Trends in °c Higher Education Press Partial Di®erential Equations and International Press ALM 10, pp. 241{264 Beijing-Boston Bounds of Eigenvalues on Riemannian Manifolds Jun Ling¤ Zhiqin Luy Abstract In this paper, we ¯rst give a short review of the eigenvalue estimates of Laplace operator and SchrÄodingeroperators. Then we discuss the evolution of eigenvalues along the Ricci flow, and two new bounds of the ¯rst eigenvalue using gradient estimates. 2000 Mathematics Subject Classi¯cation: 58J50, 35P15, 53C21. Keywords and Phrases: Eigenvalue, lower bounds, upper bounds, Riemannian manifolds. 1 Introduction In this paper, we discuss the eigenvalue estimates of Laplace operator and SchrÄodin- ger operators. Let (M; g) be an n-dimensional compact connected Riemannian manifold with or without boundary. Let ¢ be the Laplacian of the metric g = i n (gij)n£n. In local coordinates fx gi=1, µ ¶ 1 Xn @ p @ ¢ = p det(g) gij ; @xi @xj det(g) i;j=1 ij where the matrix (g ) is the inverse matrix of g = (gij). We consider the following three eigenvalue problems on the manifold (M; g). ¤Department of Mathematics, Utah Valley University, Orem, UT 84058, USA. Email:
[email protected]. Research partially supported by the NSF under the program `The Geomet- ric Evolution Equations and Related Topics' at the MSRI at Berkeley and by the UVU School of Science and Health. yDepartment of Mathematics, University of California, Irvine, CA 92697, USA. Email:
[email protected]. Research partially supported by NSF grant DMS 0347033. 242 J. Ling and Z. Lu Closed eigenvalue problem for the Laplacian. @M = ;. Find all real numbers ¸ for which there are nontrivial solutions u 2 C2(M) to the equations ¡¢u = ¸u: (1.1) Dirichlet eigenvalue problem for the Laplacian.