 1 ··· n − 1 1 ··· n Also, it is well known that

∆x = (n 1)−→H, − where −→H is the mean curvature vector of M. Consider now the func- tion g = x 2 : M R. Observing that −→H is normal to M, we infer that | | → 2(n 1) wf = 2 w, x = − w, −→H = 0, w χ(M). h i − λ1 h i ∀ ∈ Thus f is a constant function and so M is a hypersphere. 

i i

i i “eigenvaluecmb” i i 2013/9/2 page 29 i i

Chapter 3

Universal Inequalities for Eigenvalues

3.1 Introduction

Payne, P´olya and Weinberger proved that the Dirichlet eigenvalues of the Laplacian for Ω R2 satisfy the bound [77], [77]. ⊂

2 k λ λ λ , k = 1, 2, (3.1) k+1 − k ≤ k i ··· i=1 X This result easily extends to Ω Rn as ⊂

4 k λ λ λ , k = 1, 2, (3.2) k+1 − k ≤ kn i ··· i=1 X Many interesting generalizations of (1.3) have been done during the past years, e. g., in [3], [4], [9], [20], [21], [22], [23], [25], [26], [27], [29], [30], [33], [41], [42], [43], [44], [45], [46], [47], [50], [52], [68], [69], [90], [98]. In 1991, Yang [98] proved the following much stronger result:

29

i i

i i “eigenvaluecm i i 2013/9/2 page 30 i i

30 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Theorem 3.1. The Dirichlet eigenvalues of the Laplacian of Ω Rn satisfy the inequality ⊂ k 4 (λ λ ) λ 1 + λ 0, for k = 1, 2, . (3.3) k+1 − i k+1 − n i ≤ ··· i=1 X     The inequality (3.3), as observed by Yang himself, and as later proved, e. g., in [3], [4], [9], is the strongest of the classical inequal- ities that are derived following the scheme devised by Payne-P´olya- Weinberger. Yang’s inequality provided a marked improvement for eigenvalues of large index. Recently, some Yang type inequalities on eigenvalues of the clamped plate problem, the buckling problem, the polyharmonic operator and some other type eigenvalue problems have been proved. This chapter is devoted to prove some of the univer- sal inequalities in this subarea. Since the method in proving Yang’s inequality has been widely generalized in obtaining various universal inequalities for eigenvalues, we end this section by proving Yang’s inequality.

Proof of Theorem 3.1. Let uk be the orthonormal eigenfunction th corresponding to the k eigenvalue λk, i.e. uk satisfies

∆uk = λkuk, in Ω u =− 0, (3.4)  k|∂Ω  Ω uiuj = δij. Rn Let x1, , xn be the R standard coordinate functions in . For any fixed p =··· 1, , n, put g = x and define φ by ··· p i k φ = gu a u , a = gu u = a . (3.5) i i − ij j ij i j ji j=1 Ω X Z It is easy to see that

φ u = 0, for i, j = 1, , k. (3.6) i j ··· ZΩ Letting

b = u g u , ij j∇ · ∇ i ZΩ

i i

i i “eigenvaluecm i i 2013/9/2 page 31 i i

[SEC. 3.1: INTRODUCTION 31

from Green’s formula, we derive

λ a = g( ∆u )u = 2b + λ a j ij − j i − ij i ij ZΩ and so 2b = (λ λ )a . (3.7) ij i − j ij Since k ∆φ = λ gu + 2 g u + λ a u , i − i i ∇ · ∇ i j ij j j=1 X we have

φ 2 = λ φ2 2 φ g u . (3.8) |∇ i| i i − i∇ · ∇ i ZΩ ZΩ ZΩ On the other hand, from the definition of φi, (3.5) and (3.6), we derive

2 φ g u (3.9) − i∇ · ∇ i ZΩ k = 2 g g u u + 2 a u g u − ∇ · i∇ i ij j∇ · ∇ i Ω j=1 Ω Z X Z k = 1 + (λ λ )a2 . i − j ij j=1 X From the mini-max principle, we obtain k (λ λ ) φ2 1 + (λ λ )a2 . (3.10) k+1 − i i ≤ i − j ij Ω j=1 Z X 2 Multiplying (3.9) by (λk+1 λi) and taking sum on i from 1 to k, we obtain − k k (λ λ )2 + (λ λ )(λ λ )2a2 (3.11) k+1 − i i − j k+1 − i ij i=1 i,j=1 X X k = 2 (λ λ )2 φ g u . − k+1 − i i∇ · ∇ i i=1 Ω X Z

i i

i i “eigenvaluecm i i 2013/9/2 page 32 i i

32 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

By a = a , b = b , we have ij ji ij − ji k 2 (λ λ )2 φ g u (3.12) − k+1 − i i∇ · ∇ i i=1 Ω X Z k k = (λ λ )2 4 (λ λ )b2 w. k+1 − i − k+1 − i ij ≡ i=1 i=1 X X 2 Multiplying (3.10) by (λk+1 λi) and taking sum on i from 1 to k, we infer −

k (λ λ )3 φ2 k+1 − i i i=1 Ω X Z k k (λ λ )2 4 (λ λ )b2 = w. ≤ k+1 − i − k+1 − i ij i=1 i=1 X X

From Ω uiφj = 0 for all i, j = 1, , k, we have, for arbitrary con- stants d , ··· R ij w2 k 2 = 2 (λ λ )2 φ g u − k+1 − i i∇ · ∇ i i=1 Ω ! X Z k 4 (λ λ )3φ2 ≤ k+1 − i i i=1 ZΩ X 2 k k (λ λ )1/2 g u d u ×  k+1 − i ∇ · ∇ i − ij j i=1 Ω j=1 X Z X   2 k k 4w (λ λ ) g u 2 + d u ≤  k+1 − i |∇ · ∇ i|  ij j i=1 Ω j=1 X Z X    k 2 d (λ λ )1/2u g u . − ij k+1 − i j∇ · ∇ i j=1 X 

i i

i i “eigenvaluecm i i 2013/9/2 page 33 i i

[SEC. 3.1: INTRODUCTION 33

Then we have k ∂u 2 w 4 (λ λ ) i ≤ k+1 − i ∂x i=1 Ω p X Z   k k +4 2 (λ λ )1/2b + d2 . − k+1 − i ij ij i,j=1 i,j=1 X X   Putting d = (λ λ )1/2b , we obtain ij k+1 − i ij k ∂u 2 k w 4 (λ λ ) i 4 (λ λ )b2 (3.13) ≤ k+1 − i ∂x − k+1 − i ij i=1 Ω p i,j=1 X Z   X and so we infer k k ∂u 2 (λ λ )2 4 (λ λ ) i . (3.14) k+1 − i ≤ k+1 − i ∂x i=1 i=1 Ω p X X Z   Summing over p, we obtain

k 4 k (λ λ )2 (λ λ ) u 2 (3.15) k+1 − i ≤ n k+1 − i |∇ i| i=1 i=1 Ω X X Z 4 k = (λ λ )λ . n k+1 − i i i=1 X 

Yang’s inequality has been generalized to bounded domains in complete submanifolds in Euclidean space. That is, we have

Theorem 3.2 ([20], [41]). Let Ω be a bounded domain in an n-dimensional complete Riemannian manifold M n isometrically im- mersed in RN . Then the Dirichlet eigenvalues of the Laplacian of Ω satisfy the inequality

k 4 k n2 (λ λ )2 (λ λ )(λ + H 2), (3.16) k+1 − k ≤ n k+1 − k i 4 || || i=1 i=1 X X where H is the mean curvature vector field of M n and H 2 = sup H 2. || || Ω | |

i i

i i “eigenvaluecmb” i i 2013/9/2 page 34 i i

34 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES 3.2 Eigenvalues of the Clamped Plate Problem

Let us generalize Yang’s method to prove universal inequalities for eigenvalues of the clamped plate problem on Riemannian manifolds.

Theorem 3.2 ([94]). Let M be an n-dimensional complete Riemannian manifold and let Ω be a bounded domain with smooth boundary in M. Denote by ν the outward unit normal of ∂Ω and let λi the i-th eigenvalue of the problem:

∆2u = λu in Ω, (3.17) ( u = ∂u = 0. |∂Ω ∂ν ∂Ω

i) If M is isometrically immersed in Rm with mean curvature vector H, then

k (λ λ )2 (3.18) k+1 − i i=1 X 1/2 1 k (λ λ )2 n2H2 + (2n + 4)λ1/2 ≤ n k+1 − i 0 i (i=1 ) X   k 1/2 (λ λ ) n2H2 + 4λ1/2 , × k+1 − i 0 i (i=1 ) X  

where H = sup H . 0 Ω | | ii) If there exists a function φ :Ω R and a constant A0 such that →

φ = 1, ∆φ A , on Ω, (3.19) |∇ | | | ≤ 0

i i

i i “eigenvaluecmb” i i 2013/9/2 page 35 i i

[SEC. 3.2: EIGENVALUES OF THE CLAMPED PLATE PROBLEM 35

then

k (λ λ )2 (3.20) k+1 − i i=1 X k 1/2 (λ λ )2 A2 + 4A λ1/4 + 6λ1/2 ≤ k+1 − i 0 0 i i (i=1 ) X   1/2 k 2 (λ λ ) 2λ1/4 + A . × k+1 − i i 0 (i=1 ) X  

iii) If there exists a function ψ :Ω R and a constant B0 such that →

ψ = 1, ∆ψ = B , on Ω, (3.21) |∇ | 0 then

k k 1/2 (λ λ )2 (λ λ )2(6λ1/2 B2) (3.22) k+1 − i ≤ k+1 − i i − 0 i=1 (i=1 ) X X k 1/2 (λ λ ) 4λ1/2 B2 . × k+1 − i i − 0 (i=1 ) X   m iv) If Ω admits an eigenmap f = (f1, f2, , fm+1):Ω S (1) corresponding to an eigenvalue µ, that is, ··· →

m+1 ∆f = µf , α = 1, , m + 1, f 2 = 1, α − α ··· α α=1 X then

k k 1/2 (λ λ )2 (λ λ )2 6λ1/2 + µ (3.23) k+1 − i ≤ k+1 − i i i=1 (i=1 ) X X   k 1/2 (λ λ ) 4λ1/2 + µ , × k+1 − i i (i=1 ) X  

i i

i i “eigenvaluecm i i 2013/9/2 page 36 i i

36 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

where Sm(1) is the unit m-sphere.

Theorem 3.2 can be deduced from a general result.

Lemma 3.1 ([89]). Let λ , i = 1, , be the i-th eigenvelue of the i ··· problem (3.17) and ui the orthonormal eigenfunction corresponding to λi, that is,

2 ∆ ui = λiui in Ω, u = ∂ui = 0, (3.24)  i|∂Ω ∂ν ∂Ω u u = δ , i, j = 1, 2, .  M i j ij ∀ ···

Then for any smoothR function h :Ω R and any δ > 0, we have → k (λ λ )2 u2 h 2 (3.25) k+1 − i i |∇ | i=1 Ω X Z k δ (λ λ )2 u2(∆h)2 2u h 2∆u ≤ k+1 − i { i − i|∇ | i i=1 Ω X Z +4(( h u )2 + u ∆h h u ) ∇ · ∇ i i ∇ · ∇ i } k (λ λ ) u ∆h 2 + k+1 − i h u + i . δ ∇ · ∇ i 2 i=1 Ω X Z  

Proof of Lemma 3.1. For i = 1, , k, consider the functions φ :Ω R given by ··· i → k φ = hu r u , i i − ij j j=1 X where

rij = huiuj. ZΩ

∂φi Since φi ∂Ω = ∂ν = 0 and | ∂Ω

u φ = 0, i, j = 1, , k, j i ∀ ··· ZΩ

i i

i i “eigenvaluecm i i 2013/9/2 page 37 i i

[SEC. 3.2: EIGENVALUES OF THE CLAMPED PLATE PROBLEM 37

it follows from the mini-max inequality that

2 φi∆ φi λ Ω . (3.26) k+1 ≤ φ2 R Ω i R We have

2 φi∆ φi (3.27) ZΩ k = φ ∆2(hu ) r λ u i  i − ij j j Ω j=1 Z X 2  = φi∆ (hui) ZΩ k = λ φ 2 r s i|| i|| − ij ij j=1 X + hu (∆(u ∆h) + 2∆( h u ) + 2 h (∆u ) + ∆h∆u ), i i ∇ · ∇ i ∇ · ∇ i i ZΩ

where φ 2 = φ2 and || i|| Ω i R s = u (∆(u ∆h) + 2∆( h u ) + 2 h (∆u ) + ∆h∆u ). ij j i ∇ · ∇ i ∇ · ∇ i i ZΩ

2 Multiplying the equation ∆ ui = λiui by huj, we have

2 huj∆ ui = λihuiuj. (3.28)

Changing the roles of i and j, one gets

2 hui∆ uj = λjhuiuj. (3.29)

Subtracting (3.28) from (3.29) and integrating the resulted equation

i i

i i “eigenvaluecm i i 2013/9/2 page 38 i i

38 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

on Ω, we get

(λ λ )r (3.30) j − i ij = (hu ∆2u hu ∆2u ) i j − j i ZΩ = (∆(hu )∆u ∆(hu )∆u ) i j − j i ZΩ = ((u ∆h + 2 h u )∆u (u ∆h + 2 h u )∆u ) i ∇ · ∇ i j − j ∇ · ∇ j i ZΩ = u (∆(u ∆h) + 2∆( h u ) + ∆h∆u + 2 (∆u ) h) j i ∇ · ∇ i i ∇ i · ∇ ZΩ = sij,

Observe that

hu (∆(u ∆h) + 2∆( h u ) + 2 h (∆u ) + ∆h∆u ) i i ∇ · ∇ i ∇ · ∇ i i ZΩ = (u2(∆h)2 + 4( h u 2 + u ∆h h u ) 2u h 2∆u ). i |∇ · ∇ i| i ∇ · ∇ i − i|∇ | i ZΩ

It follows from (3.26), (3.27) and (3.30) that

(λ λ ) φ 2 (3.31) k+1 − i || i|| (u2(∆h)2 + 4( h u 2 + u ∆h h u ) 2u h 2∆u ) ≤ i |∇ · ∇ i| i ∇ · ∇ i − i|∇ | i ZΩ k + (λ λ )r2 . i − j ij j=1 X

Set

u ∆h t = u h u + i ; (3.32) ij j ∇ · ∇ i 2 ZΩ  

i i

i i “eigenvaluecm i i 2013/9/2 page 39 i i

[SEC. 3.2: EIGENVALUES OF THE CLAMPED PLATE PROBLEM 39

then tij + tji = 0 and

u ∆h ( 2)φ h u + i (3.33) − i ∇ · ∇ i 2 ZΩ   k = ( 2hu h u u2h∆h) + 2 r t − i∇ · ∇ i − i ij ij Ω j=1 Z X k = u2 h 2 + 2 r t . i |∇ | ij ij Ω j=1 Z X

2 Multiplying (3.33) by (λk+1 λi) and using the Schwarz inequality, we get −

k (λ λ )2 u2 h 2 + 2 r t (3.34) k+1 − i  i |∇ | ij ij Ω j=1 Z X  u ∆h = (λ λ )2 ( 2)φ h u + i k+1 − i − i ∇ · ∇ i 2 ZM   u ∆h k = (λ λ )2 ( 2)φ h u + i t u k+1 − i − i  ∇ · ∇ i 2 − ij j M j=1 Z   X 3 2   δ(λk+1 λi) φi ≤ − || || 2 (λ λ ) u ∆h k + k+1 − i h u + i t u δ ∇ · ∇ i 2 − ij j ZM j=1 X 3 2 = δ(λk+1 λi) φi − || || (λ λ ) u ∆h 2 k + k+1 − i h u + i t2 δ  ∇ · ∇ i 2 − ij Ω j=1 Z   X  

Substituting (3.31) into (3.34) and summing over i from 1 to k and

i i

i i “eigenvaluecm i i 2013/9/2 page 40 i i

40 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

noticing r = r , t = t , we get ij ji ij − ji

k k (λ λ )2 u2 h 2 2 (λ λ )(λ λ )r t k+1 − i i |∇ | − k+1 − i i − j ij ij i=1 Ω i,j=1 X Z X k (λ λ )2δ (u2(∆h)2 + 4(( h u )2 + u ∆h h u ) ≤ k+1 − i i ∇ · ∇ i i ∇ · ∇ i i=1 Ω X Z k (λ λ ) u ∆h 2 2u h 2∆u ) + k+1 − i ( h u )2 + i − i|∇ | i δ ∇ · ∇ i 2 i=1 Ω X Z   k k (λ λ ) (λ λ )δ(λ λ )2r2 k+1 − i t2 , − k+1 − i i − j ij − δ ij i,j=1 i,j=1 X X which implies (3.25). 

Proof of Theorem 3.2. Let u ∞ be the orthonormal eigenfunc- { i}i=1 tions corresponding to the eigenvalues λ ∞ of the problem (3.17). { i}i=1

i) Let xα, α = 1, , m, be the standard coordinate functions of m ··· R . Taking h = xα in (3.25) and summing over α, we have

k m (λ λ )2 u2 x 2 (3.35) k+1 − i i |∇ α| i=1 α=1 Ω X X Z k+1 m δ (λ λ )2 (u2(∆x )2 + 4(( x u )2 ≤ k+1 − i i α ∇ α · ∇ i i=1 α=1 Ω X X Z +u ∆x x u ) 2u x 2∆u ) i α∇ α · ∇ i − i|∇ α| i k (λ λ ) m u ∆x 2 + k+1 − i x u + i α , δ ∇ α · ∇ i 2 i=1 α=1 Ω X X Z   Since M is isometrically immersed in Rm, we have

m x 2 = n |∇ α| α=1 X

i i

i i “eigenvaluecm i i 2013/9/2 page 41 i i

[SEC. 3.2: EIGENVALUES OF THE CLAMPED PLATE PROBLEM 41

which implies that

m u2 x 2 = n (3.36) i |∇ α| α=1 Ω X Z Also, we have

∆(x , , x ) (∆x , , ∆x ) = nH, (3.37) 1 ··· m ≡ 1 ··· m

m m ( x u )2 = ( u (x ))2 = u 2 (3.38) ∇ α · ∇ i ∇ i α |∇ i| α=1 α=1 X X and m m ∆x x u = ∆x u (x ) = nH u = 0. (3.39) α∇ α · ∇ i α∇ i α · ∇ i α=1 α=1 X X Substituting (3.36)-(3.39) into (3.35), we get

k n (λ λ )2 (3.40) k+1 − i i=1 X k δ (λ λ )2 (n2u2 H 2 + 4 u 2 2nu ∆u ) ≤ k+1 − i i | | |∇ i| − i i i=1 Ω X Z k (λ λ ) n2u2 H 2 + k+1 − i u 2 + i | | δ |∇ i| 4 i=1 Ω X Z   k δ (λ λ )2(n2H2 + (2n + 4)λ1/2) ≤ k+1 − i 0 i i=1 X k (λ λ ) n2H2 + k+1 − i λ1/2 + 0 . δ i 4 i=1 X   Here in the last inequality, we have used the fact that H H and | | ≤ 0 1/2 1/2 u 2 = u ∆u u2 (∆u )2 = λ1/2.(3.41) |∇ i| − i i ≤ i i i ZΩ ZΩ ZΩ  ZΩ 

i i

i i “eigenvaluecm i i 2013/9/2 page 42 i i

42 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Taking

2 2 1/2 k 1/2 n H0 i=1(λk+1 λi) λi + 4 δ = − ,  k P(λ λ )2(n2H 2 + (2n + 4)λ1/2)  i=1 k+1 − i 0 i  one gets (3.18).P  ii) Substituting h = φ into (3.25) and using (3.19) and the Schwarz inequality, we get

k (λ λ )2 (3.42) k+1 − i i=1 X k δ (λ λ )2 u2(∆φ)2 + 4(( φ u )2 + u ∆φ φ u ) ≤ k+1 − i { i ∇ · ∇ i i ∇ · ∇ i i=1 Ω X Z k (λ λ ) u ∆φ 2 2u ∆u + k+1 − i φ u + i − i i} δ ∇ · ∇ i 2 i=1 Ω X Z   k δ (λ λ )2 (A2u2 + 4( u 2 + A u u ) 2u ∆u ) ≤ k+1 − i 0 i |∇ i| 0| i||∇ i| − i i i=1 Ω X Z k (λ λ ) A2u2 + k+1 − i u 2 + A u u + 0 i . δ |∇ i| 0| i||∇ i| 4 i=1 Ω X Z   Substituting (3.41) and

1/2 1/2 u u u2 u 2 λ1/4 | i||∇ i| ≤ i |∇ i| ≤ i ZΩ ZΩ  ZΩ  into (3.42), we get

k (λ λ )2 k+1 − i i=1 X k δ (λ λ )2(A2 + 4A λ1/4 + 6λ1/2) ≤ k+1 − i 0 0 i i i=1 X k (λ λ ) A 2 + k+1 − i λ1/4 + 0 . δ i 2 i=1 X  

i i

i i “eigenvaluecm i i 2013/9/2 page 43 i i

[SEC. 3.2: EIGENVALUES OF THE CLAMPED PLATE PROBLEM 43

Taking

2 1/2 k 1/4 A0 i=1(λk+1 λi) λi + 2 δ = − ,  k 1/4 1/2  P(λ λ )2(A2 + 4A λ + 6λ )  i=1 k+1 − i 0 0 i i  P we obtain (3.20). 

iii) Introducing h = ψ into (3.25) and using (3.21), we have

k (λ λ )2 k+1 − i i=1 X k δ (λ λ )2 (B2u2 + 4( u 2 + B u ψ u ) 2u ∆u ) ≤ k+1 − i 0 i |∇ i| 0 i∇ · ∇ i − i i i=1 Ω X Z k (λ λ ) B2u2 + k+1 − i u 2 + B u ψ u + 0 i δ |∇ i| 0 i∇ · ∇ i 4 i=1 Ω X Z   k k (λ λ ) B2 δ (λ λ )2(6λ1/2 B2) + k+1 − i λ1/2 0 , ≤ k+1 − i i − 0 δ i − 4 i=1 i=1 X X   where in the last inequality, we have used the fact that

1 B2 u ψ, u = u2∆ψ = 0 . ih∇ ∇ ii −2 i − 2 ZΩ ZΩ Taking 2 1/2 k 1/2 B0 i=1(λk+1 λi) λi 4 δ = − − ,  Pk (λ λ )2(6λ1/2 B2)  i=1 k+1 − i i − 0  we obtain (3.22).P  iv) Taking the Laplacian of the equation

m+1 2 fα = 1 α=1 X

i i

i i “eigenvaluecm i i 2013/9/2 page 44 i i

44 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

and using the fact that

∆f = µf , η = 1, , m + 1, η − η ··· we have

m+1 f 2 = µ. |∇ η| η=1 X

It then follows by taking h = fη in (3.25) and summing over η that

k µ (λ λ )2 k+1 − i i=1 X k m+1 δ (λ λ )2 µ2u2 + 4 ( f u )2 2µu ∆u ≤ k+1 − i i ∇ α · ∇ i − i i i=1 Ω α=1 ! X Z X k (λ λ ) m+1 µ2u2 + k+1 − i ( f u )2 + i δ ∇ α · ∇ i 4 i=1 Ω α=1 ! X Z X k δ (λ λ )2(µ2 + 6µλ1/2) ≤ k+1 − i i i=1 X k (λ λ ) µ2 + k+1 − i µλ1/2 + . δ i 4 i=1 X   We get (3.23) by taking

1/2 k 1/2 µ i=1(λk+1 λi) λi + 4 δ = − .  Pk (λ λ )2 6λ1/2 + µ   i=1 k+1 − i i    P  

Here are some examples of manifolds supporting the functions on the whole manifolds as stated in items ii)-v) of Theorem 1.1.

Example 3.1. Let M be an n-dimensional Hadamard manifold with Ricci curvature satisfying Ric (n 1)c2, c 0 and let M ≥ − − ≥

i i

i i “eigenvaluecm i i 2013/9/2 page 45 i i

[SEC. 3.2: EIGENVALUES OF THE CLAMPED PLATE PROBLEM 45

γ : [0, + ) M be a geodesic ray, namely a unit speed geodesic with d(γ∞(s), γ→(t)) = t s for any t > s > 0. The Busemann function − bγ corresponding to γ defined by

bγ (x) = lim (d(x, γ(t)) t) t + → ∞ − satisfies bγ 1(Cf. [10], [49]). Also, it follows from Theorem 3.5 in |∇ | ≡ 2 [84] that ∆bγ (n 1)c on M. Thus any Hadamard manifold with Ricci curvature| | ≤ bounded− below supports functions satisfying (3.19).

2 Example 3.2. Let (N, dsN ) be a complete Riemannian manifold and define a Riemannian metric on M = R N by × 2 2 2 2 dsM = dt + η (t)dsN , (3.43) where η is a positive smooth function defined on R with η(0) = 1. 2 The manifold (M, dsM ) is called a warped product and denoted by M = R η N. It is known that M is a complete Riemannian manifold. × t Set η = e− and consider the warped product M = R e−t N. Define ψ : M R by ψ(x, t) = t. One can show that × → ψ = 1, ∆ψ = 1 n. (3.44) |∇ | − That is, a warped product manifold M = R e−t N admits functions satisfying (3.21). × Let Hn be the n-dimensional hyperbolic space with constant cur- vature 1. Using the upper half-space model, Hn is given by − Rn = (x , x , , x ) x > 0 (3.45) + { 1 2 ··· n | n } with metric 2 2 2 dx1 + + dxn ds = ···2 (3.46) xn n 1 One can check that the map Φ : R −t R − given by ×e Φ(t, x) = (x, et) is an isometry. Therefore, Hn admits a warped product model, Hn = n 1 R −t R − . ×e Example 2.3. Any compact homogeneous Riemannian manifold admits eigenmaps to some unit sphere for the first positive eigenvalue of the Laplacian [70].

i i

i i “eigenvaluecm i i 2013/9/2 page 46 i i

46 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES 3.3 Eigenvalues of the Polyharmonic Operator

The method of proving universal bounds for eigenvalues of the clamped plate problem can be generalized to the eigenvalue problem of poly- harmonic operators.

Theorem 3.3 ([55]). Let M be an n-dimensional compact Rie- mannian manifold with boundary ∂M (possibly empty) Let l be a positive integer and let λ , i = 1, , be the i-th eigenvalue of the i ··· problem (1.7) and ui be the orthonormal eigenfunction corresponding to λi, that is, l ( ∆) ui = λiui in M, − l−1 ∂ui ∂ ui ui ∂M = ∂ν = = l−1 = 0, (3.47)  | ∂M ··· ∂ν ∂M   M uiuj = δij , for any i, j = 1, 2, . ··· l+2 l+1 Then for anyR function h C (M) C (∂M) and any positive integer k, we have ∈ ∩ k (λ λ )2 u2 h 2 (3.48) k+1 − i i |∇ | i=1 M X Z k δ (λ λ )2 hu ( ∆)l(hu ) λ hu ) ≤ k+1 − i i − i − i i i=1 ZM X  k (λ λ ) u ∆h 2 + k+1 − i h, u + i , δ h∇ ∇ ii 2 i=1 X

where δ is any positive constant.

Proof. For i = 1, , k, consider the functions φi : M R given by ··· → k φ = hu r u , (3.49) i i − ij j j=1 X where

rij = huiuj. (3.50) ZM

i i

i i “eigenvaluecm i i 2013/9/2 page 47 i i

[SEC. 3.3: EIGENVALUES OF THE POLYHARMONIC OPERATOR 47

Since ∂φ ∂l 1φ φ = i = = − i = 0 i|∂M ∂ν ··· ∂νl 1 ∂M − ∂M

and

u φ = 0, i, j = 1, , k, j i ∀ ··· ZM it follows from the mini-max inequality that

2 λk+1 φi (3.51) ZM φ ( ∆)lφ ≤ i − i ZM = λ φ 2 + φ ( ∆)lφ λ hu i|| i|| i − i − i i ZM  = λ φ 2 + φ ( ∆)l(hu ) λ hu i|| i|| i − i − i i ZM  k = λ φ 2 + hu ( ∆)l(hu ) λ hu r s , i|| i|| i − i − i i − ij ij ZM j=1  X where

s = ( ∆)l(hu ) λ hu u . ij − i − i i j ZM  Notice that if u Cl+2(M) Cl+1(∂M) satisfies ∈ ∩ ∂u ∂l 1u u = = = − = 0, (3.52) |∂M ∂ν ··· ∂νl 1 ∂M − ∂M

then

u ∂M = u ∂M = ∆u ∂M = (∆u) ∂M = | ∇m| 1 | m∇1 | ··· = ∆ − u = (∆ − u) = 0, when l = 2m ∂M ∇ ∂M

and m 1 u = u = ∆u = (∆u) = = ∆ − u |∂M ∇ |∂M |∂M ∇ |∂M ··· ∂M m 1 m = (∆ − u) = ∆ u = 0, when l = 2m + 1. ∇ ∂M |∂M

i i

i i “eigenvaluecm i i 2013/9/2 page 48 i i

48 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

We can then use integration by parts to conclude that

u ( ∆)l(hu ) = hu ( ∆)l(u ) = λ r , j − i i − j j ij ZM ZM which gives

s = (λ λ )r . (3.53) ij j − i ij

Set

p (h) = ( ∆)l(hu ) λ hu ; i − i − i i

then we have from (3.51) and (3.53) that

(λ λ ) φ 2 φ p (h) (3.54) k+1 − i || i|| ≤ i i ZM k = hu p (h) + (λ λ )r2 . i i i − j ij M j=1 Z X Set

u ∆h t = u h u + i ; (3.55) ij j ∇ · ∇ i 2 ZM  

then tij + tji = 0 and

u ∆h k ( 2)φ h u + i = w + 2 r t , (3.56) − i ∇ · ∇ i 2 i ij ij M j=1 Z   X where

w = ( hu2∆h 2hu h u ). (3.57) i − i − i∇ · ∇ i ZM

i i

i i “eigenvaluecm i i 2013/9/2 page 49 i i

[SEC. 3.3: EIGENVALUES OF THE POLYHARMONIC OPERATOR 49

2 Multiplying (3.56) by (λk+1 λi) and using the Schwarz inequality and (3.54), we get −

k (λ λ )2 w + 2 r t k+1 − i  i ij ij j=1 X   u ∆h k = (λ λ )2 ( 2)φ h u + i t u k+1 − i − i  ∇ · ∇ i 2 − ij j M j=1 Z   X 3 2   δ(λk+1 λi) φi ≤ − || || 2 (λ λ ) u ∆h k + k+1 − i h u + i t u δ ∇ · ∇ i 2 − ij j ZM j=1 X 3 2 = δ(λk+1 λi) φi − || || (λ λ ) u ∆h 2 k + k+1 − i h u + i t2 δ  ∇ · ∇ i 2 − ij j=1 X   k δ(λ λ )2 hu p (h) + (λ λ )r2 ≤ k+1 − i  i i i − j ij M j=1 Z X   (λ λ ) u ∆h 2 k + k+1 − i h u + i t2 . δ  ∇ · ∇ i 2 − ij j=1 X   Summing over i and noticing rij = rji, tij = tji, we infer − k k (λ λ )2w 2 (λ λ )(λ λ )r t k+1 − i i − k+1 − i i − j ij ij i=1 i,j=1 X X k δ (λ λ )2 hu p (h) ≤ k+1 − i i i i=1 M X Z k (λ λ ) u ∆h 2 + k+1 − i h, u + i δ h∇ ∇ ii 2 i=1 X k k (λ λ ) (λ λ )δ (λ λ )2r2 k+1 − i t2 .  − k+1 − i i − j ij − δ ij i,j=1 i,j=1 X X

i i

i i “eigenvaluecm i i 2013/9/2 page 50 i i

50 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Using (3.48), we can obtain universal inequalities for eigenvalues of the problem (1.7) when M is a bounded domain in Rn or Sn(1).

Theorem 3.4 ([55]). Let Ω be a bounded domain in Rn and Denote by λi the i-th eigenvelue of the eigenvalue problem:

( ∆)lu = λu in Ω, − ∂u ∂l−1u (3.58) u ∂Ω = ∂ν = = l−1 = 0. ( | ∂Ω · ·· ∂ν ∂Ω

Then we have k (λ λ )2 (3.59) k+1 − i i=1 X 1/2 1/2 k 4l(n + 2l 2) 2 (l 1)/l − (λ λ ) λ − ≤ n2 k+1 − i i i=1 !   X k 1/2 (λ λ ) λ1/l × k+1 − i i i=1 ! X

Proof. Let x1, x2, , xn be the standard Euclidean coordinate n ··· functions of R . Let ui be the i-th orthonormal eigenfunction cor- responding to the eigenvalue λi of the problem (3.58), i = 1, ; then ···

l l l 1 ( ∆) (x u ) = λ x u + 2l( 1) x (∆ − u ) (3.60) − α i i α i − ∇ α · ∇ i

Taking h = xα in (3.48), we infer for any δ > 0 that

k (λ λ )2 k+1 − i i=1 X k 2 l l 1 δ (λ λ ) 2l( 1) x u x (∆ − u ) ≤ k+1 − i − α i∇ α · ∇ i i=1 Ω X Z 1 k + (λ λ ) x u 2. δ k+1 − i ||∇ α · ∇ i|| i=1 X

i i

i i “eigenvaluecm i i 2013/9/2 page 51 i i

[SEC. 3.3: EIGENVALUES OF THE POLYHARMONIC OPERATOR 51

Summing over α, we have

k n (λ λ )2 (3.61) k+1 − i i=1 X k n 2 l l 1 2lδ (λ λ ) ( 1) x u x (∆ − u ) ≤ k+1 − i − α i∇ α · ∇ i i=1 α=1 Ω X X Z 1 k + (λ λ ) u 2. δ k+1 − i |∇ i| i=1 Ω X Z By induction, we infer

u ( ∆)ku λk/l, k = 1, , l. (3.62) i − i ≤ i ··· ZΩ Since

l 1 l 2 l 1 ∆ − (x u ) = 2(l 1) x (∆ − u ) + x ∆ − u , α i − ∇ α · ∇ i α i we have

l 1 x u x (∆ − u ) (3.63) α i∇ α · ∇ i ZΩ l 1 = x u ∆ − x u α i ∇ α · ∇ i ZΩ l 1 = ∆ − (x u ) x u α i ∇ α · ∇ i ZΩ l 2 l 1 = 2(l 1) x (∆ − u ) + x ∆ − u x u . − ∇ α · ∇ i α i ∇ α · ∇ i ZΩ  On the other hand,

l 1 x u x (∆ − u ) (3.64) α i∇ α · ∇ i ZΩ l 1 = ∆ − u div(x u x ) − i α i∇ α ZΩ l 1 2 = ∆ − u ( x u + x x u ). − i |∇ α| i α∇ α · ∇ i ZΩ

i i

i i “eigenvaluecm i i 2013/9/2 page 52 i i

52 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Combining (3.63) and (3.64), we obtain

l 1 x u x (∆ − u ) (3.65) α i∇ α · ∇ i ZΩ l 2 1 l 1 2 = (l 1) x (∆ − u ) x u ∆ − u x u − ∇ α · ∇ i ∇ α · ∇ i − 2 i|∇ α| i ZM   Observe that

n l l 1 ( 1) x u x (∆ − u ) (3.66) − α i∇ α · ∇ i α=1 Ω X Z l l 2 n l 1 = ( 1) (l 1) (∆ − ui) ui ui∆ − ui Ω − − ∇ · ∇ − 2 Z n o n l 1 = l 1 + u ( ∆) − u − 2 i − i ZΩ  n (l 1)/l l 1 + λ − . ≤ − 2 i   Substituting (3.62) and (3.66) into (3.61), one gets

k n (λ λ )2 (3.67) k+1 − i i=1 X k k 2 (l 1)/l 1 1/l l(n + 2l 2)δ (λ λ ) λ − + (λ λ ) λ . ≤ − k+1 − i i δ k+1 − i i i=1 i=1 X X Taking

1/2 k (λ λ ) λ1/l δ = i=1 k+1 i i , k − 2 (l 1)/l (l2(n + l 2) (λ λ ) λ − ) −P i=1 k+1 − i i we get (3.59). P 

Let l be a positive integer and for p = 0, 1, 2, ..., define the poly- nomials Fp(t) inductively by

F0(t) = 1,F1(t) = t n, − 2 Fp(t) = (2t 2)Fp 1(t) (t + 2t n(n 2))Fp 2(t), p = 2, .  − − − − − − ···

i i

i i “eigenvaluecm i i 2013/9/2 page 53 i i

[SEC. 3.3: EIGENVALUES OF THE POLYHARMONIC OPERATOR 53

(3.68) Set

l l 1 l 1 l Fl(t) = t al 1t − + + ( 1) − a1t + ( n) . (3.69) − − ··· − −

Theorem 3.4 ([55]). Let λi be the i-th eigenvalue of the eigen- value problem: ( ∆)lu = λu in Ω, − ∂u ∂l−1u u ∂Ω = ∂ν = = l−1 = 0, ( | ∂Ω · ·· ∂ν ∂Ω

Sn where Ω is a compact domain in (1). Then we have k (λ λ )2 (3.70) k+1 − i i=1 X k 1/2 1 l−1 1 2 + l + l + (λk+1 λi) al 1λi + + a1 λi + a0 ≤ n − − · ·· (i=1 ) X   k 1/2 (λ λ ) n2 + 4λ1/2 , × k+1 − i i (i=1 ) X   where a+ = max 0, a . j { j }

Proof. As before, let x1, x2, , xn+1 be the standard coordinate functions of Rn+1; then ···

n+1 Sn(1) = (x , . . . , x ) Rn+1; x2 = 1 . { 1 n+1 ∈ α } α=1 X It is well known that ∆x = nx , α = 1, , n + 1. (3.71) α − α ··· n+1 2 Taking the Laplacian of the equation α=1 xα = 1 and using (3.71), we get P n+1 x 2 = n. (3.72) |∇ α| α=1 X

i i

i i “eigenvaluecm i i 2013/9/2 page 54 i i

54 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Let ui be the i-th orthonormal eigenfunction corresponding to the eigenvalue λi, i = 1, 2, . For any δ > 0, by taking h = xα in (3.48), we have ···

k (λ λ )2 u2 x 2 k+1 − i i |∇ α| i=1 Ω X Z k+1 δ (λ λ )2 x u (( ∆)l(x u ) λ x u ) ≤ k+1 − i α i − α i − i α i i=1 Ω X Z 1 k u ∆x 2 + (λ λ ) x u + i α δ k+1 − i ∇ α · ∇ i 2 i=1 X

Taking sum on α from 1 to n + 1 and using (3.72), we get

k n (λ λ )2 (3.73) k+1 − i i=1 X k+1 n+1 δ (λ λ )2 x u (( ∆)l(x u ) λ x u ) ≤ k+1 − i α i − α i − i α i i=1 α=1 Ω X X Z 1 k n+1 u ∆x 2 + (λ λ ) x u + i α . δ k+1 − i ∇ α · ∇ i 2 i=1 α=1 X X

It is easy to see that

n+1 u ∆x 2 x u + i α (3.74) ∇ α · ∇ i 2 α=1 X n +1 n2u2x2 = ( x u )2 n x u u x + i α ∇ α · ∇ i − ∇ α · ∇ i i α 4 Ω α=1 Z X   n2 = + u 2 4 |∇ i| ZΩ n2 + λ1/l. ≤ 4 i For any smooth functions f, g on Ω, we have from the Bochner for-

i i

i i “eigenvaluecm i i 2013/9/2 page 55 i i

[SEC. 3.3: EIGENVALUES OF THE POLYHARMONIC OPERATOR 55

mula that ∆( f g) (3.75) ∇ · ∇ = 2 2f 2g + f (∆g) + g (∆f) ∇ · ∇ ∇ · ∇ ∇ · ∇ +2(n 1) f g, − ∇ · ∇ where n 2f 2g = 2f(e , e ) 2g(e , e ), ∇ · ∇ ∇ s t ∇ s t s,t=1 X being e , , e orthonormal vector fields locally defined on Ω. Since 1 ··· n 2x = x I, ∇ α − α we infer from (3.75) by taking f = xα that ∆( x g) (3.76) ∇ α · ∇ = 2x ∆g + x (∆g) + (n 2) x g − α ∇ α · ∇ − ∇ α · ∇ = 2x ∆g + x ((∆ + (n 2))g). − α ∇ α · ∇ − For each q = 0, 1, , thanks to (3.71) and (3.76), there are polyno- ··· mials Bq and Cq of degrees less than or equal to q such that ∆q(x g) = x B (∆)g + 2 x (C (∆)g). (3.77) α α q ∇ α · ∇ q It is obvious that B = 1,B = t n, C = 0,C = 1. (3.78) 0 1 − 0 1 It follows from (3.71), (3.76) and (3.77) that

q q 1 ∆ (xαg) = ∆(∆ − (xαg)) (3.79)

= ∆(xαBq 1(∆)g + 2 xα (Cq 1(∆)g)) − ∇ · ∇ − = xα((∆ n)Bq 1(∆) 4∆Cq 1(∆))g − − − − +2 xα ((Bq 1(∆) + (∆ + (n 2))Cq 1(∆))g). ∇ · ∇ − − − Thus, for any q = 2, , we have ··· Bq(∆) = (∆ n)Bq 1(∆) 4∆Cq 1(∆), (3.80) − − − − Cq(∆) = Bq 1(∆) + (∆ + (n 2))Cq 1(∆). (3.81) − − −

i i

i i “eigenvaluecm i i 2013/9/2 page 56 i i

56 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Consequently,

Bq(∆) (3.82)

= (2∆ 2)Bq 1(∆) (∆ + n 2)Bq 1(∆) 4∆Cq 1(∆) − − − − − 2 − − = (2∆ 2)Bq 1(∆) (∆ + 2∆ n(n 2))Bq 2(∆) − − − − − − +4∆[Bq 2(∆) + (∆ + n 2)Cq 2(∆) Cq 1(∆)] − − − 2 − − = (2∆ 2)Bq 1(∆) (∆ + 2∆ n(n 2))Bq 2(∆), q = 2, . − − − − − − ···

Since (3.78) and (3.82) hold, we know that Bq = Fq, q = 0, 1, . It follows from (3.77) and the divergence theorem that∀ ···

x u (( ∆)l(x u ) λ x u ) (3.83) α i − α i − i α i ZΩ = x u ( 1)l (x B (∆)u + 2 x (C (∆)u )) λ x u α i − α l i ∇ α · ∇ l i − i α i ZΩ l l l 1 l  = xαui ( 1) xα(∆ al 1∆ − + + ( n) )ui − − − ··· − ZΩ +2 x (C (∆) u )) λ x u ) ∇ α · ∇ l i − i α i l l 1 l = ( 1) xαui xα( al 1∆ − + + ( n) )ui + 2 xα (Cl(∆)ui) − − − ··· − ∇ · ∇ ZΩ 

Summing on α, one has

x u (( ∆)l(x u ) λ x u ) (3.84) α i − α i − i α i ZΩ l l 1 l = ui( 1) ( al 1∆ − + + ( n) a0)ui − − − ··· − ZΩ l 1 l 2 = al 1 ui( ∆) − ui + + a1 ui( ∆)ui + n ui − − ··· − ZΩ ZΩ ZΩ + (l 1)/l + 1/l l al 1λi − + + a1 λi + n . ≤ − ···

i i

i i “eigenvaluecm i i 2013/9/2 page 57 i i

[SEC. 3.4: EIGENVALUES OF THE BUCKLING PROBLEM 57

Substituting (3.74) and (3.84) into (3.73), we infer

k n (λ λ )2 k+1 − i i=1 X k 2 + (l 1)/l + 1/l l δ (λk+1 λi) (al 1λi − + + a1 λi + n ) ≤ − − ··· i=1 X 1 k n2 + (λ λ ) λ1/l + . δ k+1 − i i 4 i=1 X   Taking

1/2 k 1/l n2 i=1(λk+1 λi) λi + 4 δ = − ,  k 2 + (l 1)/l + 1/l l  i=1(λk+1P λi) (al 1λi − + + a1 λi + n )  − − ···  we getP (3.70).  

3.4 Eigenvalues of the Buckling Problem

Let Ω Rn and consider the problem ⊂ ∆2u = λ∆u, − (3.85) u = ∂u = 0  |∂Ω ∂ν ∂Ω

which is used to describe the critical buckling load of a clamped plate subjected to a uniform compressive force around its boundary. Payne, P´olya and Weinberger [77] proved λ /λ < 3 for Ω R2. 2 1 ⊂ For Ω Rn this reads ⊂ λ2/λ1 < 1 + 4/n. Subsequently Hile and Yeh [51] reconsidered this problem obtaining the improved bound

2 λ2 n + 8n + 20 Rn 2 for Ω . λ1 ≤ ( n + 2) ⊂

i i

i i “eigenvaluecmb” i i 2013/9/2 page 58 i i

58 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Ashbaugh [3] proved :

n λ (n + 4)λ . (3.86) i+1 ≤ 1 i=1 X This inequality has been improved to the following form [54]:

n 4(λ λ ) λ + 2 − 1 (n + 4)λ . i+1 n4 + ≤ 1 i=1 X Cheng and Yang introduced a new method to construct trial functions for the problem (3.85) and obtained the following universal inequality [28]:

k 4(n + 2) k (λ λ )2 (λ λ )λ . (3.87) k+1 − i ≤ n2 k+1 − i i i=1 i=1 X X It has been proved in [88] that for the problem (1.5) if M is a bounded connected domain in an n-dimensional unit sphere, then the following inequality holds

k 2 (λ λ )2 (3.88) k+1 − i i=1 X k δ2(λ (n 2)) (λ λ )2 δλ + i − − ≤ k+1 − i i 4(λ δ + n 2) i=1 i X  −  1 k (n 2)2 + (λ λ ) λ + − , δ k+1 − i i 4 i=1 X   where δ is any positive constant. The inequality (3.87) has been generalized to eigenvalues of buck- ling problem of arbitrary orders. That is, we have

Theorem 3.5 ([54]). Let l 2 and let λi be the i-th eigenvalue of the following eigenvalue problem:≥ ( ∆)lu = λ∆u in Ω, − ∂u − ∂l−1u (3.89) u ∂Ω = ∂ν = = l−1 = 0. ( | ∂Ω · ·· ∂ν ∂Ω

i i

i i “eigenvaluecm i i 2013/9/2 page 59 i i

[SEC. 3.4: EIGENVALUES OF THE BUCKLING PROBLEM 59

where Ω is a bounded domain with smooth boundary in Rn. Then for k = 1, , we have ··· k (λ λ )2 (3.90) k+1 − i i=1 X 1/2 2 1/2 k 2(2l + (n 4)l + 2 n) 2 (l 2)/(l 1) − − (λ λ ) λ − − ≤ n k+1 − i i (i=1 ) X k 1/2 1/(l 1) (λ λ )λ − . × k+1 − i i (i=1 ) X

Before proving theorem 3.5, let us recall a method of constructing trial functions developed by Cheng-Yang (Cf. [28], [54]). Let M be an n-dimensional complete submanifold in an m-dimensional Euclidean space Rm. Denote by the canonical metric on Rm as well as that induced on M. Let ∆· and be the Laplacian and the gradient operator of M, respectively. Let∇ Ω be a bounded connected domain of M with smooth boundary ∂Ω and let ν be the outward unit normal vector field of ∂Ω. For functions f and g on Ω, the Dirichlet inner product (f, g)D of f and g is given by

(f, g) = f g. D ∇ · ∇ ZΩ The Dirichlet norm of a function f is defined by

1/2 f = (f, f) 1/2 = f 2 . || ||D { D} |∇ | ZΩ  Consider the eigenvalue problem

( ∆)lu = λ∆u in Ω, − ∂u − ∂l−1u (3.91) u ∂Ω = ∂ν = = l−1 = 0. ( | ∂Ω · ·· ∂ν ∂Ω

Let 0 < λ λ λ , 1 ≤ 2 ≤ 3 ≤ · · ·

i i

i i “eigenvaluecm i i 2013/9/2 page 60 i i

60 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

denote the successive eigenvalues, where each eigenvalue is repeated according to its multiplicity. Let ui be the i-th orthonormal eigenfunction of the problem (3.91) corresponding to the eigenvalue λ , i = 1, 2, , that is, u satisfies i ··· i l ( ∆) ui = λi∆ui in Ω, − − l−1 ∂ui ∂ u ui ∂Ω = ∂ν = l−1 = 0, (3.92)  | ∂Ω · ·· ∂ν ∂Ω  (u , u ) = u , u = δ , i, j. i j D Ωh∇ i ∇ ji ij ∀

For k = 1, , l, let k denoteR the k-th covariant derivative operator on M, defined··· in the∇ usual weak sense via an integration by parts formula. For a function f on Ω, the squared norm of kf is defined as ∇ n 2 2 kf = kf(e , , e ) , (3.93) ∇ ∇ i1 ··· ik i1, ,i =1 ···Xk 

where e1, , en are orthonormal vector fields locally defined on Ω. ··· 2 Define the Sobolev space Hl (Ω) by H2(Ω) = f : f, f , , lf L2(Ω) . l { |∇ | ··· ∇ ∈ } Then H2(Ω) is a with respect to the norm : l || · ||l,2 l 1/2 k 2 f l,2 = f . (3.94) || || Ω |∇ | !! Z kX=0 2 2 Consider the subspace Hl,D(Ω) of Hl (Ω) defined by ∂f ∂l 1u H2 (Ω) = f H2(Ω) : f = = − = 0 . l,D ∈ l |∂Ω ∂ν · ·· ∂νl 1  ∂Ω − ∂Ω 

l 2 The operator ( ∆) defines a self-adjoint operator acting on Hl,D(Ω) with discrete eigenvalues− 0 < λ λ for the buckling 1 ≤ · · · ≤ k ≤ · · · problem (3.91) and the eigenfunctions ui i∞=1 defined in (3.92) form { } 2 a complete orthonormal basis for the Hilbert space Hl,D(Ω). If φ 2 ∈ Hl,D(Ω) satisfies (φ, uj)D = 0, j = 1, 2, , k, then the Rayleigh- Ritz inequality tells us that ∀ ···

λ φ 2 φ( ∆)lφ. (3.95) k+1|| ||D ≤ − ZΩ

i i

i i “eigenvaluecm i i 2013/9/2 page 61 i i

[SEC. 3.4: EIGENVALUES OF THE BUCKLING PROBLEM 61

For vector-valued functions F = (f1, f2, , fm),G = (g1, g2, , gm): Ω Rm, we define an inner product (F,G··· ) by ··· → m (F,G) = fαgα. Ω α=1 Z X The norm of F is given by

m 1/2 F = (F,F )1/2 = f 2 . || || α ( Ω α=1 ) Z X 2 Let H1(Ω) be the Hilbert space of vector-valued functions given by

2 H1(Ω) = F = (f , , f ):Ω Rm; f , f L2(Ω), α = 1, , m 1 ··· m → α |∇ α| ∈ ··· with norm m 1/2 F = F 2 + f 2 . || ||1 || || |∇ α| Ω α=1 ! Z X Observe that a vector field on Ω can be regarded as a vector-valued Rm 2 2 function from Ω to . Let H1,D(Ω) Hl (Ω) be a subspace of 2 ⊂ Hl (Ω) spanned by the vector-valued functions ui i∞=1, which form a complete orthonormal basis of H2 (Ω). For{∇ any }f H2 (Ω), we 1,D ∈ l,D have f H2 (Ω) and for any X H2 (Ω), there exists a function ∇ ∈ 1,D ∈ 1,D f H2 (Ω) such that X = f. ∈ l,D ∇ Proof of Theorem 3.5. With notations as above, we consider now the special case that Ω is a bounded domain in Rn. Let us decompose the vector-valued functions x u as α∇ i x u = h + W , (3.96) α∇ i ∇ αi αi where h Hl (Ω), h is the projection of x u in H2 (Ω) αi ∈ 2,D ∇ αi α∇ i 1,D and W H2 (Ω). Thus we have αi ⊥ 1,D

W = 0, W u = 0, u H2 (Ω) (3.97) αi|∂Ω αi · ∇ ∀ ∈ l,D ZΩ

i i

i i “eigenvaluecm i i 2013/9/2 page 62 i i

62 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

and from the discussions in [28] and [88] we know that

div Wαi = 0. (3.98)

For each α = 1, , n, i = 1, , k, consider the functions φαi : Ω R, given by ··· ··· →

k φ = h a u , (3.99) αi αi − αij j j=1 X where

a = x u u = a . (3.100) αij α∇ i · ∇ j αji ZΩ We have

∂φ ∂l 1φ φ = αi = − αi = 0, (3.101) αi|∂Ω ∂ν · ·· ∂νl 1 ∂Ω − ∂Ω

(φ , u ) = φ u = 0, j = 1, , k. (3.102) αi j D ∇ αi · ∇ j ∀ ··· ZΩ It follows from the Rayleigh-Ritz inequality that

λ φ 2 (3.103) k+1 |∇ αi| ZΩ φ ( ∆)lφ , α = 1, , n, i = 1, , k. ≤ αi − αi ··· ··· ZD It is easy to see that

k l l l 1 ( ∆) φ = ( 1) ∆ − (u + x ∆u ) + a λ ∆u − αi − i,α α i αij j j j=1 X

i i

i i “eigenvaluecm i i 2013/9/2 page 63 i i

[SEC. 3.4: EIGENVALUES OF THE BUCKLING PROBLEM 63

and so

φ ( ∆)lφ (3.104) αi − αi ZΩ l l 1 = φ ( 1) ∆ − (u + x ∆u ) αi − i,α α i ZΩ k l l 1 l = h ( 1) ∆ − (u + x ∆u ) a u ( ∆) h αi − i,α α i − αij j − αi Ω j=1 Ω Z X Z k l l 2 l = ∆h ( 1) ∆ − (u + x ∆u ) a h ( ∆) u αi − i,α α i − αij αi − j Ω j=1 Ω Z X Z k l l 2 l 2 = ∆h ( 1) ((∆ − u ) + ∆ − (x ∆u )) + λ a h ∆u αi − i ,α α i j αij αi j Ω j=1 Ω Z X Z l l 2 l 2 = ( 1) (u + x ∆u )((∆ − u ) + ∆ − (x ∆u )) − i,α α i i ,α α i ZΩ k λ a h , u − j αij h∇ αi ∇ ji j=1 Ω X Z l l 2 l 1 = ( 1) (u + x ∆u )((2l 3)(∆ − u ) + x ∆ − u )) − i,α α i − i ,α α i ZΩ k λ a h , u − j αij h∇ αi ∇ ji j=1 Ω X Z l l 2 l 2 = ( 1) ((2l 3) u (∆ − u ) + x ∆u (∆ − u ) ) − − { i,α i ,α α i i ,α ZΩ k l 1 2 l 1 2 +u x ∆ − u + x ∆u ∆ − u λ a i,α α i α i i} − j αij j=1 X

Since

l 1 l 2 l 1 ∆ − (x u ) = 2(l 1)(∆ − u ) + x ∆ − u , α i − i ,α α i

i i

i i “eigenvaluecm i i 2013/9/2 page 64 i i

64 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

we have

l 1 l 1 xαui(∆ − ui),α = xαui∆ − ui,α (3.105) ZΩ ZΩ l 1 = ∆ − (xαui)ui,α ZΩ l 2 l 1 = 2(l 1)(∆ − u ) + x ∆ − u u . − i ,α α i i,α ZΩ  On the other hand, it holds

l 1 l 1 x u (∆ − u ) = ∆ − u (u + x u ). (3.106) α i i ,α − i i α i,α ZΩ ZΩ Combining (3.105) and (3.106), we obtain

l 1 xαui(∆ − ui),α (3.107) ZΩ l 2 1 l 1 = (l 1)(∆ − u ) u u ∆ − u − i ,α i,α − 2 i i ZM   Hence

l 1 l 1 l 1 x u ∆ − u = u (∆ − u + x (∆ − u ) ) (3.108) α i,α i − i i α i ,α ZΩ ZΩ l 2 1 l 1 = (l 1)(∆ − u ) u + u ∆ − u − − i ,α i,α 2 i i ZM   and consequently, we have

l 2 l 2 xα∆ui(∆ − ui),α = xα∆ui∆ − ui,α (3.109) ZΩ ZΩ l 2 = ∆ − (xα∆ui)ui,α ZΩ l 2 l 1 = u 2(l 2)(∆ − u ) + x ∆ − u i,α − i ,α α i ZΩ  l 2 1 l 1 = (l 3)(∆ − u ) u u ∆ − u . − i ,α i,α − 2 i i ZΩ  

i i

i i “eigenvaluecm i i 2013/9/2 page 65 i i

[SEC. 3.4: EIGENVALUES OF THE BUCKLING PROBLEM 65

Also, one has

2 uixα∆ui (3.110) ZΩ = x2 u 2 2 x u u − α|∇ i| − α i i,α ZΩ ZΩ = x2 u 2 + u2, − α|∇ i| i ZΩ ZΩ

2 l 1 xα∆ui∆ − ui (3.111) ZΩ 2 l 1 = ui∆(xα∆ − ui) ZΩ l 1 2 l l 1 = ui(2∆ − ui + xα∆ ui + 4xα(∆ − ui),α) ZΩ l 1 l 1 2 l 1 = u (2∆ − u + ( 1) − λ x ∆u + 4x (∆ − u ) ). i i − i α i α i ,α ZΩ Combining (3.107), (3.110) and (3.111), we get

2 l 1 l 2 x ∆u ∆ − u = 4(l 1) (∆ − u ) u (3.112) α i i − i ,α i,α ZΩ ZΩ l 1 2 2 2 +( 1) − λ x u + u . − i − α|∇ i| i  ZΩ ZΩ  Substituting (3.109), (3.111) and (3.112) into (3.104), one gets

φ ( ∆)lφ (3.113) αi − αi ZΩ l l 1 2 l 2 = ( 1) ( l + 1)u ∆ − u + (2l 4l + 3)(∆ − u ) u − − i i − i ,α i,α ZΩ  k +λ x2 u 2 u2 λ a2 . i α|∇ i| − i − j αij Ω Ω j=1 Z Z  X It is easy to see that

x u 2 = h 2 + W 2 (3.114) || α∇ i|| ||∇ αi|| || αi||

i i

i i “eigenvaluecm i i 2013/9/2 page 66 i i

66 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

and k h 2 = φ 2 + a2 , (3.115) ||∇ αi|| ||∇ αi|| αij j=1 X Combining (3.103), (3.113), (3.114) and (3.115), we infer (λ λ ) φ 2 (3.116) k+1 − i ||∇ αi|| l l 1 2 l 2 ( 1) ( l + 1)u ∆ − u + (2l 4l + 3)(∆ − u ) u ≤ − − i i − i ,α i,α ZΩ  k λ ( u 2 W 2) + (λ λ )a2 , − i || i|| − || αi|| i − j αij j=1 X 2 Observe that (xαui) = ui xα + xα ui H1,D(Ω). For Aαi = (x u h ),∇ we have ∇ ∇ ∈ ∇ α i − αi u x = A W (3.117) i∇ α αi − αi and so u 2 = u x 2 = W 2 + A 2. || i|| || i∇ α|| || αi|| || αi|| Because of ( u ,W ) = 0, it follows that ∇ i,α αi 2 u 2 = 2 A u || i,α|| − αi · ∇ i,α ZΩ 1/(l 1) 2 1 2 λ − A + u ≤ i || αi|| 1/(l 1) ||∇ i,α|| λi − which gives

l−2 l−3 λ A 2 2λ l−1 u 2 + λ l−1 u 2 (3.118) − i|| αi|| ≤ − i || i,α|| i ||∇ i,α|| Introducing (3.118) into (3.116), we get (λ λ ) φ 2 (3.119) k+1 − i ||∇ αi|| l l 1 2 l 2 ( 1) ( l + 1)u ∆ − u + (2l 4l + 3)(∆ − u ) u ≤ − − i i − i ,α i,α ZΩ (l 2)/(l 1) 2 (l 3)/(l 1) 2 2λ − − u + λ − − u − i || i,α|| i ||∇ i,α|| k + (λ λ )a2 , i − j αij j=1 X

i i

i i “eigenvaluecm i i 2013/9/2 page 67 i i

[SEC. 3.4: EIGENVALUES OF THE BUCKLING PROBLEM 67

Since

2 x u u − α∇ i · ∇ i,α ZΩ 2 = 2 ui,α + 2 xαui,α∆ui ZΩ ZΩ 2 = 2 ui,α + 2 ui∆(xαui,α) ZΩ ZΩ = 2 u2 + 2 u x (∆u ) + 4 u x u i,α i α i ,α i∇ α · ∇ i,α ZΩ ZΩ ZΩ = 2 u2 2 ∆u (u + x u ) 4 u div(u x ) i,α − i i α i,α − i,α i∇ α ZΩ ZΩ ZΩ = 2 u2 + 2 2 x u ∆u 4 u2 i,α − α i,α i − i,α ZΩ ZΩ ZΩ = 2 u2 + 2 + 2 u (x u ) − i,α ∇ i · ∇ α i,α ZΩ ZΩ = 2 + 2 x u u , α∇ i · ∇ i,α ZΩ we have

2 x u u = 1. (3.120) − α∇ i · ∇ i,α ZΩ Set

d = u u ; αij ∇ i,α · ∇ j ZΩ then d = d and we get αij − αji

1 = 2 x u u (3.121) − α∇ i · ∇ i,α ZΩ = 2 h u − ∇ αi · ∇ i,α ZΩ k = 2 φ u 2 a d . − ∇ αi · ∇ i,α − αij αij Ω j=1 Z X

i i

i i “eigenvaluecm i i 2013/9/2 page 68 i i

68 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Thus, we have

k (λ λ )2 1 + 2 a d (3.122) k+1 − i  αij αij j=1 X   k = (λ λ )2 2 φ , u d u k+1 − i − ∇ αi ∇ i,α − αij ∇ j j=1 X    1 k δ(λ λ )3 φ 2 + (λ λ ) u 2 d2 , ≤ k+1 − i ||∇ αi|| δ k+1 − i ||∇ i,α|| − αij j=1 X  

where δ is any positive constant. Substituting (3.119) into (3.122), we get

k (λ λ )2 1 + 2 a d k+1 − i  αij αij j=1 X   2 l l 1 δ(λ λ ) ( 1) ( l + 1)u ∆ − u ≤ k+1 − i − { − i i ZΩ 2 l 2 +(2l 4l + 3)(∆ − u ) u − i ,α i,α} l−2 l−3 k 2λ l−1 u 2 + λ l−1 u 2 + (λ λ )a2 − i || i,α|| i ||∇ i,α|| i − j αij  j=1 X  1 k + (λ λ ) u 2 d2 , δ k+1 − i ||∇ i,α|| − αij j=1 X  

i i

i i “eigenvaluecm i i 2013/9/2 page 69 i i

[SEC. 3.4: EIGENVALUES OF THE BUCKLING PROBLEM 69

Summing on i from 1 to k, we infer

k k (λ λ )2 2 (λ λ )(λ λ )a d k+1 − i − k+1 − i i − j αij αij i=1 i,j=1 X X k 2 l l 1 δ (λ λ ) ( 1) ( l + 1)u ∆ − u ≤ k+1 − i − { − i i i=1 ZΩ X2 l 2 +(2l 4l + 3)(∆ − u ) u − i ,α i,α} (l 2)/(l 1) 2 (l 3)/(l 1) 2 2λ − − u + λ − − u − i || i,α|| i ||∇ i,α|| k  (λ λ )(λ λ )2a2 − k+1 − i i − j αij i,j=1 X  1 k k + (λ λ ) u 2 (λ λ )d2 , δ  k+1 − i ||∇ i,α|| − k+1 − i αij  i=1 i,j=1 X X  

which gives

k (λ λ )2 k+1 − i i=1 X k 2 l l 1 δ (λ λ ) ( 1) ( l + 1)u ∆ − u ≤ k+1 − i − − i i i=1 ZΩ X2 l 2  +(2l 4l + 3)(∆ − u ) u − i ,α i,α l−2 l−3 2λ l−1 u 2 + λ l−1 u 2 − i || i,α|| i ||∇ i,α||  1 k + (λ λ ) u 2, δ k+1 − i ||∇ i,α|| i=1 X

i i

i i “eigenvaluecm i i 2013/9/2 page 70 i i

70 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Taking sum for α from 1 to n, we get

k n (λ λ )2 k+1 − i i=1 X k 2 l l 1 δ (λ λ ) ( 1) n( l + 1)u ∆ − u ≤ k+1 − i − − i i i=1 ZΩ X2 l 2  +(2l 4l + 3) (∆ − u ) u − ∇ i · ∇ i n l−2 l−3 2λ l−1 + λ l−1 u 2 − i i ||∇ i,α|| α=1 ! X 1 k n + (λ λ ) u 2 δ k+1 − i ||∇ i,α|| i=1 α=1 X X k l−2 l−3 n = δ (λ λ )2 2λ l−1 + λ l−1 u 2 k+1 − i − i i ||∇ i,α|| i=1 α=1 X X 2 l 1 +(2l + (n 4)l + 3 n) u ( ∆) − u − − i − i ZΩ  1 k n + (λ λ ) u 2. δ k+1 − i ||∇ i,α|| i=1 α=1 X X But

k k u 2 = u ∆u ||∇ i,α|| − i,α i,α α=1 Ω α=1 X Z X k = u (∆u ) − i,α i ,α Ω α=1 Z X k

= ui,αα∆ui Ω α=1 Z X 2 = (∆ui) ZΩ 2 = ui∆ ui, ZΩ

i i

i i “eigenvaluecm i i 2013/9/2 page 71 i i

[SEC. 3.4: EIGENVALUES OF THE BUCKLING PROBLEM 71

2 ∂ ui where ui,αα = 2 . Therefore, ∂xα

k n (λ λ )2 k+1 − i i=1 X k l−2 l−3 δ (λ λ )2 2λ l−1 + λ l−1 u ∆2u ≤ k+1 − i − i i i i i=1 Ω X  Z 2 l 1 +(2l + (n 4)l + 3 n) u ( ∆) − u − − i − i ZΩ  1 k + (λ λ ) u ∆2u . δ k+1 − i i i i=1 Ω X Z Observe that

l−2 1 l 1 l−1 2 l−1 u ( ∆) − u λ , u ∆ u λ . i − i ≤ i i i ≤ i ZΩ ZΩ Thus we have

k n (λ λ )2 k+1 − i i=1 X k l−2 δ(2l2 + (n 4)l + 2 n) (λ λ )2λ l−1 ≤ − − k+1 − i i i=1 X k 1 1 + (λ λ )λ l−1 . δ k+1 − i i i=1 X Taking

1 1/2 k (λ λ )λ l−1 i=1 k+1 − i i δ =   , P l−2 1/2 (2l2 + (n 4)l + 2 n) k (λ λ )2λ l−1 − − i=1 k+1 − i i   P we get (3.90). 

i i

i i “eigenvaluecm i i 2013/9/2 page 72 i i

72 [CAP. 3: UNIVERSAL INEQUALITIES FOR EIGENVALUES

Recently, Cheng-Yang have strengthened the inequality (3.87) to the following form:

k 4 n + 4 k (λ λ )2 3 (λ λ )λ . (3.123) k+1 − i ≤ n2 k+1 − i i i=1  i=1 X X The inequality (3.90) has been improved by Cheng-Qi-Wang-Xia very recently in [24]:

k n (λ λ )2 (3.124) k+1 − i i=1 X k 14 8 l−2 δ (λ λ )2 2l2 + n l + n λ l−1 ≤ i k+1 − i − 3 3 − i i=1 X     k 1 1 + (λ λ )λ l−1 , δ k+1 − i i i=1 i X k where δi i=1 is any positive non-increasing monotone sequence. For{ eigenvalues} of the buckling problem on spherical domains, the inequality (3.88) has also been improved (Cf. [28])) and generalized to buckling problem of arbitrary orders (Cf. [54], [24]).

i i

i i “eigenvaluecm i i 2013/9/2 page 73 i i

Chapter 4

P´olya Conjecture and Related Results

4.1 Introduction

Let Ω Rn be a bounded open set and consider the eigenvalue problem⊂ of the Dirichlet Laplacian on Ω: ∆u + λu = 0 in Ω, (4.1) u = 0.  |∂Ω In 1960, P´olya [81] showed that for any “plane covering domain” Ω in R2 (those that tile R2) the Weyl asymptotic relation (1.) is in fact a one-sided inequality (his proof also works for Rn-covering domains) and conjectured, for any bounded domain Ω Rn, the inequality ⊂ k 2/n (2π)2 λk C(n) k, with C(n) = 2 . (4.2) ≥ Ω ∀ n | | ωn P´olya’s conjecture has been a central problem about eigenvalues and many important developments have been made during the past years. In 1982, Li-Yau [72] showed the lower bound

k nkC(n) k 2/n λ (4.3) i ≥ n2 + Ω i=1 X | | 73

i i

i i “eigenvaluecm i i 2013/9/2 page 74 i i

74 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

which yields an individual lower bound on λk in the form nC(n) k 2/n λ . (4.4) k ≥ n2 + Ω | | Similar bounds for eigenvalues with Neumann boundary conditions have been proved in [62], [63] and [65]. It was pointed out in [66] that (4.3) also follows from an earlier result by Berezin [11] by the Legendre transformation. The inequality (4.3) has been improved by Melas:

Theorem 4.1 ([75]). For any bounded domain Ω Rn and any k 1, the eigenvalues of the problem (4.1) satisfy the⊂ inequality ≥ k nkC(n) k 2/n Ω λ + d(n)k | | (4.5) i ≥ n2 + Ω IΩ)( i=1 X | | where the constant dn depends only on the dimension and I(Ω) = 2 mina Rn x a dx is the “moment of inertia” of Ω. ∈ Ω | − |

Proof.R Fix a k 1 and let u1, , uk be an orthonormal set of eigenfunctions of≥ (4.1) corresponding··· to the set of eigenvalues λ , , λ . We consider the Fourier transform of each eigenfunction 1 ··· k n/2 ix ξ fj(ξ) =u ˆj(ξ) = (2π)− uj(x)e · dx. (4.6) ZΩ ¿From Plancherel’s Theorem, we know that f1, , fk is an orthonor- mal set in Rn. Bessel’s inequality implies that··· for every ξ Rn ∈ k 2 n ix ξ n f (ξ) (2π)− e · dx = (2π)− Ω (4.7) | j | ≤ | | | | j=1 Ω X Z and k 2 n ix ξ n f (ξ) (2π)− ixe · dx = (2π)− I(Ω). (4.8) |∇ j | ≤ | | j=1 Ω X Z Since u = 0 it is easy to see that j|∂Ω 2 2 2 ξ fj(ξ) dξ = uj = λj. (4.9) Rn | | | | |∇ | Z ZΩ

i i

i i “eigenvaluecm i i 2013/9/2 page 75 i i

[SEC. 4.1: INTRODUCTION 75

Setting

k F (ξ) = f (ξ) 2; (4.10) | j | j=1 X n then 0 F (ξ) (2π)− Ω , ≤ ≤ | | k k F (ξ) 2( f (ξ) 2)1/2( f (ξ) 2)1/2 (4.11) |∇ | ≤ | j | |∇ j | j=1 j=1 X X n n 2(2π)− Ω)Ω I( , ξ R , ≤ | | ∀ ∈ p

F (ξ)dξ = k (4.12) Rn Z and

k 2 ξ F (ξ)dξ = λj. (4.13) Rn | | j=1 Z X

Let F ∗(ξ) = φ( ξ ) denote the decreasing radial rearrangement of F . By approximating| | F we may assume that the function φ : [0; + ) n ∞ → [0, (2π)− Ω ] is absolutely continuous. Setting µ(t) = F ∗ > t = F > t |the| co-area formula (1.17) implies that |{ }| |{ }| (2π)−n Ω | | 1 µ(t) = F − dσsds. (4.14) t F =s |∇ | Z Z{ } n Observe that F ∗ is radial and so µ(φ(s)) = F ∗ > φ(s) = ωns n 1 |{ }| which gives nωns − = µ′(φ(s))φ′(s) a.e. It follows from (4.11), (4.14) and the isoperimetric inequality that

1 µ′(φ(s)) = F − dσs (4.15) − F =φ(s) |∇ | Z{ } 1 ρ− F = φ(s) ≥ 1|{ n 1 }| ρ− nω s − ≥ n

i i

i i “eigenvaluecm i i 2013/9/2 page 76 i i

76 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

and so for almost every s

ρ φ′(s) 0, (4.16) − ≤ ≤ where

n ρ = 2(2π)− Ω)Ω I( . | | From (4.12) and (4.13), we have p

k = F (ξ)dξ = F ∗(ξ)dξ (4.17) Rn Rn Z Z ∞ n 1 = nωn s − φ(s)ds Z0 and k 2 λj = xi F (ξ)dξ (4.18) Rn | | j=1 X Z 2 xi F ∗(ξ)dξ ≥ Rn | | Z ∞ n+1 = nωn s φ(s)ds. Z0 We need an elementary lemma.

Lemma 4.1([75]) Let n 1, ρ, A > 0 and ψ : [0, + ) [0, + ) be decreasing (and absolutely≥ continuous) such that ∞ → ∞

∞ n 1 ρ φ′(s) 0, s − ψ(s)ds = A. (4.19) − ≤ ≤ Z0 Then 2 ∞ n+1 1 n+2 2 Aψ(0) s ψ(s)ds (nA) n ψ(0)− n + . (4.20) ≥ n2 + 6( n + 2)ρ2 Z0 1 Applying Lemma 4.1 to the function φ with A = (nωn)− k, ρ = n 2(2π)− Ω I(Ω) we get in view of (4.12) and (4.13) that | | 2 p 2 n+2 2 n n ckφ(0) λ ωn− k n φ(0)− n + (4.21) j ≥ n2 + ( n + 2)ρ2 j=1 X

i i

i i “eigenvaluecmb” i i 2013/9/2 page 77 i i

[SEC. 4.2: THE KRO¨GER’S THEOREM 77

1 where c is any constant such that 0 < c < 6 . Observe that 0 < n n φ(0) (2π)− Ω and that if R is such that ωnR = Ω , then I(Ω) ≤ | | n+2 | | ≥ x 2dx = nωnR and so B(R) | | n2 + R 2 n+2 n n n +1 ρ 2(2π)− ωn− Ω n (4.22) ≥ n2 + | | r 1 n+1 n n (2π)− ωn− Ω n . ≥ | | 1 2 n Let us choose c independent of n satisfying c < (2π) ωn− . It is easy to see that the function 2 2 n+2 2 n n ckt g(t) = ω− k n t− t + n2 + n ( n + 2)ρ2

n n is decreasing on (0, (2π)− Ω ]. We can replace φ(0) by (2π)− Ω in (4.21) which gives the inequality| | (4.5). | | 

4.2 The Kr¨oger’sTheorem

th Let λk be the k eigenvalue for the Neumann boundary value prob- lem with respect to the on a bounded domain with piecewise smooth boundary in Rn. P´olysconjecture states that 2 k n λk Cn Ω . With respect to this conjecture, Kr¨ogerproved the ≤ | | following result. Theorem 4.2 ([62]). The first k + 1 Neumann eigenvalues of a a bounded domain Ω with piecewise smooth boundary in Rn satisfy the inequality

rn+2 n k (αn 1 Ω ) (2π) λj n2 + − j=1 λ inf 1/n n | | − (4.24) k+1 nk r n ≤ r>2π α |Ω| αn 1 Ω (2π) k n−1 n − P   | | − n where αn 1 denotes the area of the (n 1)-unit sphere in R . − − Taking

n(k + 1) 1/n r = 2π , αn 1 Ω  − | | 

i i

i i “eigenvaluecm i i 2013/9/2 page 78 i i

78 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

one gets

Corollary 4.1. Under the assumptions of the Theorem the fol- lowing inequality holds for every k:

2 k n n 2 1 − n+2 λj (2π) αn 1 Ω k n (4.25) ≤ n2 + n − | | j=1 X  

k Proof of Theorem 4.2. Let φj j=1 be the set of orthonormal { } n eigenfunctions for the eigenvalues λ1, ..., λk. Fix z R and consider R C iy z ∈ hz : given by hz(y) = e · . Letting aj = Ω hz(x)uj(x)dx; → iz y 2 then the projection of h (y) e · into the subspace of L (Ω) z ≡ R spanned by φ1, ..., φk can be written as

k

hz(y) span u k = hz(x)uj(x)dx uj(y) (4.26) | { i}i=1 j=1 Ω X Z  k = ajuj(y). j=1 X It is clear that the function g (y) h (y) k a u (y) is orthog- z ≡ z − j=1 j j onal to uj, j = 1, , k. Thus we have ··· P 2 gz(y) dy λ Ω |∇ | . (4.27) k+1 ≤ g2dy R Ω z Elementary computation sows thatR

k g (y) 2dy = z 2 Ω a 2λ (4.28) |∇ z | | | | | − | j| j Ω j=1 Z X and

k g2dy = Ω a 2. (4.29) z | | − | j| Ω j=1 Z X

i i

i i “eigenvaluecm i i 2013/9/2 page 79 i i

[SEC. 4.2: THE KRO¨GER’S THEOREM 79

1/n Assuming that r > 2π nk ; then α 1 Ω n− | |   2 gz(y) dy dz λ Br Ω |∇ | (4.30) k+1 2 ≤ gz(y) dy dz R BrR Ω  Since R R 

g (y) 2dy dz (4.31) |∇ z | ZBr ZΩ  k = z 2 Ω dz λ a 2dz | | | | − j| j| Br Br j=1 Z Z X n+2 k r αn 1 Ω 2 = − | | λ a dz n2 + − j | j| j=1 Br X Z and

2 (gz(y)) dy dz (4.32) ZBr ZΩ  k = Ω dz a 2dz | | − | j| Br Br j=1 Z Z X n k r αn 1 Ω 2 = − | | a dz, n − | j| j=1 Br X Z we get

n+2 r αn−1 Ω k 2 | | λj aj dz n2 + j=1 Br λk+1 n − | | . (4.33) r αn−1 Ω k 2 ≤ | | P R aj dz n − j=1 Br | | P R Recall that the Fourier transformu ˆj of uj is given by

n iy z uˆj(z) = (2π)− 2 e · uj(y)dy Rn Z and we know from the Plancherel Theorem that u 2(z)dz = Rn | j| R b

i i

i i “eigenvaluecm i i 2013/9/2 page 80 i i

80 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

u 2(y)dy. Hence we have Rn | j| R 2 2 hzujdy dz hzujdy dz ≤ Rn ZBr ZΩ Z ZΩ

n 2 = (2π) uj(z ) dz Rn | | Z n 2 = (2π) ubj(y) dy Rn | | Z = (2π)n.

Let us prove by induction that

n+2 r αn−1 Ω n k n2 + | | (2π) j=1 λj λk+1 n − . (4.34) r α 1 Ω ≤ n− | | (2π)nk n − P Suppose that (4.34) is true for k 1, that is − n+2 r αn−1 Ω n k 1 − n2 + | | (2π) j=1 λj λk n − . r α 1 Ω ≤ n− | | (2π)n(k 1) n − P− We then have that

n+2 r αn−1 Ω n k n2 + | | (2π) j=1 λj A λk n − = , r α 1 Ω ≤ n− | | (2π)nk B n − P where

n+2 k r αn 1 Ω n A = − | | (2π) λ n2 + − j j=1 X and n r αn 1 Ω n B = − | | (2π) k. n − n 2 Setting Cl = (2π) al dz and observing − Br | | nR r αn 1 Ω n − | | (2π) k > 0, n −

i i

i i “eigenvaluecm i i 2013/9/2 page 81 i i

[SEC. 4.3: A GENERALIZED PO´LYA CONJECTURE BY CHENG-YANG 81

we get

A + k λ C λ l=1 l l k+1 ≤ k B +P l=1 Cl k A + λPk l=1 Cl ≤ k B + Pl=1 Cl A k A + BP l=1 Cl ≤ k B + Pl=1 Cl A = . P B This completes the proof of Theorem 4.2. 

4.3 A generalized P´olya conjecture by Cheng-Yang

In [31], Cheng-Yang investigated eigenvalues of the Dirichlet Lapla- cian on a bounded domain in an n-dimensional complete Riemannian manifold M and proposed a generalized P´olya conjecture.

Cheng-Yang’s Conjecture ([31]). Let Ω be a bounded domain in an n-dimensional complete Riemannian manifold M. Then, there exists a constant c(M, Ω), which only depends on M and Ω such that eigenvalue λi’s of the eigenvalue problem

∆u = λu in Ω, (4.35) u =− 0.  |∂Ω satisfy

k 2 1 n 4π 2 n λi + c(M, Ω) 2 k , k = 1, , (4.36) k ≥ n2 + n ··· i=1 (ωn Ω ) X | |

2 4π 2 n λi + c(M, Ω) 2 k , k = 1, , (4.37) ≥ (ω Ω ) n ··· n| |

i i

i i “eigenvaluecmb” i i 2013/9/2 page 82 i i

82 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

Remark 4.1. Cheng-Yang believed that in the above conjecture, Sn n2 when M is the unit sphere (1), c(M, Ω) = 4 , when M is the hyper- 2 Hn (n 1) bolic space ( 1), c(M, Ω) = −4 and when M is a complete minimal submanifold− in RN , c(M,− Ω) = 0. Cheng-Yang obtained a partial solution to the above conjecture.

Theorem 4.3 ([31]). Let Ω be a bounded domain in an n-dimensional complete Riemannian manifold M. Then, there exists a constant 2 H > 0, which only depends on M and Ω such that eigenvalue λi′ s of the problem (4.35) satisfy

k 2 1 n 4π 2 2 n λi + H0 2 k , k = 1, , (4.38) k ≥ n ··· i=1 ( n + 2)(n + 4) (ωn Ω ) X | | p Sn 2 n2 Moreover, when M is the unit sphere (1), one can take H0 = 4 and when M is a complete minimal submanifold in RN , one can take 2 H0 = 0. A crucial result in the proof of Theorem 4.3 is the following

Lemma 4.2 ([25]). Let µ1 µk+1 be any non-negative real numbers satisfying ≤ · · · ≤

k 4 k (µ µ )2 µ (µ µ ). (4.39) k+1 − i ≤ t i k+1 − i i=1 i=1 X X Define

1 k 1 k 2 G = µ ,T = µ2,F = 1 + G2 T . (4.40) k k i k k i k t k − k i=1 i=1 X X   Then, we have

4 k + 1 t F C(t, k) F , (4.41) k+1 ≤ k k  

i i

i i “eigenvaluecm i i 2013/9/2 page 83 i i

[SEC. 4.3: A GENERALIZED PO´LYA CONJECTURE BY CHENG-YANG 83

where t is any positive real number and

4 1 k t 1 + 2 1 + 4 C(t, k) = 1 t t < 1. (4.42) − 3t k1 + ( k + 1)3    

Proof of Theorem 4.3. From Nashs theorem, we know that M can be isometricly immersed into a Euclidean space RN , that is, there exists an isometric immersion:

φ : M RN . (4.43) → Thus, M can be seen as a complete submanifold isometricly immersed into RN . We denote by H the mean curvature of the immersion φ. From (3.16), we have | |

k 4 k n2 (λ λ )2 (λ λ )(λ + sup H 2). (4.44) k+1 − i ≤ n k+1 − i i 4 | | i=1 i=1 Ω X X Since eigenvalues are invariants of isometries, the above inequality holds for any isometric immersion from M into a Euclidean space. Let us define

Φ = φ; φ is an isometric immersion from M into a Euclidean space . { } Putting

2 H0 = inf sup H ; φ Φ | | ∈ Ω then

k 4 k n2 (λ λ )2 (λ λ )(λ + H2). (4.45) k+1 − i ≤ n k+1 − i i 4 0 i=1 i=1 X X n2 2 Letting µi = λi + 4 H0 ; then

k 4 k (µ µ )2 µ (µ µ ). (4.46) k+1 − i ≤ n i k+1 − i i=1 i=1 X X

i i

i i “eigenvaluecm i i 2013/9/2 page 84 i i

84 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

From theorem 2.1 with t = n of [25], we have

1 1 k + 1 n k + 1 n F C(n, k) F F . k+1 ≤ k k ≤ k k     Therefore, we infer

Fk+1 Fk 4 4 . ( k + 1) n ≤ k n

For any positive integers l and k, we have

Fk+l Fk 4 4 . (k + l) n ≤ k n

From the Weyl’s asymptotic formula (1.10)

2 λl 4π lim 2 = 2 , l l n (ω Ω ) n →∞ n| | we get

1 l λi 2 λl i=1 n 4π lim 2 = 2 l l n n2 + (ω Ω ) n →∞ P n| | and

1 l λ2 4 λl i=1 i n 16π lim 4 = 4 . l l n n4 + (ω Ω ) n →∞ P n| | Hence

4 Fk+l 2n 16π lim 4 = 4 . l (k + l) n ( n + 2)(n + 4) (ω Ω ) n →∞ n| | According to (4.46), we have, for any positive integer k,

4 Fk 2n 16π 4 4 . (4.47) k n ≥ ( n + 2)(n + 4) (ω Ω ) n n| |

i i

i i “eigenvaluecmb” i i 2013/9/2 page 85 i i

[SEC. 4.4: ANOTHER GENERALIZED PO´LYA CONJECTURE 85

Since 2 2 F = 1 + G2 T G2 , k n k − k ≤ n k   we get

2 4 2 Gk Fk 2n 16π 4 4 4 n k n ≥ k n ≥ ( n + 2)(n + 4) (ω Ω ) n n| | which implies (4.38). In order to finish the proof of Theorem 4.3, we need only to ob- serve that Sn(1) can be seen as a compact hypersurface in Rn+1 with mean curvature 1 and that a complete minimal submanifold in RN has mean curvature H = 0.  | | 4.4 Another generalized P´olya conjecture

Let Ω be a bounded domain in Rn and let L be the elliptic operator of order 2t defined by

t m Lu = am r( ∆) u, u C∞(Ω) − − ∈ m=r+1 X

where r 0 is an integer, am r’s are constants with am r 0, r+1 ≥ − − ≥ ≤ m t, at r = 1, t a fixed positive integer. Consider the following eigenvalue≤ − problem about L which is important in the study of various branches of mathematics, such as differential equations, differential geometry and :

Lu = λ( ∆)ru, u C (Ω), ∞ (4.48) (∂/∂ν)j u − = 0, j∈= 0, 1, 2, , t 1.  |∂Ω ··· − Let

0 < λ λ λ . (4.49) 1,r ≤ 2,r ≤ · · · ≤ k,r ≤ · · · → ∞ be the eigenvalues of the problem (4.48). In [58], the following con- jecture was proposed :

i i

i i “eigenvaluecmb” i i 2013/9/2 page 86 i i

86 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

Generalized P´olya Conjecture. The eigenvalues λk,r, k = 1, 2, , of the eigenvalue problem (1.7) of the operator L satisfies the inequality···

t r 2m/n − k λ a Cm . (4.50) k,r ≥ m Ω m=1 X | |

With respect to the above generalized P´olya conjecture, Ku-Ku- Tang showed in [58] that if r is even, then

t r 2m/n − na k λ m Cm , k = 1, 2, . (4.51) k,r ≥ n2 + m Ω ··· m=1 X | | This section provides comparison theorems between the k-th eigenval- ues of the problem (4.1) and that of the problem (4.48) which shows that if the P´olya conjecture (4.2) is true then so is the generalized P´olya conjecture (4.50).

Theorem 4.3 ([93]). Let M be an n( 2)-dimensional compact Riemannian manifold with boundary. Denote≥ by ∆ the Laplacian operator on M and let L be the elliptic operator given by

t m Lu = am r( ∆) u, u C∞(M), (4.52) − − ∈ m=r+1 X where r 0 is an integer, am r’s are constants with am r 0, r + ≥ − − ≥ 1 m t, at r = 1, t a fixed positive integer. Consider the follow- ing≤ eigenvalue≤ − problems: Lu = λ( ∆)ru, u C (M), ∞ (4.53) (∂/∂ν)j u − = 0, j∈= 0, 1, 2, , t 1,  |∂M ··· −

( ∆)r+1u = Λ( ∆)ru, u C (M), ∞ (4.54) − (∂/∂ν)j u − = 0, j∈= 0, 1, 2, , r,  |∂M ···

∆u = λu in M, (4.55) u− = 0.  |∂M

i i

i i “eigenvaluecm i i 2013/9/2 page 87 i i

[SEC. 4.4: ANOTHER GENERALIZED PO´LYA CONJECTURE 87

Denote by 0 < λ λ (4.56) 1,r ≤ 2,r ≤ · · · → ∞ 0 < Λ Λ (4.57) 1,r ≤ 2,r ≤ · · · → ∞ and 0 < λ < λ (4.58) 1 2 ≤ · · · → ∞ the successive eigenvalues for (4.53), (4.54) and (4.55), respectively. Here each eigenvalue is repeated according to its multiplicity. Then for any k = 1, 2, , we have ··· 2 t (r+1) t r λk,r a1Λk,r + a2Λk,r + + at (r+1)Λk,r− + Λk,r− (4.59) ≥ ··· − and Λ λ . (4.60) k,r ≥ k

Remark 1.1. If M is a bounded domain in Rn, we know from the inequality

2 t (r+1) t r λk,r a1λk + a2λk + + at (r+1)λk− + λk− (4.61) ≥ ··· − which is a combination of (4.59) and (4.60) that if the P´olya conjec- ture (4.2) is true then so is the generalized P´olya conjecture (4.50).

k Proof of Theorem 4.3. Let ui i=1 be a set of orthonormal eigen- functions of the problem (4.53){ corresponding} to λ k , that is, { i,r}i=1 r Lui = λi,r( ∆) ui, in M, −t−1 ∂ ui ui ∂M = = ∂νt−1 = 0,  | ··· ∂M  u ( ∆)ru = δ , i, j = 1, , k. M i − j ij ··· k Similarly, let Rvi i=1 be a set of orthonormal eigenfunctions of the problem (4.54){ corresponding} to Λ k , that is, { i,r}i=1 r+1 r ( ∆) vi = Λi,r( ∆) vi in M, − − r ∂ vi vi ∂M = = ∂νr = 0,  | ··· ∂M  v ( ∆)rv = δ , i, j = 1, , k. M i − j ij ···

 R

i i

i i “eigenvaluecm i i 2013/9/2 page 88 i i

88 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

Let w = k α u = 0 be such that j=1 j j 6 P w( ∆)rv = 0, j = 1, , k 1. (4.62) − j ∀ ··· − ZM Such an element w exists because αj 1 j k is a non-trivial solution of a system of (k 1)-linear{ equations| ≤ ≤ } − k α u ( ∆)rv = 0, 1 i k 1, (4.63) j j − i ≤ ≤ − j=1 M X Z in k unknowns. Notice that if u C∞(M) satisfies ∈ ∂u ∂t 1u u = = = − = 0, |∂M ∂ν ··· ∂νt 1 ∂M − ∂M

then

u ∂M = u ∂M = ∆u ∂M = (∆u) ∂M = = | ∇p | 1 | p ∇1 | ··· = ∆ − u = (∆ − u) = 0, when t = 2p ∂M ∇ ∂M

and k 1 u = u = ∆u = (∆u) = = ∆ − u |∂M ∇ |∂M |∂M ∇ |∂M ··· ∂M p 1 p = (∆ − u) = ∆ u = 0, when t = 2 p + 1. ∇ ∂M |∂M r Observe that M w( ∆) w = 0. In fact, from divergence theorem, we have − 6 R r/2 2 r M (∆ w) , if r is even, w( ∆) w = (r 1)/2 2 − (∆ − w) , if r is odd. ZM ( M ∇ R r R r/2 Thus, if M w( ∆) w = 0, then ∆ w = 0 when r is even and (r 1)/2 − ∆ − w = 0 when r is odd. It then follows from the maximum R r/2 1 principle for harmonic functions that ∆ − w = 0 when r is even and (r 1)/2 1 ∆ − − w = 0 when r is odd. Continuing this process, we conclude r that w = 0. This is a contradiction. Thus M w( ∆) w = 0. Let us assume without loss of generality that − 6 R w( ∆)rw = 1. (4.64) − ZM

i i

i i “eigenvaluecm i i 2013/9/2 page 89 i i

[SEC. 4.4: ANOTHER GENERALIZED PO´LYA CONJECTURE 89

Hence we infer from the Rayleigh-Ritz inequality that

Λ w( ∆)r+1w (4.65) k,r ≤ − ZM

We claim that for any j = 1, , t r, ··· −

j+1 j w( ∆)r+jw w( ∆)r+j+1w . (4.66) − ≤ − ZM  ZM 

Let us first prove that (4.66) holds when j = 1. In fact, if r = 2h is even, then one deduces from the divergence theorem and the H¨older’s inequality that

2 w( ∆)r+1w − ZM  2 = ( ∆)hw( ∆)h+1w − − ZM  (( ∆)hw)2 (( ∆)h+1w)2 ≤ − − ZM  ZM  = w( ∆)r+2w. − ZM

i i

i i “eigenvaluecm i i 2013/9/2 page 90 i i

90 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

On the other hand, if r = 2h + 1 is odd, then

2 w( ∆)r+1w − ZM  2 = (( ∆)h+1w)( ∆)(( ∆)hw) − − − ZM  2 = (( ∆)h+1w) (( ∆)hw) ∇ − ∇ − ZM  (( ∆)h+1w 2 (( ∆)hw) 2 ≤ |∇ − | |∇ − | ZM  ZM  = ( ∆)hw( ∆)h+1w ( ∆)h+1w( ∆)h+2w − − − − ZM  ZM  = w( ∆)rw w( ∆)2h+3w − − ZM  ZM  = w( ∆)r+2w. − ZM Thus (4.66) holds when j = 1. Suppose now that (4.66) holds for j 1, that is − j j 1 r+j 1 r+j − w( ∆) − w w( ∆) w . (4.67) − ≤ − ZM  ZM  When r + j is even, we have

w( ∆)r+jw (4.68) − ZM (r+j)/2 1 (r+j)/2 = ∆ − w∆ ∆ w M Z   (r+j)/2 1 (r+j)/2 = ∆ − ui ∆ ui − M ∇ ∇ Z     2 1/2 2 1/2 (r+j)/2 1 (r+j)/2 ∆ − w ∆ w ≤ M ∇ M ∇ Z    Z    1/2 1/2 r+j 1 r+j+1 = w( ∆) − w w( ∆) w , − − ZM  ZM 

i i

i i “eigenvaluecm i i 2013/9/2 page 91 i i

[SEC. 4.4: ANOTHER GENERALIZED PO´LYA CONJECTURE 91

On the other hand, when r + j is odd,

w( ∆)r+j w (4.69) − ZM (r+j 1)/2 (r+j+1)/2 = ( ∆) − w( ∆) w − − ZM 2 1/2 2 1/2 (r+j 1)/2 (r+j+1)/2 ( ∆) − w ( ∆) w ≤ − − ZM  ZM   1/2  1/2  r+j 1 r+j+1 = w( ∆) − w w( ∆) w . − − ZM  ZM  Thus we always have

w( ∆)r+j w (4.70) − ZM 1/2 1/2 r+j 1 r+j+1 ( ∆) − w w( ∆) w . ≤ − − ZM  ZM  Combining (4.67) and (4.70), we know that (4.66) is true for j. Using (4.67) repeatedly, we get

1/s w( ∆)r+1w w( ∆)r+sw , s = 1, , t (r + 1). − ≤ − ··· − ZΩ ZM  which, combining with (4.65), gives

Λs w( ∆)r+sw, s = 1, 2, , t (r + 1). k,r ≤ − ··· − ZM Thus we have

2 t (r+1) t r a1Λk,r + a2Λk,r + + at (r+1)Λk,r− + Λk,r− ··· − w(a ( ∆)r+1 + a ( ∆)r+2 + + ( ∆)t)w ≤ 1 − 2 − ··· − ZM k = wLw = ηiηj uiLuj M i,j=1 M Z X Z k k = η η u λ ( ∆)ru = η2λ λ , i j i j,r − j i i,r ≤ k,r i,j=1 M i=1 X Z X

i i

i i “eigenvaluecm i i 2013/9/2 page 92 i i

92 [CAP. 4: POLYA´ CONJECTURE AND RELATED RESULTS

where in the last equality, we have used the fact that

k η2 = w( ∆)rw = 1. i − i=1 X Z This proves (4.59). In order to prove (4.60), let us take a set of orthonormal eigen- k k functions zi i=1 of the problem (4.55) corresponding to λi i=1, that is, { } { }

∆zi = λizi in M, z =− 0, (4.71)  i ∂M | z z = δ , i, j = 1, , k.  M i j ij ··· k  R Let ξ = j=1 βjvj be such that P ξ2 = 1 and ξz = 0, j = 1, , k 1. (4.72) j ∀ ··· − ZM ZM It follows from the Rayleigh-Ritz inequality that

λ ξ( ∆ξ) (4.73) k ≤ − ZM Using the same arguments as in the proof of (4.59), we have

j+1 j ξ( ∆)j ξ ξ( ∆)j+1ξ , j = 1, , r. (4.74) − ≤ − ··· ZM  ZM  Thus we have

1 1 r r k λ ξ( ∆)rξ = β2 (4.75) k ≤ −  j  M j=1 Z  X   On the other hand, taking j = r in (4.73), we get

r+1 r ξ( ∆)rξ ξ( ∆)r+1ξ , (4.76) − ≤ − ZM  ZM 

i i

i i “eigenvaluecm i i 2013/9/2 page 93 i i

[SEC. 4.4: ANOTHER GENERALIZED PO´LYA CONJECTURE 93

which implies that

r k r1+ β2 ξ( ∆)r+1ξ (4.77) j ≤ − j=1 ZM  X r k r1+ = β β v ( ∆)r+1v  i j i − j M i,j=1 Z X   r k r1+ = β β v Λ ( ∆)rv  i j i j,r − j M i,j=1 Z X  r  k r1+ = Λ β2  j,r j  j=1 X   r k r1+ r Λ r1+ β2 . ≤ k,r  j  j=1 X   Thus we have

k β2 Λr . (4.78) j ≤ k,r j=1 X Combining (4.75) and (4.78), one gets (4.60). 

i i

i i “eigenvaluecm i i 2013/9/2 page 94 i i

Chapter 5

The Steklov eigenvalue problems

5.1 Introduction

Let M be an n-dimensional compact Riemannian manifold with bound- ary. The Stekloff problem is to find a solution of the equation

∆u = 0 in M, (5.1) ∂u = pu on ∂M,  ∂ν where p is a real number. This problem was first introduced by Steklov for bounded domains in the plane in [87]. His motivation came from physics. The function u represents the steady state tem- perature on M such that the flux on the boundary is proportional to the temperature. Problem (5.1) is also important in conductivity and harmonic analysis as it was initially studied by Calder´on(Cf. [15]). This connection arises because the set of eigenvalues for the Steklov problem is the same as the set of eigenvalues of the well- known Dirichlet-Neumann map. This map associates to each func- tion u defined on the boundary ∂M, the normal derivative of the harmonic function on M with boundary data u. The Steklov eigen- value problem has appeared in quite a few physical fields, such as fluid mechanics, electromagnetism, elasticity, etc., and received in-

94

i i

i i “eigenvaluecm i i 2013/9/2 page 95 i i

[SEC. 5.2: ESTIMATES FOR THE STEKLOV EIGENVALUES 95

creasing attention [53], [64]. It has applications, for instance, in the investigation of surface waves [12], the analysis of stability of me- chanical oscillators immersed in a viscous fluid [32], and the study of the vibration modes of a structure in contact with an incompressible fluid [13]. Numerical methods have been developed for this prob- lem. For instance, its optimal error estimates of linear finite element approximations have been obtained in [2]. Interesting estimates for eigenvalues of the Steklov problem have been obtained some of which will be introduced in this chapter.

5.2 Estimates for the Steklov eigenvalues

In this section, we prove some estimates for the Steklov eigenvalues. Let us recall firstly the Reilly’s formula. Let M be n-dimensional compact manifold M with boundary ∂M. We denote by , the Riemannian metric on M as well as that induced on ∂M. Leth i and ∆ be the connection and the Laplacian on M, respectively.∇ Let ν be the unit outward normal vector of ∂M. The shape operator of ∂M is given by S(X) = X ν and the second fundamental form of ∂M is defined as II(X,Y∇) = S(X),Y , here X,Y T ∂M. The eigenvalues of S are called theh principali curvatures of∈∂M and the 1 mean curvature H of ∂M is given by H = n 1 tr S, here tr S denotes the trace of S. For a smooth function f defined− on an n-dimensional compact manifold M with boundary ∂M, the following identity holds ∂f if u = ∂ν , z = f ∂M and Ric denotes the Ricci tencor of M, then ∂M | (see [82], p. 46):

(∆f)2 2f 2 Ric( f, f) (5.2) − |∇ | − ∇ ∇ ZM  = ((n 1)Hu + 2∆I z)u + I (, z z) . − ∇ ∇ Z∂M  Here 2f is the Hessian of f; ∆ and represent the Laplacian and the∇ gradient on ∂M with respect to∇ the induced metric on ∂M, respectively.

Theorem 5.1 ([35]). Let M be an n-dimensional compact con- nected Riemannian manifold with non-negative Ricci curvature and

i i

i i “eigenvaluecm i i 2013/9/2 page 96 i i

96 [CAP. 5: THE STEKLOV EIGENVALUE PROBLEMS

boundary. Assume that the principal curvatures of ∂M are bounded from below by a positive constant c. Then the first non-zero eigen- c value of the problem (5.1) satisfies p1 > 2 . Proof. Let f be the first eigenfunction of the Steklov problem ∂u (5.1). Setting z = f ∂M , u = ∂ν ∂M and using Reilly’s formula we find after integration| by parts that

0 > 2f 2 2 z u + c z 2. − |∇ | ≥ − ∇ · ∇ |∇ | ZM Z∂M Z∂M

0 > 2p z 2 + c z 2. (5.3) − 1 |∇ | |∇ | Z∂M Z∂M Since z = constant, otherwise f=constant on M which is a contra- diction,6 we have

z 2 > 0. (5.4) |∇ | Z∂M

Thus (5.3) implies that p1 > c/2. In view of Theorem 5.1, Escobar conjectured that under the same conditions as in Theorem 5.1, p c. 1 ≥ Theorem 5.2. Let the conditions be as in Theorem 5.1. Then we have i) The non-zero eigenvalue of the Laplacian of ∂M satisfies

λ (n 1)c2 (5.5) 1 ≥ − with equality holding if and only if M is isometric to a ball of radius 1/c in Rn([102]). ii) The non-zero eigenvalue of the Steklov problem (5.1) satisfies

√λ p 1 λ + λ) (n 1 c2 (5.6) 1 ≤ ()n 1 c 1 1 − − − p p  Moreover, the equality holds in (5.6) if and only if M is isometric to a ball of radius 1/c in Rn ([89]).

i i

i i “eigenvaluecm i i 2013/9/2 page 97 i i

[SEC. 5.2: ESTIMATES FOR THE STEKLOV EIGENVALUES 97

Proof. Let z be an eigenfunction corresponding to the first nonzero eigenvalue λ1 of the Laplacian of ∂M:

∆z + λ1z = 0.

Let f in C∞(M) be the solution of the Dirichlet problem ∆f = 0 in M, (5.7) f = z.  |∂M It then follows from (5.2) and the nonnegativity of the Ricci curvature of M that

0 (∆f)2 2f 2 Ric( f, f) (5.8) ≥ − |∇ | − ∇ ∇ ZM  = ((n 1)Hh + 2∆I z)h + I (, z z) − ∇ ∇ Z∂M  ( 2( λ z)u + (n 1)cu2 + c z 2) ≥ − − 1 − |∇ | Z∂M (2λ zu + (n 1)cu2 + cλ z2) ≥ 1 − 1 Z∂M λ z 2 λ2 (n 1)c u + 1 + cλ 1 z2 ≥ − ()n 1 c 1 − ()n 1 c Z∂M (  −   −  ) λ2 cλ 1 z2 . ≥ 1 − ()n 1 c Z∂M  −   Thus we have λ2 cλ 1 0 1 − ()n 1 c ≤ − or λ (n 1)c2. 1 ≥ − 1 If M is isometric to an n-dimensional Euclidean ball of radius c , it is 2 well known that λ1(M) = (n 1)c . Now we assume conversely that 2 − λ1(M) = (n 1)c . In this case the inequalities in (5.8) must take equality sign.− In particular, we have λ z 2f = 0,H = c, u = 1 = cz. (5.9) ∇ −()n 1 c − −

i i

i i “eigenvaluecm i i 2013/9/2 page 98 i i

98 [CAP. 5: THE STEKLOV EIGENVALUE PROBLEMS

From 2f = 0, we know that f 2 is a constant and is not zero since f∇is not a constant. Without|∇ loss| of generality, we can assume f 2 = 1. Thus for any point p M, we have |∇ | ∈ 1 = f 2(p) = z2 (p) + u2(p). (5.10) |∇ | |∇ | It follows from (5.10) by integration and u = cz, that − A(∂M) = ( z 2 + u2) (5.11) |∇ | Z∂M 2 2 = (λ1z + u ) Z∂M = (nu2). Z∂M On the other hand, from 1 ∆(f 2) = f 2 + f∆f = 1 (5.12) 2 |∇ | and the divergence theorem we have 1 u2 V (M) = ∆(f 2) = zu = , 2 − c ZM Z∂M Z∂M which, combining with (5.11), gives 1 A(∂M) H = c = . (5.13) n · V (M) It then follows from a result in [83] that M is isometric to a ball in n 2 R . Since λ1(∂M) = (n 1)c , the radius of M is easily seen to be 1 − c . This proves item i) of Theorem 5.1. Now let us prove (5.6). Let f and z be as in the proof of item i). We have from the Rayleigh-Ritz inequality that (Cf. [59]) h2 p ∂M (5.14) 1 ≤ f 2 RM |∇ | and R f 2 p M |∇ | , (5.15) 1 ≤ z2 R ∂M R

i i

i i “eigenvaluecm i i 2013/9/2 page 99 i i

[SEC. 5.2: ESTIMATES FOR THE STEKLOV EIGENVALUES 99

which gives

h2 p2 ∂M . (5.16) 1 ≤ z2 R∂M It then follows by substituting Rf into the Reilly’s formula that

0 (∆f)2 2f 2 Ric( f, f) (5.17) ≥ − |∇ | − ∇ ∇ ZM  (n 1)c h2 2λ hz + c z 2 ≥ − − 1 |∇ | Z∂M Z∂M Z∂M 2 2 = (n 1)c h 2λ1 hz + cλ1 z − ∂M − ∂M ∂M Z Z 1 Z 1 2 2 (n 1)c h2 2λ h2 z2 + cλ z2. ≥ − − 1 1 Z∂M Z∂M  Z∂M  Z∂M Hence, we have

1 1 2 √λ 2 h2 1 λ + λ) (n 1 c2 z2 . ≤ ()n 1 c 1 1 − −  ∂M   ∂M  Z − p p  Z Hence √λ p 1 λ + λ) (n 1 c2 . 1 ≤ ()n 1 c 1 1 − − − p p  Assume now that

√λ p = 1 λ + λ) (n 1 c2 . 1 ()n 1 c 1 1 − − − p p  Then the inequalities in (5.17) should take equality sign. We infer therefore

2f = 0,H = c (5.18) ∇ and

√λ h = 1 λ + λ) (n 1 c2 z. (5.19) ()n 1 c 1 1 − − − p p 

i i

i i “eigenvaluecmb” i i 2013/9/2 page 100 i i

100 [CAP. 5: THE STEKLOV EIGENVALUE PROBLEMS

n 1 Take a local orthonormal fields ei i=1− tangent to ∂M. We infer from (5.18) and (5.19) that { }

n 1 − 0 = 2f(e , e ) = ∆( z + n 1)Hh (5.20) ∇ i i − i=1 X √λ = λ z + (n 1)c 1 λ + λ) (n 1 c2 z, − 1 − · ()n 1 c 1 1 − − − p p  2 which gives λ1 = (n 1)c and so M is isometric to an n-dimensional − 1  Euclidean ball of radius c . We consider now a fourth order Steklov eigenvalue problem on an n-dimensional compact connected Riemannian manifold (M, , ) given by h i ∆2u = 0 in M, (5.21) ∂u u = ∆u q = 0 on ∂M, − ∂ν

wher q is a real number. Let q1 be the first non-zero eigenvalue of the problem (5.21). As pointed by Kuttler [63], q1 is the sharp constant for a priori estimates for the Laplace equation ∆v = 0 in M, v = g on ∂M, (5.22) where g L2(∂M). It has∈ been proven by Payne that if Ω R2 is a bounded con- vex domain with smooth boundary then q ⊂(Ω) 2ρ with equality 1 ≥ 0 holding if and only if Ω is a disk, where ρ0 is the minimum geodesic curvature of ∂Ω. This Payne’s theorem has been extended to higher dimensional Euclidean domains by Ferrero, Gazzola and Weth [38].

Theorem 5.3 ([91]). Let (M, , ) be an n( 2)-dimensional com- pact connected Riemannian manifoldh i with boundary≥ ∂M and non- negative Ricci curvature. Assume that the mean curvature of M is bounded below by a positive constant c. Let q1 be the first eigenvalue of the following Stekloff eigenvalue problem : ∆2u = 0 in M, (5.23) ∂u u = ∆u q = 0 on ∂M. − ∂ν

i i

i i “eigenvaluecm i i 2013/9/2 page 101 i i

[SEC. 5.2: ESTIMATES FOR THE STEKLOV EIGENVALUES 101

Then q1 nc with equality holding if and only if M is isometric to a ≥ 1 Rn ball of radius c in .

Proof. Let w be an eigenfunction corresponding to the first eigen- value q1 of the problem (5.23), that is

∆2w = 0 in M, (5.24) ∂w w = ∆w q = 0 on ∂M. − 1 ∂ν

∂w Set η = ∂ν ∂M ; then

2 (∆w) q = M . (5.25) 1 η2 R ∂M Substituting w into Reilly’s formula,R we have

(∆w)2 2w 2 (5.26) − |∇ | ZM  = Ric( w, w) + (n 1)Hη2 ∇ ∇ − ZM Z∂M (n 1)c η2. ≥ − Z∂M The Schwarz inequality implies that 1 2w 2 (∆w)2 (5.27) |∇ | ≥ n

2 ∆w with equality holding if and only if w = n , . Combining (5.25)- (5.27), we have q nc. This completes∇ the proofh i of the first part of 1 ≥ Theorem 1.2. Assume now that q1 = nc. In this case, the inequalities (5.26) and (5.27) must take equality sign. In particular, we have ∆w 2w = , . (5.28) ∇ n h i

Take an orthornormal frame e1, , en 1, en on M such that when { ··· −2 } restricted to ∂M, en = ν. From 0 = w(ei, en), i = 1, , n 1, and w = 0, we conclude that η =∇ρ = const. and so··· ∆w − = |∂M |∂M

i i

i i “eigenvaluecm i i 2013/9/2 page 102 i i

102 [CAP. 5: THE STEKLOV EIGENVALUE PROBLEMS

q1η = ncρ is also a constant. Since (5.26) takes equality sign and η is constant, we infer that H c. Also, we conclude from the fact that ∆w is a harmonic function≡ on M and the maximum principle that ∆w is constant on M. Suppose without loss of generality that ∆w = 1 and so we have 1 2w = , . (5.29) ∇ nh i It then follows by deriving (5.29) covariantly that 3w = 0 and from the Ricci identity, ∇

R(X,Y ) w = 0, (5.30) ∇ for any X,Y tangent vector to M, where R is the curvature tensor of M. From the maximum principle w attains its minimum at some point x0 in the interior of M. From (5.29) it follows that 1 ∂ w = r , (5.31) ∇ n ∂r

where r is the distance function to x0. Using (5.30), (5.31), Cartan’s theorem and w = 0, we conclude that M is an Euclidean ball |∂M whose center is x0, and f is given by 1 w(x) = ( x x 2 b2) n | − 0| − in M, b being the radius of the ball. Since the mean curvature of ∂M 1  is c, the radius of the ball is c . For more recent developments about Steklov eigenvalues, we refer to [37, 74, 95] and the references therein.

i i

i i “eigenvaluecm i i 2013/9/2 page 103 i i

Bibliography

[1] S. Agmon, On kernels, eigenvalues and eigenfunctions of oper- ators related to elliptic problems, Comm. Pure Appl. Math. 18 (1965), 627-663.

[2] M. G. Armentano, The effect of reduced integration in the Steklov eigenvalue problem, Math. Model. Numer. Anal. 38(2004) 27-36.

[3] M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, in and geometry (Edinburgh, 1998), E. B. Davies and Yu Safalov (eds.), London Math. Soc. Lecture Notes, vol. 273, Cambridge Univ. Press, Cambridge, 1999, pp. 95-139.

[4] M. S. Ashbaugh, Universal eigenvalue bounds of Payne-P´olya- Weinberger, Hile-Protter and H C Yang, Proc. India Acad. Sci. Math. Sci. 112 (2002), 3-30.

[5] M. S. Ashbaugh and R. D. Benguria, Proof of the Payne-P´olya- Weinberger conjecture, Bull. Amer. Math. Soc. 25 (1991), 19-29.

[6] M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacian and extensions, Ann. of Math. 135 (1992), 601-628.

[7] M. S. Ashbaugh and R. D. Benguria, A second proof of the Payne-P´olya-Weinberger conjecture, Commun. Math. Phys. 147 (1992), 181-190.

103

i i

i i “eigenvaluecm i i 2013/9/2 page 104 i i

104 BIBLIOGRAPHY

[8] M. S. Ashbaugh, R. D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral Theory and Mathematical Physics: a Festschrift in honor of Barry Simons 60th birthday, Proc. Sympos. Pure Math., 76 Part 1, Amer. Math. Soc., Prov- idence 2007, 105-139.

[9] M. S. Ashbaugh, L. Hermi, A unified approach to universal in- equalities for eigenvalues of elliptic operators, Pacific J. Math. 217 (2004), 201-219.

[10] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Non- positive Curvature, Birkh¨auser,1985.

[11] F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134-1167.

[12] S. Bergmann, M. Schiffer, Kernel Function and Elliptic Differen- tial Equations in Mathematical Physics. Academic, New York, 1953.

[13] A. Berm´udez,R. Rodr´ıguez,D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87(2000) 201-227.

[14] M. F. Betta, F. Brock, A. Mercaldo, M. R. Posterar, A weighted isoperimetric inequality and applications to symmetrization, J. Inequal. and Appl. 4 (1999), 215-240.

[15] A. P. Calder´on,On a inverse , in “Semi- nar in Numerical Analysis and Its Applications to Continuum Physics,” pp. 65-73, Soc. Brasileira de Matem´atica, Rio de Janeiro, 1980.

[16] M. P. do Carmo, Q. Wang, C. Xia, Inequalities for eigenvalues of elliptic operators in divergence form on Riemannian manifolds, Ann Mat. Pura App. 189(2010), 643-660.

[17] I. Chavel, Eigenvalues in Riemannian geometry. Including a chapter by Burton Randol. With an appendix by Jozef Dodz- iuk. Pure and Applied Mathematics, 115. Academic Press, Inc., Orlando, FL, 1984. xiv+362 pp.

i i

i i “eigenvaluecm i i 2013/9/2 page 105 i i

BIBLIOGRAPHY 105

[18] S. Y. Cheng, Eigenvalue comparison theorem and its geometric applications, Math. Z. 143(1975), 289-297.

[19] S. Y. Cheng, A characterization of the 2-sphere by eigenfunc- tions, Proc. Amer. Math. Soc. 55(1976), 379-381.

[20] D. Chen and Q. -M. Cheng, Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc. Japan, 60(2008), 325-339.

[21] Q. M. Cheng, T. Ichikawa and S. Mametsuka, Inequalities for eigenvalues of Laplacian with any order, Commun. Contemp. Math., 11(2009), 639-655.

[22] Q. M. Cheng, T. Ichikawa and S. Mametsuka, Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere, Calculus of Variation and Partial Differential Equations, 36 (2009), 507-523.

[23] Q. M. Cheng, T. Ichikawa and S. Mametsuka, Estimates for eigenvalues of a clamped plate problem on Riemannian mani- folds, J. Math. Soc. Japan, 62 (2010), 673-686.

[24] Q. M. Cheng, X. Qi, Q. Wang, C. Xia, Inequalities for eigenvalues of the buckling problem of arbitrary order, arXiv: 1010.2327v1.

[25] Q. M. Cheng and H.C. Yang, Estimates on eigenvalues of Lapla- cian, Math. Ann. 331 (2005), 445-460.

[26] Q. M. Cheng and H. C. Yang, Inequalities for eigenvalues of Laplacian on domains and compact complex hypersurfaces in complex projective spaces, J. Math. Soc. Japan, 58 (2006), 545- 561.

[27] Q. M. Cheng and H. C. Yang, Inequalities for eigenvalues of a clamped plate problem, Trans. Amer. Math. Soc., 358 (2006), 2625-2635.

[28] Q. M. Cheng and H. C. Yang, Universal bounds for eigenvalues of a buckling problem, Commun. Math. Phys. 262 (2006), 663-675.

i i

i i “eigenvaluecm i i 2013/9/2 page 106 i i

106 BIBLIOGRAPHY

[29] Q. M. Cheng and H. C. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175.

[30] Q. M. Cheng and H. C. Yang, Universal inequalities for eigenval- ues of a system of elliptic equations , Proc. Royal Soc. Edinburgh, 139 A(2009), 273-285.

[31] Q. M. Cheng and H. C. Yang, Estimates for eigenvalues on Rie- mannian manifolds , J. Differential Equations, 247(2009), 2270- 2281

[32] C. Conca, J. Planchard, M. Vanninathan, Fluid and Periodic Structures. Wiley, New York, 1995.

[33] M. P do Carmo, Q. Wang and C. Xia, Inequalities for eigenvalues of elliptic operator in divergence form, Annali di Matematica, 189(2010), 643-660.

[34] J. F. Escobar, Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate. Comm. Pure Appl. Math. 43 (1990), 857-883.

[35] J. F. Escobar, The geometry of the first non-zero Stekloff eigen- value, J. Funct. Anal. 150(1997), 544-556.

[36] G. B. Faber, dass unter allen homogenen Membranen von gle- icher Fl¨ache und gleicher Spannung die kreisf¨ormigeden tief- sten Grundton gibt, Sitzungsber. Bayr. Akad. Wiss. Munchen, Math.-Phys. Kl. 1923, 169-172.

[37] A. Fraser, R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 (2011) 4011- 4030.

[38] A. Ferreero, F. Gazzola, T. Weth, On a fourth order Stekloff eigenvalue problem, Analysis, 25(2005), 315-332.

[39] F. Hang and X. Wang, Rigidity theorems for compact mani- folds with boundary and positive Ricci curvature, J. Geom. Anal. 19(2009), 628-642.

i i

i i “eigenvaluecm i i 2013/9/2 page 107 i i

BIBLIOGRAPHY 107

[40] F. Hang and X. Wang, A remark on Zhong-Yang’s eigenvalue estimate, IMRN, 2007.

[41] E. M. Harrell II, A. El Soufi, and S. Ilias, Universal inequali- ties for the eigenvalues of Laplace and Schr¨odingeroperator on submanifolds, Trans. Amer. Math. Soc., 361 (2009), no. 5, 2337– 2350.

[42] E. M. Harrell, Some geometric bounds on eigenvalue gaps, Com- mun. Part. Differ. Equ. 18 (1993), 179-198.

[43] E. M. Harrell, Commutators, eigenvalue gaps, and mean curva- ture in the theory of Schr¨odingeroperators. Comm. Part. Differ. Equ 32 (2007), 401–413.

[44] E. M. Harrell and P. L. Michael, Commutator bounds for eigen- values, with applications to , Commun. Part. Differ. Equ. 19 (1994), 2037-2055.

[45] E. M. Harrell and P. L. Michael, Commutator bouds for eigen- values of some differential operators, Lecture Notes in Pure and Applied Mathematics, vol. 168(eds) G Ferreyra, G R Goldstein and F Neubrander (New York: Marcel Dekker) (1995) pp. 235- 244.

[46] E. M. Harrell and J. Stubbe, On trace inequalities and the uni- versal eigenvalue estimates for some partial differential opera- tors, Trans. Am. Math. Soc. 349 (1997), 1797-1809.

[47] E. M. Harrell, S. Y. Yolcu, Eigenvalue inequalities for Klein- Gordon operators, J. Funct. Anal. 256 (2009), 3977–3995.

[48] J. Hersch, Sur la fr´equencefondementale d’une membrane vi- brante: ´evaluations par d´efaunt et princip´ede maximum, ZAMP. 11 (1960), 387-413.

[49] E. Heintz and H. C. Im Hof, Goemetry of horospheres, J. Diff. Geom. 12 (1977), 481-489.

[50] G. N. Hile and M. H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J. 29 (1980), 523-538.

i i

i i “eigenvaluecm i i 2013/9/2 page 108 i i

108 BIBLIOGRAPHY

[51] G. N. Hile and R. Z. Yeh, Inequalities for eigenvalues of the biharmonic operator, Pacific J. Math. 112(1984), 115-133. [52] S. M. Hook, Domain independent upper bounds for eigenvalues of elliptic operator, Trans. Amer. Math. soc. 318 (1990), 615-642. [53] R. Ibrahim, Liquid sloshing dynamics. Theory and applications, Cambridge University Press, 2005. [54] J. Jost, X. Q. Li-Jost, Q. Wang, C. Xia, Universal inequalities for eigenvalues of the buckling problem of arbitrary order, Commun. PDE. 35(2010), 1563-1589. [55] J. Jost, X. Q. Li-Jost, Q. Wang, C. Xia, Universal bounds for eigenvalues of the polyharmonic operators. Trans. Amer. Math. Soc. 363(2011), 1821-1854. [56] B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lect. Notes in Math., vol. 1150, Springer-Verlag, Berlin, 1985. [57] B. Kawohl and G. Sweers, Remarks on eigenvalues and eigen- functions of a special elliptic system, Z. Angew. Math. Phys. 38 (1987), 730-740. [58] H. T. Ku, M. C. Ku, D. Y. Tang, Inequalities for eigenvalues of elliptic equations and the generalized P´olya conjecture, J. Diff. Equations 97 (1992), 127-139. [59] J. R. Kuttler, V. G. Sigillito, Inequalities for membrane and Stekloff eigenvalues, J. Math. Anal. Appl. 23(1968), 148-160. [60] J. R. Kuttler, Dirichlet eigenvalues, SIAM J. Numer. Anal. 16 (1979), 332338. [61] E. Krahn, Uber¨ eine von Rayleigh formulierte Minimaleigen- schaft des Kreises, Math. Ann. 94 (1925), 97-100. [62] P. Kr¨oger,Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space. J. Funct. Anal. 106 (1992), 353-357. [63] P. Kr¨oger,Estimates for sums of eigenvalues of the Laplacian, J. Funct. Anal. 126 (1994) 217-227.

i i

i i “eigenvaluecm i i 2013/9/2 page 109 i i

BIBLIOGRAPHY 109

[64] R. S. Lakes, Foam structures with a negative Poisson’s ratio, Science 235 (1987) 1038-1040.

[65] A. Laptev, Dirichlet and Neumann eigenvalue problems on do- mains in Euclidean spaces, J. Funct. Anal. 151 (1997), 531-545.

[66] A. Laptev, T. Weidl, Recent results on Lieb-Thirring inequal- ities. Journes “Equations´ aux D´eriv´eesPartielles (La Chapelle sur Erdre, 2000), Exp. No. XX, 14 pp., Nantes: Univ. Nantes, 2000.

[67] M. Levitin, Commutators, spectral trace identities, and universal estimates for eigenvalues, J. Funct. Anal. 192, 425-445 (2002)

[68] H. A. Levine and M. H. Protter, Unrestricted lower bounds for eigenvalues of elliptic equations and systems of equations with applications to problems in elasticity, Math. Methods Appl. Sci. 7 (1985), 210-222.

[69] M. Levitin and L. Parnovski, Commutators, spectral trance identities, and universal estimates for eigenvalues, J. , 192 (2002), 425-445.

[70] P. Li, Eigenvalue estimates on homogeneous manifolds, Com- ment. Math. Helv. 55 (1980), 347-363.

[71] P. Li, Lecture Notes on Geometric Analysis, in: Lecture Notes Series, vol. 6, Research Institute of Mathematics and Global Analysis Research Center, Seoul National University, Seoul, 1993.

[72] P. Li, S. T. Yau, Eigenvalues of a compact Riemannian manifold, AMS Proc. Symp. Pure Math. 36 (1980), 205-239.

[73] A. Lichnerowicz, Geometrie des Groups des Transformationes, Dunod, Paris, 1958.

[74] G. Liu, The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues on Riemannian manifolds, Adv. Math. 228 (2011), 2162-2217.

i i

i i “eigenvaluecm i i 2013/9/2 page 110 i i

110 BIBLIOGRAPHY

[75] A. D. Melas, A lower bound for sums of eigenvalues of the Lapla- cian, Proc. Amer. Math. Soc. 131 (2003), 631-636.

[76] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14(1962), 333-340.

[77] L. E. Payne, G. P´olya and H. F. Weinberger, Sur le quotient de deux fr´equencespropres cos´ecutives, Comptes Rendus Acad. Sci. Paris 241 (1955), 917-919.

[78] L. E. Payne, G. P´olya and H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. and Phys. 35 (1956), 289-298.

[79] A. Pleijel, Propriet´esasymptotique des fonctions fondamentales du problems des vibrations dans un corps ´elastique,Arkiv f. Mat. Astr. o. Fysik 26 (1939), 1-9.

[80] A. Pleijel, On the eigenvalues and eigenfunctions of elastic plates, Comm. Pure Appl. Math., 3 (1950), 1-10.

[81] G. P´olya, On the eigenvalues of vibrating membranes, Proc. Lon- don MAth. Soc. 11(1961), 419-433.

[82] R. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), no. 3, 459-472.

[83] A. Ros, Compact hypersurfaces with constant higher order mean curvature, Revista matem´aticaIberroamericana 3 (1987), 447- 453.

[84] T. Sakai, On Riemannian manifolds admitting a function whose gradient is of constant norm, Kodai Math. J. 19 (1996), 39-51.

[85] R. Schoen, S. T. Yau, Lectures on differential geometry, Aca- demic Press, 1984.

[86] H. Urakawa, Bounded domains which are isospectral but not congruent, Ann. Sci. Ec.´ Norm. Sup., 15(1982), 441-456.

[87] M. W. Steklov, Sur les probl`emesfondamentaux de la physique math´ematique,Ann. Sci. Ecole Norm. Sup. 19 (1902) 455-490.

i i

i i “eigenvaluecm i i 2013/9/2 page 111 i i

BIBLIOGRAPHY 111

[88] Q. Wang, C. Xia, Universal bounds for eigenvalues of the buck- ling problem on spherical domains, Comm. Math. Phy. 270 (2007), 759-775. [89] Q. Wang, C. Xia, Universal bounds for eigenvalues of the bihar- monic operator on Riemannian manifolds, J. Funct. Anal. 245 (2007), 334-352. [90] Q. Wang, C. Xia, Universal bounds for eigenvalues of Schrodinger operator on Riemannian manifolds, Ann. Acad. Sci. Fen. Math. 33 (2008), 319-336. [91] Q. Wang, C. Xia, Sharp bounds for the first non-zero Stekloff eigenvalues, J. Funct. Anal. 257(2009) 2635-2654. [92] Q. Wang, C. Xia, Isoperimetric bounds for the first eigenvalue of the Laplacian, ZAMP. 61(2010), 171-175. [93] Q. Wang, C. Xia, Comparison theorems for eigenvalues of ellip- tic operators and the generalized P´olya conjecture, Math. Phy. Anal. Geom. 13(2010), 235-253. [94] Q. Wang, C. Xia, Inequalities for eigenvalues of a clamped plate problem, Cal. Var. PDE. 40(2011), 273-289. [95] Q. Wang, C. Xia, Inequalities for the Steklov eigenvalues. Chaos, Solitons and Fractals, 48(2013), 61-67. [96] H. F. Weinberger, An isoperimetric inequality for the n- dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633-636. [97] H. Weyl, Der Asymptotishe Verteilungsgesetz der Eigenwerte Linearer partieiler Differentialgleichungen, Math. Ann. 71(1912), 441-469. [98] H. C. Yang, An estimate of the difference between consecutive eigenvalues, preprint IC/91/60 of ICTP, Trieste, 1991. [99] P. Yang, S. T. Yau, Eigenvalues of the Laplacian of compact Riemannian surfaces and minimal submaifolds, Ann. Sci. Ec.´ Norm. Sup. Pisa 7(1980), 55-63.

i i

i i “eigenvaluecm i i 2013/9/2 page 112 i i

112 BIBLIOGRAPHY

[100] C. Xia, The first nonzero eigenvalue for manifolds with Ricci curvature having positive lower bound. Chinese mathematics into the 21st century (Tianjin, 1988), 243-249, Peking Univ. Press, Beijing, 1991. [101] C. Xia, Rigidity and sphere theorem for manifolds with positive Ricci curvature, manuscripta math. 85(1994), 79-87. [102] C. Xia, Rigidity for compact manifolds with boundary and non- negative Ricci curvature, Proc. Amer. Math. Soc. 125 (1997), 1801-1806. [103] J. Q. Zhong and H. C. Yang, On the estimate of first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A 27(1984), 1265-1273.

i i

i i