Ecosystem Level Methane Fluxes from Tidal Freshwater and Brackish Marshes of the Mississippi River Delta: Implications for Coastal Wetland Carbon Projects

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystem Level Methane Fluxes from Tidal Freshwater and Brackish Marshes of the Mississippi River Delta: Implications for Coastal Wetland Carbon Projects Wetlands DOI 10.1007/s13157-016-0746-7 ORIGINAL RESEARCH Ecosystem Level Methane Fluxes from Tidal Freshwater and Brackish Marshes of the Mississippi River Delta: Implications for Coastal Wetland Carbon Projects Guerry O. Holm Jr.1 & Brian C. Perez1 & David E. McWhorter 1 & Ken W. Krauss2 & Darren J. Johnson3 & Richard C. Raynie4 & Charles J. Killebrew4 Received: 10 July 2015 /Accepted: 28 January 2016 # Society of Wetland Scientists 2016 Abstract Sulfate from seawater inhibits methane produc- emissions (4.1 tCO2e/ha/yr). Carbon sequestration rates tion in tidal wetlands, and by extension, salinity has would need case-by-case assessment, but the EC meth- been used as a general predictor of methane emissions. ane emissions estimates in this study conformed well to With the need to reduce methane flux uncertainties from an existing salinity-methane model that should serve as tidal wetlands, eddy covariance (EC) techniques provide a basis for establishing emission factors for wetland an integrated methane budget. The goals of this study carbon offset projects. were to: 1) establish methane emissions from natural, freshwater and brackish wetlands in Louisiana based Keywords Methane . Tidal wetland . Carbon sequestration . on EC; and 2) determine if EC estimates conform to a Eddy covariance methane-salinity relationship derived from temperate tid- al wetlands with chamber sampling. Annual estimates of 2 methane emissions from this study were 62.3 g CH4/m / Introduction 2 yr and 13.8 g CH4/m /yr for the freshwater and brack- ish (8–10 psu) sites, respectively. If it is assumed that Methane currently has a global warming potential 30 long-term, annual soil carbon sequestration rates of nat- times that of carbon dioxide (Myhre et al. 2013), and 2 ural marshes are ~200 g C/m /yr (7.3 tCO2e/ha/yr), wetlands are the dominant natural source of methane healthy brackish marshes could be expected to act as a comprising an estimated one-third of the global emis- net radiative sink, equivalent to less than one-half the sions (Bridgham et al. 2013). For tidal wetlands, there soil carbon accumulation rate after subtracting methane is a need to refine the understanding of the environmen- tal variables that constrain methane emissions to im- prove regional-ecoystem emissions predictions and to Electronic supplementary material The online version of this article reduce uncertainty for blue-carbon wetland restoration (doi:10.1007/s13157-016-0746-7) contains supplementary material, which is available to authorized users. projects. Tidal wetlands typically have high rates of carbon 2 * Guerry O. Holm, Jr. sequestration, burying approximately 200 g C/m /yr, [email protected] which is equivalent to 7.3 tCO2e/ha/yr (Mcleod et al. 2011). Herbaceous tidal marshes of the northern Gulf of Mexico and Louisiana generally have similar baseline 1 CH2M, 700 Main Street, Suite 400, Baton Rouge, LA 70802, USA burial capacity regardless of salinity regime (Nyman 2 U.S. Geological Survey, USGS Wetland and Aquatic Research et al. 2006; Piazza et al. 2011; Hansen and Nestlerode Center, 700 Cajundome Blvd, Lafayette, LA 70506, USA 2014). In Louisiana alone, there are 1.47 million ha of 3 Cherokee Nations Technical Solutions, Wetland and Aquatic freshwater to saline herbaceous coastal wetlands (Sasser Research Center, 700 Cajundome Blvd, Lafayette, LA 70506, USA et al. 1996); these coastal wetlands are subject to recent 4 Louisiana Coastal Protection and Restoration Authority, P.O. Box loss rates of 4290 ha/yr (Couvillion et al. 2011). While 44027, Baton Rouge, LA 70804-4027, USA tidal herbaceous and forested wetlands have high Wetlands capacities for carbon accumulation, from a global atmospheric lifetimes, it is currently understood that ni- warming perspective, it is recognized that climate bene- trous oxide and methane have single-pulse Global fits from wetland restoration generally increase, or be- Warming Potentials of 265 and 30 over a 100 yr time come more predictable, as salinity increases and meth- horizon (Myhre et al. 2013). It is also becoming clearer ane emissions decrease (Poffenbarger et al. 2011). Thus, that methane flux from restored freshwater wetlands low salinity freshwater wetlands or those that have re- may have a warming effect on climate over decadal duced availability of terminal electron acceptors that periods, but across century scales wetlands can be ex- suppress methanogenesis, could emit enough methane pected to act as net radiative sinks (Whiting and to offset annual rates of carbon accumulation Chanton 2001;Mitschetal.2013;Neubauer2014; (Poffenbarger et al. 2011). Bridgham et al. 2014). Thus, the current guidance for Aside from the differences among wetland types with voluntary wetland carbon offset projects (ACR and respect to annual rates of carbon sequestration and VCS) is that GHG emissions will be monitored or esti- greenhouse gas (GHG) emissions, the continued loss mated for periods of 20–100 years to calculate the net of deltaic wetlands in the Mississippi River Delta carbon benefits of a project versus the baseline Plain (MRDP) may be resulting in accelerated emissions condition. from organic-rich soils that took centuries to form The classic field studies from Virginia and Louisiana tidal (DeLaune and White 2011). The wetland loss, while wetlands (DeLaune et al. 1983, Bartlett et al. 1985, 1987) partially attributable to natural delta decay, has been formed the basis of our understanding on the importance of linked to systematic hydrologic alteration of interior salinity and methane interactions across a fresh to saline gra- wetlands (i.e. oil and gas canals; Bass and Turner dient (0.4 to 26 psu). This inverse log-linear relationship was 1997) and the reduction in sediment delivery from the further improved by the meta-analysis of Poffenbarger et al. river to the wetlands (Blum and Roberts 2009). Current (2011) who compiled data from 31 tidal marshes covering a wetland restoration measures are being planned and im- broad geographic extent. Their updated relationship was plemented to reduce the wetland loss rate, commonly interpreted in the context of methane emissions relative to including wetland creation with dredged sediment, hy- the potential wetland carbon accumulation rate. Based on this drologic restoration, shoreline protection, and analysis, the researchers concluded, in general, that wetlands Mississippi River sediment diversions (CPRA 2012). with salinity above 18 psu could reliably act as a net radiative These measures, to varying degrees, may have positive sink, because methane emissions are inhibited. They identi- climate regulation benefits in the form of increasing fied the need to refine estimates of methane emissions from sequestration capacity and avoiding the future emissions wetlands within the salinity range of 5–15 psu, which are of eroded soil carbon. under-represented and exhibit high variability in methane emis- There has been a renewed interest in wetland carbon cy- sions. Recognizing that a large portion Louisiana tidal wetlands cling research, as different groups are advancing the monitor- fall below 18 psu salinity, the main impetus for this study was to ing and verification methods required to support wetland res- refine methane emission estimates from these deltaic systems toration as eligible carbon offset projects. The voluntary mar- using the Eddy Covariance (EC) technique (Baldocchi 2014), kets, through the Verified Carbon Standard (VCS 2014)and which has been applied in other wetland systems (Rinne et al. American Carbon Registry (ACR 2012), have approved wet- 2007; Teh et al. 2011; Hatala et al. 2012). This study was de- land offset methodologies that apply to wetland creation and signed to: hydrologic restoration project types. Currently, the onus is on the project developer to provide a high level of confidence to a 1) Develop annual estimates of ecosystem-scale meth- verifier on the legitimacy of the carbon offset. This ane emissions from natural, tidal freshwater and process requires intensive monitoring on a project-by- brackish (mesohaline) wetlands in Louisiana; project basis, which can reduce the return on investment 2) Evaluate how annual methane emissions estimates to the point that developing a carbon offset project is from eddy covariance compare to those from a geo- not attractive to investors, thus, limiting the resources graphically broader chamber-based salinity-methane needed for additional restoration. To improve the viabil- relationship to assess the use of salinity as a predic- ity of a project and advance needed restoration, devel- tor of methane emissions across a salinity gradient; opers require region-specific research and tools to build 3) Compare the influence of low and moderate fresh- more robust estimates for carbon sequestration rates and water discharges from a riverine source on methane GHG emission factors. emissions from a freshwater wetland; and, A primary uncertainty is the potential for wetlands to 4) Understand the interactions of water level, temperature, emit nitrous oxide and methane under different baseline and salinity on methane emissions to refine predictive (un-restored) and restoration scenarios. Given the relationships. Wetlands Methods to manage salinity in the Barataria Basin through a controlled introduction of freshwater from the river (Day et al. 2014). Study Sites The marsh is typical of freshwater deltaic plain wetlands (Swarzenski et al. 1991;Sasseretal.1996)inthatit This study was conducted on two herbaceous tidal wetland has
Recommended publications
  • Measuring Evapotranspiration with LI-COR Eddy Flux Systems
    Measuring Evapotranspiration with LI-COR Eddy Flux Systems Application Note Change Log Introduction In situ, providing direct measurements of ET and sens- ible heat flux The largest flow of material in the biosphere is the move- Minimal disturbance to the region of interest ment of water through the hydrologic cycle (Chahine, 1992). The transfer of water from soil and water surfaces Measurements are spatially averaged over a large area through evaporation and the loss of water from plants Systems are automated for continuous long-term through stomata as transpiration represent the largest move- measurements ment of water to the atmosphere. Collectively these two pro- Instruments cesses are referred to as evapotranspiration (ET). The basic instruments required for eddy covariance meas- On a global scale, about 65% of land precipitation is urements include a water vapor analyzer and a sonic anem- returned to the atmosphere through evapotranspiration ometer (Figure 1), both of which must be capable of (Trenberth, 2007). Evapotranspiration is important to water making high frequency measurements. The H2O analyzer management, endangered species protection, and the genesis measures water vapor density, while the anemometer meas- of drought, flood, wildfire, and other natural disasters. In ures 3-dimensional wind speeds and directions. Meas- addition, ET, when thought of in terms of energy as latent urements are typically made at 10 Hz (10 times per second) heat flux, consumes about 50% of the solar radiation or faster in order to catch fast-moving eddies. absorbed by the earth’s surface (Trenberth, 2009). This influ- ences both climate and hydrology at local, regional, and global scales.
    [Show full text]
  • Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
    ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia)
    [Show full text]
  • The Fundamental Equation of Eddy Covariance and Its Application in flux Measurementsଝ
    Agricultural and Forest Meteorology 152 (2012) 135–148 Contents lists available at SciVerse ScienceDirect Agricultural and Forest Meteorology jou rnal homepage: www.elsevier.com/locate/agrformet The fundamental equation of eddy covariance and its application in flux measurementsଝ a,∗ b c d e Lianhong Gu , William J. Massman , Ray Leuning , Stephen G. Pallardy , Tilden Meyers , a a d a Paul J. Hanson , Jeffery S. Riggs , Kevin P. Hosman , Bai Yang a Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA b USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect, Fort Collins, CO 80526, USA c CSIRO Marine and Atmospheric Research, PO Box 3023, Canberra, ACT 2601, Australia d Department of Forestry, University of Missouri, Columbia, MO 65211, USA e Atmospheric Turbulence and Diffusion Division, Air Resources Laboratory, NOAA, Oak Ridge, TN 37830, USA a r t i c l e i n f o a b s t r a c t Article history: A fundamental equation of eddy covariance (FQEC) is derived that allows the net ecosystem exchange Received 18 May 2011 N (NEE) s of a specified atmospheric constituent s to be measured with the constraint of conservation Received in revised form N of any other atmospheric constituent (e.g. N2, argon, or dry air). It is shown that if the condition s 14 September 2011 s N Accepted 15 September 2011 CO2 is true, the conservation of mass can be applied with the assumption of no net ecosystem source or sink of dry air and the FQEC is reduced to the following equation and its approximation for horizontally Keywords: homogeneous mass fluxes: Fundamental equation of eddy covariance h h h WPL corrections ∂ ∂c ∂ N = c s d s w s d s + cd(z) dz + [s(z) − s(h)] dz ≈ cd(h) w s + dz .
    [Show full text]
  • Introduction to the Eddy Covariance Method
    INTRODUCTION TO THE EDDY COVARIANCE METHOD GENERAL GUIDELINES, AND CONVENTIONAL WORKFLOW This introduction has been created to familiarize a beginner with general theoretical principles, requirements, applications, and processing stepsG. ofBurba the Eddy Covarianceand D. method. Anderson It is intended to assist readers in the further understanding of the method and references such as textbooks, network guidelines and journal papers. It is also intended to help students and researchers in the field deployment of the Eddy Covariance method, and to promote its use beyond micrometeorology. The notes section at the bottom of each slide can be expanded by clicking on the ‘notes’ button located in the bottom of the frame. This section contains text and informal notes along with additional details. Nearly every slide contains references to other web and literature references, additional explanations, and/or examples. Please feel free to send us your suggestions. We intend to keep the content of this work dynamic and current, and we will be happy to incorporate any additional information and literature references. Please address mail to george.burba at licor.com with the subject “EC Guidelines”. LI-COR Biosciences 1 CONTENT Introduction_______________________3 - effect of canopy roughness Introduction - effect of stability II.4 Quality control of Eddy Covariance data 102 Purpose - summary of footprint QC general Acknowledgements Testing data collection QC nighttime Layout Testing data retrieval Validation of flux data Keeping up maintenance Filling-in the data I. Eddy Covariance Theory Overview_7 Experiment implementation summary Storage Flux measurements in general Integration State of Eddy Covariance methodology II. 3 Data processing and analysis __ 73 Air flow in ecosystem Unit conversion II.5 Eddy covariance workflow summary ___111 How to measure flux Despiking Basic derivations Calibration coefficients III.
    [Show full text]
  • PESHTIGO RIVER DELTA Property Owner
    NORTHEAST - 10 PESHTIGO RIVER DELTA WETLAND TYPES Drew Feldkirchner Floodplain forest, lowland hardwood, swamp, sedge meadow, marsh, shrub carr ECOLOGY & SIGNIFICANCE supports cordgrass, marsh fern, sensitive fern, northern tickseed sunflower, spotted joe-pye weed, orange This Wetland Gem site comprises a very large coastal • jewelweed, turtlehead, marsh cinquefoil, blue skullcap wetland complex along the northwest shore of Green Bay and marsh bellflower. Shrub carr habitat is dominated three miles southeast of the city of Peshtigo. The wetland by slender willow; other shrub species include alder, complex extends upstream along the Peshtigo River for MARINETTE COUNTY red osier dogwood and white meadowsweet. Floodplain two miles from its mouth. This site is significant because forest habitats are dominated by silver maple and green of its size, the diversity of wetland community types ash. Wetlands of the Peshtigo River Delta support several present, and the overall good condition of the vegetation. - rare plant species including few-flowered spikerush, The complexity of the site – including abandoned oxbow variegated horsetail and northern wild raisin. lakes and a series of sloughs and lagoons within the river delta – offers excellent habitat for waterfowl. A number This Wetland Gem provides extensive, diverse and high of rare animals and plants have been documented using quality wetland habitat for many species of waterfowl, these wetlands. The area supports a variety of recreational herons, gulls, terns and shorebirds and is an important uses, such as hunting, fishing, trapping and boating. The staging, nesting and stopover site for many migratory Peshtigo River Delta has been described as the most birds. Rare and interesting bird species documented at diverse and least disturbed wetland complex on the west the site include red-shouldered hawk, black tern, yellow shore of Green Bay.
    [Show full text]
  • A Synthesis of Information I
    Outer Continental Shelf Environmental Assessment Program * A Synthesis of Information I U.S. DEPARTMENT OF COMMERCE U.S. DEPARTMENT OF THE INTEXIOR National Oceanic and Atmospheric Administration Minerals Management Service National Ocean Service Alaska OCS Region Office of Oceanography and Marine Assessment . .:.% y! Ocean Assessments Division ' t. CU ' k Alaska Office OCS Study, MMS 89-0081 . '.'Y. 4 3 --- NOTICES This report has been prepared as part of the U.S. Department bf Commerce, National Oceanic and Atmospheric Administration's Outer Continental Shelf Environmental Assessment Program, and approved for publication. The inter- pretation of data and opinions expressed in this document are those of the authors. Approval does not necessarily signify that the contents reflect the views and policies of the Department of Commerce or those of the Department of the Interior. The National Oceanic and Atmospheric Administration (NOAA) does not approve, recommend, or endorse any proprietary material mentioned in this publication. No reference shall be made to NOAA or to this publication in any advertising or sales promotion which would indicate or imply that NOAA approves, recommends, or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose or intent to cause directly or indirectly the advertised product to be used or purchased because of this publication. Cover: LandsatTMimage of the Yukon Delta taken on Julg 22, 1975, showing the thamal gradients resulting from Yukon River discharge. In this image land is dqicted in sesof red indicating warmer temperatures versus the dark blues (colder temperatures) of Bering Sea waters. Yukon River water, cooh than the surround- ing land but wanner than marine waters, is represented bg a light aqua blue.
    [Show full text]
  • Assessment and Simulation of Global Terrestrial Latent Heat Flux by Synthesis of CMIP5 Climate Models and Surface Eddy Covarianc
    Agricultural and Forest Meteorology 223 (2016) 151–167 Contents lists available at ScienceDirect Agricultural and Forest Meteorology journal homepage: www.elsevier.com/locate/agrformet Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations a,∗ a b a c Yunjun Yao , Shunlin Liang , Xianglan Li , Shaomin Liu , Jiquan Chen , a a a a d a a Xiaotong Zhang , Kun Jia , Bo Jiang , Xianhong Xie , Simon Munier , Meng Liu , Jian Yu e f g h i , Anders Lindroth , Andrej Varlagin , Antonio Raschi , Asko Noormets , Casimiro Pio , j,k l m,n o,p Georg Wohlfahrt , Ge Sun , Jean-Christophe Domec , Leonardo Montagnani , q m,n r s t Magnus Lund , Moors Eddy , Peter D. Blanken , Thomas Grünwald , Sebastian Wolf , u Vincenzo Magliulo a State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing, 100875, China b College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China c CGCEO/Geography, Michigan State University, East Lansing, MI 48824, USA d Laboratoire d’études en géophysique et océanographie spatiales, LEGOS/CNES/CN RS/IRD/UPS-UMR5566, Toulouse, France e GeoBiosphere Science Centre, Lund University, Sölvegatan 12, 223 62 Lund, Sweden f A.N.Severtsov Institute of Ecology and Evolution RAS 123103, Leninsky pr.33, Moscow, Russia g CNR-IBIMET, National Research Council, Via Caproni 8, 50145 Firenze, Italy h Dept. Forestry and Environmental Resources, North Carolina State University, 920 Main Campus Drive, Ste 300, Raleigh, NC 27695, USA i CESAM & Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3810-193 Aveiro, Portugal j Institute for Ecology, University of Innsbruck, Sternwartestr.
    [Show full text]
  • Analyzing Trends of Dike-Ponds Between 1978 and 2016 Using Multi-Source Remote Sensing Images in Shunde District of South China
    sustainability Article Analyzing Trends of Dike-Ponds between 1978 and 2016 Using Multi-Source Remote Sensing Images in Shunde District of South China Fengshou Li 1, Kai Liu 1,* , Huanli Tang 2, Lin Liu 3,4,* and Hongxing Liu 4,5 1 Guangdong Key Laboratory for Urbanization and Geo-simulation, Guangdong Provincial Engineering Research Center for Public Security and Disaster, School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China; [email protected] 2 Guangzhou Zengcheng District Urban and Rural Planning and Surveying and Mapping Geographic Information Institute, Guangzhou 511300, China; [email protected] 3 Center of Geo-Informatics for Public Security, School of Geographic Sciences, Guangzhou University, Guangzhou 510006, China 4 Department of Geography and Geographic Information Science, University of Cincinnati, Cincinnati, OH 45221, USA; [email protected] 5 Department of Geography, the University of Alabama, Tuscaloosa, AL 35487, USA * Correspondence: [email protected] (K.L.); [email protected] (L.L.); Tel.: +86-020-8411-3044 (K.L.); +1-513-556-3429 (L.L.); Fax: +86-020-8411-3057 (K.L. & L.L.) Received: 27 August 2018; Accepted: 26 September 2018; Published: 30 September 2018 Abstract: Dike-ponds have experienced significant changes in the Pearl River Delta region over the past several decades, especially since China’s economic reform, which has seriously affected the construction of ecological environments. In order to monitor the evolution of dike-ponds, in this study we use multi-source remote sensing images from 1978 to 2016 to extract dike-ponds in several periods using the nearest neighbor classification method.
    [Show full text]
  • Dispersal of Larval Suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006–09
    Prepared in cooperation with the Bureau of Reclamation Dispersal of Larval Suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006–09 Scientific Investigations Report 2012–5016 U.S. Department of the Interior U.S. Geological Survey Cover: Inset: Larval sucker from Upper Klamath Lake, Oregon. (Photograph taken by Allison Estergard, Student, Oregon State University, Corvallis, Oregon, 2011.) Top: Photograph taken from the air of the flooded Williamson River Delta, Upper Klamath Lake, Oregon. (Photograph taken by Charles Erdman, Fisheries Technician, Williamson River Delta Preserve, Klamath Falls, Oregon, 2008.) Bottom left: Photograph of a pop net used by The Nature Conservancy to collect larval suckers in Upper Klamath Lake and the Williamson River Delta, Oregon. (Photograph taken by Heather Hendrixson, Director, Williamson River Delta Preserve, Klamath Falls, Oregon, 2006.) Bottom middle: Photograph of a larval trawl used by Oregon State University to collect larval suckers in Upper Klamath Lake and the Williamson River Delta, Oregon. (Photograph taken by David Simon, Senior Faculty Research Assistant, Oregon State University, Corvallis, Oregon, 2010.) Bottom right: Photograph of a plankton net used by the U.S. Geological Survey to collect larval suckers in Upper Klamath Lake and the Williamson River Delta, Oregon. (Photographer unknown, Klamath Falls, Oregon, 2009.) Dispersal of Larval Suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006–09 By Tamara M. Wood, U.S. Geological Survey, Heather A. Hendrixson, The Nature Conservancy, Douglas F. Markle, Oregon State University, Charles S. Erdman, The Nature Conservancy, Summer M. Burdick, U.S. Geological Survey, Craig M. Ellsworth, U.S. Geological Survey, and Norman L.
    [Show full text]
  • Dynamics of Canopy Stomatal Conductance, Transpiration, and Evaporation in a Temperate Deciduous Forest, Validated by Carbonyl S
    Biogeosciences Discuss., doi:10.5194/bg-2016-365, 2016 Manuscript under review for journal Biogeosciences Published: 2 September 2016 c Author(s) 2016. CC-BY 3.0 License. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake Richard Wehr1, Róisín Commane2, J. William Munger2, J. Barry McManus3, David D. Nelson3, Mark S. 3 1 2 5 Zahniser , Scott R. Saleska , Steven C. Wofsy 1Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721, U.S.A. 2School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, 02138, U.S.A. 3Aerodyne Research Inc., Billerica, 01821, U.S.A. 10 Correspondence to: Richard Wehr ([email protected]) Abstract. Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface-atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly at the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate 15 deciduous forest directly at the canopy scale via two independent approaches: (i) from heat and water vapor exchange, and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem-atmosphere exchange of OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6% diurnally), validating both methods.
    [Show full text]
  • Losses of Salt Marsh in China: Trends, Threats and Management
    Losses of salt marsh in China: Trends, threats and management Item Type Article Authors Gu, Jiali; Luo, Min; Zhang, Xiujuan; Christakos, George; Agusti, Susana; Duarte, Carlos M.; Wu, Jiaping Citation Gu J, Luo M, Zhang X, Christakos G, Agusti S, et al. (2018) Losses of salt marsh in China: Trends, threats and management. Estuarine, Coastal and Shelf Science 214: 98–109. Available: http://dx.doi.org/10.1016/j.ecss.2018.09.015. Eprint version Post-print DOI 10.1016/j.ecss.2018.09.015 Publisher Elsevier BV Journal Estuarine, Coastal and Shelf Science Rights NOTICE: this is the author’s version of a work that was accepted for publication in Estuarine, Coastal and Shelf Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Estuarine, Coastal and Shelf Science, [, , (2018-09-18)] DOI: 10.1016/j.ecss.2018.09.015 . © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http:// creativecommons.org/licenses/by-nc-nd/4.0/ Download date 09/10/2021 17:12:34 Link to Item http://hdl.handle.net/10754/628759 Accepted Manuscript Losses of salt marsh in China: Trends, threats and management Jiali Gu, Min Luo, Xiujuan Zhang, George Christakos, Susana Agusti, Carlos M. Duarte, Jiaping Wu PII: S0272-7714(18)30220-8 DOI: 10.1016/j.ecss.2018.09.015 Reference: YECSS 5973 To appear in: Estuarine, Coastal and Shelf Science Received Date: 15 March 2018 Revised Date: 21 August 2018 Accepted Date: 14 September 2018 Please cite this article as: Gu, J., Luo, M., Zhang, X., Christakos, G., Agusti, S., Duarte, C.M., Wu, J., Losses of salt marsh in China: Trends, threats and management, Estuarine, Coastal and Shelf Science (2018), doi: https://doi.org/10.1016/j.ecss.2018.09.015.
    [Show full text]
  • Responses of Tidal Freshwater and Brackish Marsh Macrophytes to Pulses of Saline Water Simulating Sea Level Rise and Reduced Discharge
    Wetlands (2018) 38:885–891 https://doi.org/10.1007/s13157-018-1037-2 ORIGINAL RESEARCH Responses of Tidal Freshwater and Brackish Marsh Macrophytes to Pulses of Saline Water Simulating Sea Level Rise and Reduced Discharge Fan Li1 & Steven C. Pennings1 Received: 7 June 2017 /Accepted: 16 April 2018 /Published online: 25 April 2018 # Society of Wetland Scientists 2018 Abstract Coastal low-salinity marshes are increasingly experiencing periodic to extended periods of elevated salinities due to the com- bined effects of sea level rise and altered hydrological and climatic conditions. However, we lack the ability to predict detailed vegetation responses, especially for saline pulses that are more realistic in nature than permanent saline presses. In this study, we exposed common freshwater and brackish plants to different durations (1–31 days per month for 3 months) of saline water (salinity of 5). We found that Zizaniopsis miliacea was more tolerant to salinity than the other two freshwater species, Polygonum hydropiperoides and Pontederia cordata. We also found that Zizaniopsis miliacea belowground and total biomass appeared to increase with salinity pulses up to 16 days in length, although this relationship was quite variable. Brackish plants, Spartina cynosuroides, Schoenoplectus americanus and Juncus roemerianus, were unaffected by the experimental treatments. Our ex- periment did not evaluate how competitive interactions would further affect responses to salinity but our results suggest the hypothesis that short pulses of saline water will increase the cover of Zizaniopsis miliacea and decrease the cover of Polygonum hydropiperoides and Pontederia cordata in tidal freshwater marshes, thereby reducing diversity without necessarily affecting total plant biomass.
    [Show full text]