International Journal of Molecular Sciences Article Low Basal CB2R in Dopamine Neurons and Microglia Influences Cannabinoid Tetrad Effects 1, 2, 3 4 Qing-Rong Liu *, Ana Canseco-Alba y, Ying Liang , Hiroki Ishiguro and Emmanuel S. Onaivi 2,* 1 Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA 2 Department of Biology, William Paterson University, Wayne, NJ 07470, USA;
[email protected] 3 College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China;
[email protected] 4 Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan;
[email protected] * Correspondence:
[email protected] (Q.-R.L.);
[email protected] (E.S.O.) New address: Dirección de Investigación, Instituto Nacional de Neurología y Neurocirugía INNN, y Laboratorio de investigación en adicciones, La Fama, Tlalpan, Mexico City 14269, Mexico. Received: 1 November 2020; Accepted: 17 December 2020; Published: 21 December 2020 Abstract: There are two well-characterized cannabinoid receptors (CB1R and CB2R and other candidates): the central nervous system (CNS) enriched CB1R and peripheral tissue enriched CB2R with a wide dynamic range of expression levels in different cell types of human tissues. Hepatocytes and neurons express low baseline CB1R and CB2R, respectively, and their cell-type-specific functions are not well defined. Here we report inducible expression of CB1R in the liver by high-fat and high sugar diet and CB2R in cortical neurons by methamphetamine. While there is less controversy about hepatocyte CB1R, the presence of functional neuronal CB2R is still debated to date.