Titanium Biomaterials with Complex Surfaces Induced Aberrant Peripheral Circadian Rhythms in Bone Marrow Mesenchymal Stromal Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RBP-J Signaling − Cells Through Notch Novel IRF8-Controlled
Sca-1+Lin−CD117− Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch −RBP-J Signaling This information is current as of September 25, 2021. Xingxia Liu, Shaoda Ren, Chaozhuo Ge, Kai Cheng, Martin Zenke, Armand Keating and Robert C. H. Zhao J Immunol 2015; 194:4298-4308; Prepublished online 30 March 2015; doi: 10.4049/jimmunol.1402641 Downloaded from http://www.jimmunol.org/content/194/9/4298 Supplementary http://www.jimmunol.org/content/suppl/2015/03/28/jimmunol.140264 http://www.jimmunol.org/ Material 1.DCSupplemental References This article cites 59 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/194/9/4298.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Sca-1+Lin2CD1172 Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch–RBP-J Signaling Xingxia Liu,*,1 Shaoda Ren,*,1 Chaozhuo Ge,* Kai Cheng,* Martin Zenke,† Armand Keating,‡,x and Robert C. -
Single Cell Transcriptomics Reveal Temporal Dynamics of Critical Regulators of Germ Cell Fate During Mouse Sex Determination
bioRxiv preprint doi: https://doi.org/10.1101/747279; this version posted November 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Single cell transcriptomics reveal temporal dynamics of critical regulators of germ 2 cell fate during mouse sex determination 3 Authors: Chloé Mayère1,2, Yasmine Neirijnck1,3, Pauline Sararols1, Chris M Rands1, 4 Isabelle Stévant1,2, Françoise Kühne1, Anne-Amandine Chassot3, Marie-Christine 5 Chaboissier3, Emmanouil T. Dermitzakis1,2, Serge Nef1,2,*. 6 Affiliations: 7 1Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, 8 Switzerland; 9 2iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 10 Geneva, Switzerland; 11 3Université Côte d'Azur, CNRS, Inserm, iBV, France; 12 Lead Contact: 13 *Corresponding Author: Serge Nef, 1 rue Michel-Servet CH-1211 Genève 4, 14 [email protected]. + 41 (0)22 379 51 93 15 Running Title: Single cell transcriptomics of germ cells 1 bioRxiv preprint doi: https://doi.org/10.1101/747279; this version posted November 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abbreviations; 17 AGC: Adrenal Germ Cell 18 GC: Germ cell 19 OGC: Ovarian Germ Cell 20 TGC: Testicular Germ Cell 21 scRNA-seq: Single-cell RNA-Sequencing 22 DEG: Differentially Expressed Gene 23 24 25 Keywords: 26 Single-cell RNA-Sequencing (scRNA-seq), sex determination, ovary, testis, gonocytes, 27 oocytes, prospermatogonia, meiosis, gene regulatory network, germ cells, development, 28 RNA splicing 29 2 bioRxiv preprint doi: https://doi.org/10.1101/747279; this version posted November 2, 2020. -
Olig2 and Ngn2 Function in Opposition to Modulate Gene Expression in Motor Neuron Progenitor Cells
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells Soo-Kyung Lee,1 Bora Lee,1 Esmeralda C. Ruiz, and Samuel L. Pfaff2 Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA Spinal motor neurons and oligodendrocytes are generated sequentially from a common pool of progenitors termed pMN cells. Olig2 is a bHLH-class transcription factor in pMN cells, but it has remained unclear how its transcriptional activity is modulated to first produce motor neurons and then oligodendrocytes. Previous studies have shown that Olig2 primes pMN cells to become motor neurons by triggering the expression of Ngn2 and Lhx3. Here we show that Olig2 also antagonizes the premature expression of post-mitotic motor neuron genes in pMN cells. This blockade is counteracted by Ngn2, which accumulates heterogeneously in pMN cells, thereby releasing a subset of the progenitors to differentiate and activate expression of post-mitotic motor neuron genes. The antagonistic relationship between Ngn2 and Olig2 is mediated by protein interactions that squelch activity as well as competition for shared DNA-binding sites. Our data support a model in which the Olig2/Ngn2 ratio in progenitor cells serves as a gate for timing proper gene expression during the development of pMN cells: Olig2high maintains the pMN state, thereby holding cells in reserve for oligodendrocyte generation, whereas Ngn2high favors the conversion of pMN cells into post-mitotic motor neurons. [Keywords: Motor neuron; oligodendrocyte; development; basic helix–loop–helix (bHLH); neurogenin (Ngn); Olig] Supplemental material is available at http://www.genesdev.org. -
UNIVERSITY of CALIFORNIA Los Angeles
UNIVERSITY OF CALIFORNIA Los Angeles Circadian Gene Networks In Bone Regeneration A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Oral Biology by Nathaniel Raphael Hassan 2012 ABSTRACT OF THESIS Circadian Gene Networks In Bone Regeneration By Nathaniel Raphael Hassan Master of Science in Oral Biology University of California, Los Angeles, 2012 Professor Ichiro Nishimura, Chair BACKGROUND: Previous studies suggested that vitamin D played a significant role in bone regeneration, facilitating the establishment of implant osseointegration. A whole genome microarray study further suggested that the vitamin D axis might involve circadian rhythm gene expression in the bone peripheral tissue. OBJECTIVES: To identify key gene networks involved with vitamin D receptor in the bone regeneration process and to explore any correlation with circadian rhythm gene expression in bone marrow mesenchymal stromal/stem cells (BMSC). METHODS: The available whole gene microarray data was analyzed using the weighted gene correlation network analysis (WGCNA) R package and Cytoscape software. Any gene expression correlation was examined for vitamin D receptor (VDR) as well as circadian rhythm ii genes. Separately, Per 1 luciferase transgenic Wistar rats were then applied for in vitro evaluation on BMSC circadian rhythm. Per1::luc BMSCs were seeded on 35mm dishes and forskolin-synchronized luminescence was recorded across different media conditions. The recording media included growth medium containing F12 (10% Fetal Bovine Serum, 1% Pen- Strep and antibiotic) supplemented with or without 1 nM 1,25D. Luminescence was also recorded in F12 growth medium containing bone differentiation factors (beta glycerophosphate, Ascorbic acid and Dexamethasone) supplemented with 0, 1 or 10 nM 1,25D. -
NPAS2 As a Transcriptional Regulator of Non-Rapid Eye Movement Sleep: Genotype and Sex Interactions
NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: Genotype and sex interactions Paul Franken*†‡, Carol A. Dudley§, Sandi Jo Estill§, Monique Barakat*, Ryan Thomason¶, Bruce F. O’Hara¶, and Steven L. McKnight‡§ §Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; *Department of Biological Sciences, Stanford University, Stanford, CA 94305; ¶Department of Biology, University of Kentucky, Lexington, KY 40506; and †Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne-Dorigny, Switzerland Contributed by Steven L. McKnight, March 13, 2006 Because the transcription factor neuronal Per-Arnt-Sim-type sig- delta frequency range is a sensitive marker of time spent awake (4, nal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor 7) and local cortical activation (8) and is therefore widely used as and an effector of intracellular energy balance, and because sleep an index of NREMS need and intensity. is thought to correct an energy imbalance incurred during waking, The PAS-domain proteins, CLOCK, BMAL1, PERIOD-1 we examined NPAS2’s role in sleep homeostasis using npas2 (PER1), and PER2, play crucial roles in circadian rhythm gener- knockout (npas2؊/؊) mice. We found that, under conditions of ation (9). The NPAS2 paralog CLOCK, like NPAS2, can induce the increased sleep need, i.e., at the end of the active period or after transcription of per1, per2, cryptochrome-1 (cry1), and cry2. PER and sleep deprivation (SD), NPAS2 allows for sleep to occur at times CRY proteins, in turn, inhibit CLOCK- and NPAS2-induced when mice are normally awake. Lack of npas2 affected electroen- transcription, thereby closing a negative-feedback loop that is cephalogram activity of thalamocortical origin; during non-rapid thought to underlie circadian rhythm generation. -
Landscape of Transcriptional Deregulation in Lung Cancer Shu Zhang1,2,3,4, Mingfa Li1, Hongbin Ji2,3,4,5* and Zhaoyuan Fang2,3,4,6*
Zhang et al. BMC Genomics (2018) 19:435 https://doi.org/10.1186/s12864-018-4828-1 RESEARCHARTICLE Open Access Landscape of transcriptional deregulation in lung cancer Shu Zhang1,2,3,4, Mingfa Li1, Hongbin Ji2,3,4,5* and Zhaoyuan Fang2,3,4,6* Abstract Background: Lung cancer is a very heterogeneous disease that can be pathologically classified into different subtypes including small-cell lung carcinoma (SCLC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and large-cell carcinoma (LCC). Although much progress has been made towards the oncogenic mechanism of each subtype, transcriptional circuits mediating the upstream signaling pathways and downstream functional consequences remain to be systematically studied. Results: Here we trained a one-class support vector machine (OC-SVM) model to establish a general transcription factor (TF) regulatory network containing 325 TFs and 18724 target genes. We then applied this network to lung cancer subtypes and identified those deregulated TFs and downstream targets. We found that the TP63/SOX2/ DMRT3 module was specific to LUSC, corresponding to squamous epithelial differentiation and/or survival. Moreover, the LEF1/MSC module was specifically activated in LUAD and likely to confer epithelial-to-mesenchymal transition, known important for cancer malignant progression and metastasis. The proneural factor, ASCL1, was specifically up-regulated in SCLC which is known to have a neuroendocrine phenotype. Also, ID2 was differentially regulated between SCLC and LUSC, with its up-regulation in SCLC linking to energy supply for fast mitosis and its down-regulation in LUSC linking to the attenuation of immune response. We further described the landscape of TF regulation among the three major subtypes of lung cancer, highlighting their functional commonalities and specificities. -
The E–Id Protein Axis Modulates the Activities of the PI3K–AKT–Mtorc1
Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1– Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis Masaki Miyazaki,1,8 Kazuko Miyazaki,1,8 Shuwen Chen,1 Vivek Chandra,1 Keisuke Wagatsuma,2 Yasutoshi Agata,2 Hans-Reimer Rodewald,3 Rintaro Saito,4 Aaron N. Chang,5 Nissi Varki,6 Hiroshi Kawamoto,7 and Cornelis Murre1 1Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan; 3Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; 4Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA; 5Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA; 6Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 7Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naı¨ve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. -
Isolation and Characterisation of Lymphatic Endothelial Cells From
www.nature.com/scientificreports OPEN Isolation and characterisation of lymphatic endothelial cells from lung tissues afected by lymphangioleiomyomatosis Koichi Nishino1,2*, Yasuhiro Yoshimatsu3,4, Tomoki Muramatsu5, Yasuhito Sekimoto1,2, Keiko Mitani1,2, Etsuko Kobayashi1,2, Shouichi Okamoto1,2, Hiroki Ebana1,2,6,7, Yoshinori Okada8, Masatoshi Kurihara2,6, Kenji Suzuki9, Johji Inazawa5, Kazuhisa Takahashi1, Tetsuro Watabe3 & Kuniaki Seyama1,2 Lymphangioleiomyomatosis (LAM) is a rare pulmonary disease characterised by the proliferation of smooth muscle-like cells (LAM cells), and an abundance of lymphatic vessels in LAM lesions. Studies reported that vascular endothelial growth factor-D (VEGF-D) secreted by LAM cells contributes to LAM-associated lymphangiogenesis, however, the precise mechanisms of lymphangiogenesis and characteristics of lymphatic endothelial cells (LECs) in LAM lesions have not yet been elucidated. In this study, human primary-cultured LECs were obtained both from LAM-afected lung tissues (LAM-LECs) and normal lung tissues (control LECs) using fuorescence-activated cell sorting (FACS). We found that LAM-LECs had signifcantly higher ability of proliferation and migration compared to control LECs. VEGF-D signifcantly promoted migration of LECs but not proliferation of LECs in vitro. cDNA microarray and FACS analysis revealed the expression of vascular endothelial growth factor receptor (VEGFR)-3 and integrin α9 were elevated in LAM-LECs. Inhibition of VEGFR-3 suppressed proliferation and migration of LECs, and blockade of integrin α9 reduced VEGF-D-induced migration of LECs. Our data uncovered the distinct features of LAM-associated LECs, increased proliferation and migration, which may be due to higher expression of VEGFR-3 and integrin α9. Furthermore, we also found VEGF-D/VEGFR-3 and VEGF-D/ integrin α9 signaling play an important role in LAM-associated lymphangiogenesis. -
The First Genome-Wide View of Vitamin D Receptor Locations and Their Mechanistic Implications
ANTICANCER RESEARCH 32: 271-282 (2012) Review The First Genome-wide View of Vitamin D Receptor Locations and Their Mechanistic Implications CARSTEN CARLBERG1, SABINE SEUTER2 and SAMI HEIKKINEN1 1Department of Biosciences, University of Eastern Finland, Kuopio, Finland; 2Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg Abstract. The transcription factor vitamin D receptor Physiological Impact of Vitamin D (VDR) is the nuclear sensor for the biologically most active in the Immune System metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). The physiological actions of the VDR and Vitamin D is a micronutrient which under ultraviolet (UV) its ligand are not only the well-known regulation of calcium radiation can also be produced in the skin (1). The most and phosphorus uptake and transport controlling bone abundant form of vitamin D is its liver hydroxylation product formation, but also their significant involvement in the 25-hydroxyvitamin D3 (25(OH)D3), serum concentrations of control of immune functions and of cellular growth and which indicate the vitamin D status of the human individual differentiation. For a general understanding of the (2). The biologically most active vitamin D metabolite is mechanisms of 1α,25(OH)2D3 signaling, it is essential to obtained from further hydroxylation of 25(OH)D3 in the monitor the genome-wide location of VDR in relation to kidney to 1α,25(OH)2D3 (3). Interestingly, the hydroxylation primary 1α,25(OH)2D3 target genes. Within the last months, of vitamin D can also take place in other tissues and a few of two chromatin immunoprecipitation sequencing (ChIP-Seq) them, such as keratinocytes and macrophages, have the studies using cells of the hematopoietic system, capacity for the full conversion of vitamin D to lymphoblastoids and monocytes, were published. -
Active Estrogen Receptor-Alpha Signaling in Ovarian Cancer Models and Clinical Specimens
Author Manuscript Published OnlineFirst on January 10, 2017; DOI: 10.1158/1078-0432.CCR-16-1501 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Active estrogen receptor-alpha signaling in ovarian cancer models and clinical specimens Courtney L. Andersen1,2,3,12, Matthew J. Sikora1,3, Michelle M. Boisen3,4, Tianzhou Ma5, Alec Christie3, George Tseng5, Yongseok Park5, Soumya Luthra6, Uma Chandran6, Paul Haluska7, Gina M. Mantia- Smaldone8, Kunle Odunsi9, Karen McLean10, Adrian V. Lee1,3, Esther Elishaev11, Robert P. Edwards4, Steffi Oesterreich1,2,3 Affiliations: 1Department of Pharmacology & Chemical Biology, University of Pittsburgh; 2Molecular Pharmacology Training Program, University of Pittsburgh; 3Women’s Cancer Research Center, University of Pittsburgh Cancer Institute; 4Department of Obstetrics, Gynecology, & Reproductive Sciences, Magee- Womens Hospital of UPMC; 5Department of Biostatistics, University of Pittsburgh; 6Department of Biomedical Informatics, University of Pittsburgh; 7Oncology, Merck Research Laboratories; 8Department of Surgical Oncology, Fox Chase Cancer Center; 9Department of Gynecologic Oncology, Roswell Park Cancer Institute; 10Division of Gynecologic Oncology, University of Michigan; 11Department of Pathology, Magee- Womens Hospital of UPMC; 12Present address: IMED Oncology, AstraZeneca Corresponding Author: Steffi Oesterreich, PhD.: B411 Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Magee-Womens Research Institute, 204 Craft -
Melatonin Synthesis and Clock Gene Regulation in the Pineal Organ Of
General and Comparative Endocrinology 279 (2019) 27–34 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review article Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences T ⁎ Saurav Saha, Kshetrimayum Manisana Singh, Braj Bansh Prasad Gupta Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India ARTICLE INFO ABSTRACT Keywords: The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian Aanat gene rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) – the rate-limiting enzyme in melatonin Circadian rhythm synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased ex- Clock genes pression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In Melatonin synthesis mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, Pineal organ and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the Photoperiod fi Temperature nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the sh pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland. -
Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2
Review Biomol Ther 26(4), 358-367 (2018) Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2 Mikyung Kim, June Bryan de la Peña, Jae Hoon Cheong and Hee Jin Kim* Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea Abstract Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS. Key Words: Circadian rhythm, Per2 gene, Sleep, Depression, Addiction, Neurotransmitter INTRODUCTION and lives in organisms because it can impart effects from the level of cells to organs including the brain. Thus, it is neces- A circadian rhythm is any physiological process that displays sary to understand clock-related genes that are controlling the a roughly 24 hour cycle in living beings, such as mammals, circadian rhythm endogenously. plants, fungi and cyanobacteria (Albrecht, 2012). In organ- The Period2 (Per2) gene is a member of the Period family isms, most biological functions such as sleeping and feeding of genes consisting of Per1, Per2, and Per3, and is mainly patterns are adapted to the circadian rhythm.