2014 Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leightoniella Zeylanensis Belongs to the Pannariaceae
doi: 10.1111/njb.01880 00 1–6 NORDIC JOURNAL OF BOTANY Research Leightoniella zeylanensis belongs to the Pannariaceae Gothamie Weerakoon, André Aptroot, Mats Wedin and Stefan Ekman G. Weerakoon (https://orcid.org/0000-0002-9550-2139), Algae, Fungi and Plant Division, Dept of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. – A. Aptroot (https://orcid.org/0000-0001-7949-2594), ABL Herbarium, XK Soest, the Netherlands. – M. Wedin (https://orcid.org/0000-0002-8295-5198), Swedish Museum of Natural History, Dept of Botany, Stockholm, Sweden. – S. Ekman (https://orcid. org/0000-0003-3021-1821) ([email protected]), Museum of Evolution, Uppsala Univ., Uppsala, Sweden. Nordic Journal of Botany Recent finds ofLeightoniella zeylanensis, classified variously in the Collemataceae and 2018: e01880 Pannariaceae, enabled us to generate DNA sequence data for investigating its phy- doi: 10.1111/njb.01880 logenetic affiliation. Newly generated sequence data from the internal transcribed spacer (ITS) region and the large subunit of the nuclear ribosomal DNA (nrLSU), Subject Editor and the small subunit of the mitochondrial ribosomal (mrSSU) DNA, and the largest sub- Editor-in-Chief: Torbjörn Tyler unit of the RNA polymerase II gene (RPB1) indicate that L. zeylanensis is a member Accepted 1 June 2018 of the Pannariaceae, belonging to a strongly supported clade together with Physma, Lepidocollema, and Gibbosporina (= the ‘Physma clade’). With the currently available data, however, relationships within this clade are largely impossible to reconstruct with confidence. Leightoniella zeylanensis was found to possess ellipsoid ascospores surrounded by a thick, gelatinous perispore with pointed ends, supporting a previously published hypothesis that such a perispore type is a synapomorphy for the Physma clade. -
Cuivre Bryophytes
Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen -
Insights Into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont
Insights into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont Katja Fedrowitz Faculty of Natural Resources and Agricultural Sciences Department of Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2011 Acta Universitatis agriculturae Sueciae 2011:96 Cover: Lobaria pulmonaria, Nephroma bellum, and fallen bark in an old-growth forest in Finland with Populus tremula. Part of the tRNALeu (UAA) sequence in an alignment. (photos: K. Fedrowitz) ISSN 1652-6880 ISBN 978-91-576-7640-5 © 2011 Katja Fedrowitz, Uppsala Print: SLU Service/Repro, Uppsala 2011 Insights into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont Abstract Nature conservation requires an in-depth understanding of the ecological processes that influence species persistence in the different phases of a species life. In lichens, these phases comprise dispersal, establishment, and growth. This thesis aimed at increasing the knowledge on epiphytic cyanolichens by studying different aspects linked to these life stages, including species colonization extinction dynamics, survival and vitality of lichen transplants, and the genetic symbiont diversity in the genus Nephroma. Paper I reveals that local colonizations, stochastic, and deterministic extinctions occur in several epiphytic macrolichens. Species habitat-tracking metapopulation dynamics could partly be explained by habitat quality and size, spatial connectivity, and possibly facilitation by photobiont sharing. Simulations of species future persistence suggest stand-level extinction risk for some infrequent sexually dispersed species, especially when assuming low tree numbers and observed tree fall rates. Forestry practices influence the natural occurrence of species, and retention of trees at logging is one measure to maintain biodiversity. However, their long-term benefit for biodiversity is still discussed. -
Pannariaceae Generic Taxonomy LL Ver. 27.9.2013.Docx
http://www.diva-portal.org Preprint This is the submitted version of a paper published in The Lichenologist. Citation for the original published paper (version of record): Ekman, S. (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). The Lichenologist, 46: 627-656 http://dx.doi.org/10.1017/S002428291400019X Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-943 Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota) Stefan EKMAN, Mats WEDIN, Louise LINDBLOM & Per M. JØRGENSEN S. Ekman (corresponding author): Museum of Evolution, Uppsala University, Norbyvägen 16, SE –75236 Uppsala, Sweden. Email: [email protected] M. Wedin: Dept. of Botany, Swedish Museum of Natural History, Box 50007, SE –10405 Stockholm, Sweden. L. Lindblom and P. M. Jørgensen: Dept. of Natural History, University Museum of Bergen, Box 7800, NO –5020 Bergen, Norway. Abstract: We estimated phylogeny in the lichen-forming ascomycete family Pannariaceae. We specifically modelled spatial (across-site) heterogeneity in nucleotide frequencies, as models not incorporating this heterogeneity were found to be inadequate for our data. Model adequacy was measured here as the ability of the model to reconstruct nucleotide diversity per site in the original sequence data. A potential non-orthologue in the internal transcribed spacer region (ITS) of Degelia plumbea was observed. We propose a revised generic classification for the Pannariaceae, accepting 30 genera, based on our phylogeny, previously published phylogenies, as well as morphological and chemical data available. -
Biological Soil Crust Community Types Differ in Key Ecological Functions
UC Riverside UC Riverside Previously Published Works Title Biological soil crust community types differ in key ecological functions Permalink https://escholarship.org/uc/item/2cs0f55w Authors Pietrasiak, Nicole David Lam Jeffrey R. Johansen et al. Publication Date 2013-10-01 DOI 10.1016/j.soilbio.2013.05.011 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Soil Biology & Biochemistry 65 (2013) 168e171 Contents lists available at SciVerse ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Short communication Biological soil crust community types differ in key ecological functions Nicole Pietrasiak a,*, John U. Regus b, Jeffrey R. Johansen c,e, David Lam a, Joel L. Sachs b, Louis S. Santiago d a University of California, Riverside, Soil and Water Sciences Program, Department of Environmental Sciences, 2258 Geology Building, Riverside, CA 92521, USA b University of California, Riverside, Department of Biology, University of California, Riverside, CA 92521, USA c Biology Department, John Carroll University, 1 John Carroll Blvd., University Heights, OH 44118, USA d University of California, Riverside, Botany & Plant Sciences Department, 3113 Bachelor Hall, Riverside, CA 92521, USA e Department of Botany, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic article info abstract Article history: Soil stability, nitrogen and carbon fixation were assessed for eight biological soil crust community types Received 22 February 2013 within a Mojave Desert wilderness site. Cyanolichen crust outperformed all other crusts in multi- Received in revised form functionality whereas incipient crust had the poorest performance. A finely divided classification of 17 May 2013 biological soil crust communities improves estimation of ecosystem function and strengthens the Accepted 18 May 2013 accuracy of landscape-scale assessments. -
Lichens and Associated Fungi from Glacier Bay National Park, Alaska
The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O. -
Testing Generic Delimitations in Collemataceae (Peltigerales, Lecanoromycetes) Mycokeys, 47: 17-33
http://www.diva-portal.org This is the published version of a paper published in MycoKeys. Citation for the original published paper (version of record): Kosuthova, A., Westberg, M., Otálora, M A., Wedin, M. (2019) Rostania revisited – testing generic delimitations in Collemataceae (Peltigerales, Lecanoromycetes) MycoKeys, 47: 17-33 https://doi.org/10.3897/mycokeys.47.32227 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3330 A peer-reviewed open-access journal MycoKeys 47: 17–33 (2019)Rostania revised: testing generic delimitations in Collemataceae 17 doi: 10.3897/mycokeys.47.32227 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Rostania revised: testing generic delimitations in Collemataceae (Peltigerales, Lecanoromycetes) Alica Košuthová1, Martin Westberg2, Mónica A.G. Otálora3, Mats Wedin1 1 Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Swe- den 2 Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden 3 Plant Eco- logical Genetics, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland Corresponding author: Alica Košuthová ([email protected]) Academic editor: T. Lumbsch | Received 6 December 2018 | Accepted 18 January 2019 | Published 20 February 2019 Citation: Košuthová A, Westberg M, Otálora MAG, Wedin M (2019) Rostania revised: testing generic delimitations in Collemataceae (Peltigerales, Lecanoromycetes). MycoKeys 47: 17–33. https://doi.org/10.3897/mycokeys.47.32227 Abstract Here, we test the current generic delimitation of Rostania (Collemataceae, Peltigerales, Ascomycota) utilizing molecular phylogeny and morphological investigations. -
Lichens and Allied Fungi of the Indiana Forest Alliance
2017. Proceedings of the Indiana Academy of Science 126(2):129–152 LICHENS AND ALLIED FUNGI OF THE INDIANA FOREST ALLIANCE ECOBLITZ AREA, BROWN AND MONROE COUNTIES, INDIANA INCORPORATED INTO A REVISED CHECKLIST FOR THE STATE OF INDIANA James C. Lendemer: Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126 USA ABSTRACT. Based upon voucher collections, 108 lichen species are reported from the Indiana Forest Alliance Ecoblitz area, a 900 acre unit in Morgan-Monroe and Yellowwood State Forests, Brown and Monroe Counties, Indiana. The lichen biota of the study area was characterized as: i) dominated by species with green coccoid photobionts (80% of taxa); ii) comprised of 49% species that reproduce primarily with lichenized diaspores vs. 44% that reproduce primarily through sexual ascospores; iii) comprised of 65% crustose taxa, 29% foliose taxa, and 6% fruticose taxa; iv) one wherein many species are rare (e.g., 55% of species were collected fewer than three times) and fruticose lichens other than Cladonia were entirely absent; and v) one wherein cyanolichens were poorly represented, comprising only three species. Taxonomic diversity ranged from 21 to 56 species per site, with the lowest diversity sites concentrated in riparian corridors and the highest diversity sites on ridges. Low Gap Nature Preserve, located within the study area, was found to have comparable species richness to areas outside the nature preserve, although many species rare in the study area were found only outside preserve boundaries. Sets of rare species are delimited and discussed, as are observations as to the overall low abundance of lichens on corticolous substrates and the presence of many unhealthy foliose lichens on mature tree boles. -
A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes
A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes Roger Rosentreter Matthew Bowker Jayne Belnap Photographs by Stephen Sharnoff Roger Rosentreter, Ph.D. Bureau of Land Management Idaho State Office 1387 S. Vinnell Way Boise, ID 83709 Matthew Bowker, Ph.D. Center for Environmental Science and Education Northern Arizona University Box 5694 Flagstaff, AZ 86011 Jayne Belnap, Ph.D. U.S. Geological Survey Southwest Biological Science Center Canyonlands Research Station 2290 S. West Resource Blvd. Moab, UT 84532 Design and layout by Tina M. Kister, U.S. Geological Survey, Canyonlands Research Station, 2290 S. West Resource Blvd., Moab, UT 84532 All photos, unless otherwise indicated, copyright © 2007 Stephen Sharnoff, Ste- phen Sharnoff Photography, 2709 10th St., Unit E, Berkeley, CA 94710-2608, www.sharnoffphotos.com/. Rosentreter, R., M. Bowker, and J. Belnap. 2007. A Field Guide to Biological Soil Crusts of Western U.S. Drylands. U.S. Government Printing Office, Denver, Colorado. Cover photos: Biological soil crust in Canyonlands National Park, Utah, cour- tesy of the U.S. Geological Survey. 2 Table of Contents Acknowledgements ....................................................................................... 4 How to use this guide .................................................................................... 4 Introduction ................................................................................................... 4 Crust composition .................................................................................. -
Pacific Northwest Fungi Project
North American Fungi Volume 6, Number 7, Pages 1-8 Published July 19, 2011 Hypogymnia pulverata (Parmeliaceae) and Collema leptaleum (Collemataceae), two macrolichens new to Alaska Peter R. Nelson1,2, James Walton3, Heather Root1 and Toby Spribille4 1 Department of Botany and Plant Pathology, Cordley Hall 2082, Oregon State University Corvallis, Oregon, 2 National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, Alaska, 3 National Park Service, Southwest Alaska Network, 240 West 5th Ave., Anchorage, Alaska, 4 Institute of Plant Sciences, University of Graz, Holteigasse 6, A-8010 Graz, Austria. Nelson, P. R., J. Walton, H. Root, and T. Spribille. 2011. Hypogymnia pulverata (Parmeliaceae) and Collema leptaleum (Collemataceae), two macrolichens new to Alaska. North American Fungi 6(7): 1-8. doi: 10.2509/naf2011.006.007 Corresponding author: Peter R. Nelson, [email protected] Accepted for publication July 18, 2011. http://pnwfungi.org Copyright © 2011 Pacific Northwest Fungi Project. All rights reserved. Abstract: Hypogymnia pulverata is a foliose macrolichen distinguished by its solid medulla and laminal soredia. Though widespread in Asia, it is considered rare in North America, where it is currently known from three widely separated locations in Québec, Oregon, and Alaska. We document the first report of this species from Alaska and from several new localities within south-central and southwestern Alaska. Collema leptaleum is a non-stratified, foliose cyanolichen distinguished by its multicellular, fusiform ascospores and a distinct exciple cell type. It is globally distributed, known most proximately from Kamchatka, Japan and eastern North America, but considered rare in Europe. It has not heretofore been reported from western North America. -
Lichen Traits and Species As Indicators of Vegetation and Environment
Lichen traits and species as indicators of vegetation and environment Nelson, P. R., McCune, B., & Swanson, D. K. (2015). Lichen traits and species as indicators of vegetation and environment. The Bryologist, 118(3), 252-263. doi:10.1639/0007-2745-118.3.252 10.1639/0007-2745-118.3.252 American Bryological and Lichenological Society Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Lichen traits and species as indicators of vegetation and environment Peter R. Nelson1,2,4, Bruce McCune1 and David K. Swanson3 1 2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A.; 2 Arts and Sciences Division, University of Maine-Fort Kent, 23 University Drive, Fort Kent, ME 04743, U.S.A.; 3 National Park Service 4175 Geist Road, Fairbanks, AK 99709, U.S.A. ABSTRACT. Lichens in the Arctic play important ecological roles. They also face the threats of increasing fire and shrub and tree expansion, exacerbated or caused by climate change. These forces may lead to changes not only in lichen community composition but also in the abundance, diversity and distribution of lichen functional traits. We sought to connect landscape-scale patterns of lichen community composition and traits to environmental gradients to both monitor lichen communities and clarify community-trait- environment relationships. We measured lichens throughout one of the largest and most remote U.S. National Parks within the Arctic. We then analyzed lichen community composition and species richness within ecologically informative lichen trait groups along environmental and vascular vegetation gradients. Macrolichen species richness in 0.4 ha plots averaged 41 species with a total landscape level observed gamma diversity of 262 macrolichen species. -
Extended Phylogeny and a Revised Generic Classification of The
The Lichenologist 46(5): 627–656 (2014) 6 British Lichen Society, 2014 doi:10.1017/S002428291400019X Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota) Stefan EKMAN, Mats WEDIN, Louise LINDBLOM and Per M. JØRGENSEN Abstract: We estimated phylogeny in the lichen-forming ascomycete family Pannariaceae. We specif- ically modelled spatial (across-site) heterogeneity in nucleotide frequencies, as models not incorpo- rating this heterogeneity were found to be inadequate for our data. Model adequacy was measured here as the ability of the model to reconstruct nucleotide diversity per site in the original sequence data. A potential non-orthologue in the internal transcribed spacer region (ITS) of Degelia plumbea was observed. We propose a revised generic classification for the Pannariaceae, accepting 30 genera, based on our phylogeny, previously published phylogenies, as well as available morphological and chemical data. Four genera are established as new: Austroparmeliella (for the ‘Parmeliella’ lacerata group), Nebularia (for the ‘Parmeliella’ incrassata group), Nevesia (for ‘Fuscopannaria’ sampaiana), and Pectenia (for the ‘Degelia’ plumbea group). Two genera are reduced to synonymy, Moelleropsis (included in Fuscopannaria) and Santessoniella (non-monophyletic; type included in Psoroma). Lepido- collema, described as monotypic, is expanded to include 23 species, most of which have been treated in the ‘Parmeliella’ mariana group. Homothecium and Leightoniella, previously treated in the Collemataceae, are here referred to the Pannariaceae. We propose 41 new species-level combinations in the newly described and re-circumscribed genera mentioned above, as well as in Leciophysma and Psoroma. Key words: Collemataceae, lichen taxonomy, model adequacy, model selection Accepted for publication 13 March 2014 Introduction which include c.