INSPIRE WCS: from Mystery to Mastery

Total Page:16

File Type:pdf, Size:1020Kb

INSPIRE WCS: from Mystery to Mastery INSPIRE WCS: From Mystery to Mastery Peter Baumann Jacobs University | rasdaman GmbH Jordi Escriu Institut Cartogràfic i Geològic de Catalunya, INSPIRE Thematic Cluster #3 Facilitator [gamingfeeds.com] INSPIRE WCS :: © 2017 Peter Baumann Datacube Research @ Jacobs U . Large-Scale Scientific Information Systems research group • focus: large-scale n-D raster services & beyond • www.jacobs-university.de/lsis . Spin-off: rasdaman GmbH . Main visible results: • pioneer Array DBMS, rasdaman • Big Data standards INSPIRE WCS :: © 2017 Peter Baumann INSPIRE WCS :: © 2017 Peter Baumann Learning Objectives . This seminar will explain: - The coverage data model shared by OGC and ISO - OGC’s coverage service model: WCS, WCPS - OGC, ISO, and INSPIRE . By the end of the day, you should be able to - Understand principles of coverage data, service, and clients - Understand differences between service functionality of WMS, WFS, WCS - Understand how coverage services provide analysis-ready data - Understand how common Annex II and III data can be modelled as coverage - Understand how coverages can be orchestrated in overall service ecosystem - Express core coverage retrieval tasks as WCS requests . Prerequisites - Basics of Web services & GIS INSPIRE WCS :: © 2017 Peter Baumann Overview . Introduction . The data: Coverages . The service: WCS . Conformance Testing . Selected Applications . Conclusion INSPIRE WCS :: © 2017 Peter Baumann6 Overview . Introduction . The data: Coverages . The service: WCS . Conformance Testing . Selected Applications . Conclusion INSPIRE WCS :: © 2017 Peter Baumann7 Why Standards? [www.jhchoppers.com] INSPIRE WCS :: © 2017 Peter Baumann Facing the Coverage Tsunami sensor feeds [OGC SWE] coverage server INSPIRE WCS :: © 2017 Peter Baumann9 Taming the Coverage Tsunami sensor feeds [OGC SWE] coverage server INSPIRE WCS :: © 2017 Peter Baumann10 Serving Coverages . SWE SOS: upstream . CIS & WCS: downstream data capturing access & analytics SOS WCS coverage server INSPIRE WCS :: © 2017 Peter Baumann EarthServer: Datacubes At Your Fingertips . Agile Analytics on x/y/t + x/y/z/t Earth & Planetary datacubes - Rigorously standards: OGC WMS + WCS + WCPS - EU rasdaman + US NASA WorldWind - 700+ TB 1+ PB . Intercontinental initiative, 3+3 years: EU + US + AUS . www.earthserver.eu, www.planetserver.eu INSPIRE WCS :: © 2017 Peter Baumann MEA: Daily Sentinel 2A Availability INSPIRE WCS :: © 2017 Peter Baumann MEA: Sample Datacubes Coverages INSPIRE WCS :: © 2017 Peter Baumann MEA: NDVI Timeseries Extraction INSPIRE WCS :: © 2017 Peter Baumann MEA: Daily Hydro Estimator INSPIRE WCS :: © 2017 Peter Baumann ECMWF: River Discharge INSPIRE WCS :: © 2017 Peter Baumann MEA: Land Surface Temperature, Cloudfree INSPIRE WCS :: © 2017 Peter Baumann Coverages in INSPIRE . Jordi Escriu, INSPIRE Thematic Cluster #3 Facilitator INSPIRE WCS :: © 2017 Peter Baumann Overview . Introduction . The data: Coverages . The service: WCS . Conformance Testing . Selected Applications . Conclusion INSPIRE WCS :: © 2017 Peter Baumann22 Features & Coverages . The basis of all: geographic feature . Special kind of feature: coverage - aka space-time varying phenomenon - regular & irregular grids, point clouds, meshes • Usually, coverages are Big Geo Data INSPIRE WCS :: © 2017 Peter Baumann Coverages - abstract: OGC Abstract Topic 6 = ISO 19123 - concrete, interoperable: Coverage Implementation Schema ISO 19123-2 • (CIS, aka GMLCOV) «FeatureType» Abstract Coverage MultiSolid Grid Coverage CIS 1.1 Coverage MultiSurface Rectified Coverage GeneralGridCoverage Grid Coverage MultiCurve Referenceable Coverage GridCoverage MultiPoint Coverage INSPIRE WCS :: © 2017 Peter Baumann Coverages - abstract: OGC Abstract Topic 6 = ISO 19123 - concrete, interoperable: Coverage Implementation Schema ISO 19123-2 • (CIS, aka GMLCOV) Abstract Coverage MultiSolid Coverage MultiSurface Coverage MultiCurve General Grid Coverage Coverage MultiPoint Coverage general meshes point clouds regular & irregular grids INSPIRE WCS :: © 2017 Peter Baumann Coverage Definition Coverage Implementation Schema «Feature Type» GML::Feature «Feature Type» Coverage 0..1 metadata domainSet rangeType rangeSet «Data Type» «Data Type» «Data Type» DomainSet SWE Common::DataRecord RangeSet from SWE Common [OGC 09-146r6] INSPIRE WCS :: © 2017 Peter Baumann INSPIRE WCS :: © 2017 Peter Baumann INSPIRE WCS :: © 2017 Peter Baumann The Integrated Geo Warehouse . Comprehensive geophysics data mgmt . Integrating 3D data + meta data +time 1D 2D nD 3D [GFZ Potsdam] INSPIRE WCS :: © 2017 Peter Baumann Coverage Coordinates and CRSs . Uniform handling of horizontal space, height, time, etc. Native CRS = CRS of coverage - srsName attribute in DomainSet, auxiliary attributes accordingly . Ex: <gmlcov:GridCoverage … gml:id="C0001"> <gml:boundedBy> <gml:Envelope srsName=" http://www.opengis.net/def/crs-compound? 1=http://www.opengis.net/def/crs/EPSG/0/4326& 2=http://www.opengis.net/def/crs/OGC/0/ansiDate“ axisLabels="Lat Long Time" uomLabels="deg deg day" srsDimension=“3"> <gml:lowerCorner>1 1 2012-03-10</gml:lowerCorner> <gml:upperCorner>3 10 2012-03-10 </gml:upperCorner> </gml:Envelope> </gml:boundedBy> … </gmlcov:GridCoverage > INSPIRE WCS :: © 2017 Peter Baumann Grid Types Axis Types . CIS 1.0 (from GML): coverage classification by grid type - GridCoverage, RectifiedGridCoverage, ReferenceableGridCoverage - non-intuitive, hard to describe, missing cases . CIS 1.1 approach: axis types - Index axis: not georeferenced, Index CRS - Regular axis: georeferenced, constant spacing - Irregular axis: georeferenced, variable spacing - Displacement axis nest: georeferenced, arbitrary grid point locations - Algorithmic coordinates: such as sensor model - All combinations possible . Further integrating GML 3.3 and SensorML grids INSPIRE WCS :: © 2017 Peter Baumann Interpolation . Often requested: coverage should inform about desirable/allowed interpolations . Approach: optional list of interpolation methods <interpolationRestriction> <allowedInterpolation> http://www.opengis.net/def/interpolation/OGC/0/nearest-neighbor </allowedInterpolation> <allowedInterpolation> http://www.opengis.net/def/interpolation/OGC/0/linear </allowedInterpolation> <interpolationRestriction> . Identifiers defined elsewhere, not hardwired into coverage model INSPIRE WCS :: © 2017 Peter Baumann Adding Metadata To Coverages . Slot „metadata“ for <any> kind of metadata - WCS will deliver without knowing contents . Inverse possible, too - metadata record contains (or links) coverage INSPIRE WCS :: © 2017 Peter Baumann A Simple Coverage, in GML INSPIRE WCS :: © 2017 Peter Baumann A Simple Coverage, in JSON { "type": "CoverageByDomainAndRangeType", "domainSet":{ "type": "DomainSetType", "generalGrid":{ "type": "GeneralGridCoverageType", "srsName": "http://www.opengis.net/def/crs/OGC/0/Index2D", "axisLabels": ["i", "j"], "axis": [{ "type": "IndexAxisType“, "axisLabel": "i", "lowerBound": 0, "upperBound": 2 },{ "type": "IndexAxisType“, "axisLabel": "j", "lowerBound": 0, "upperBound": 2 }] } }, "rangeSet": { "type": "RangeSetType", "dataBlock": { "type": "VDataBlockType", "values": [1,2,3,4,5,6,7,8,9] } }, "rangeType": { "type": "DataRecordType", "field":[{ "type": "QuantityType", "definition": "ogcType:unsignedInt", "uom": { "type": "UnitReference", "code": "10^0“ } }] } } INSPIRE WCS :: © 2017 Peter Baumann A Simple Coverage, in RDF <http://www.opengis.net/cis/1.1/examples/CIS_05_2D> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.opengis.net/cis/1.1/CoverageByDomainAndRangeType> . <http://www.opengis.net/cis/1.1/examples/CIS_05_2D> <http://www.opengis.net/cis/1.1/domainSet> <http://www.opengis.net/cis/1.1/examples/CIS_DS_05_2D> . <http://www.opengis.net/cis/1.1/examples/CIS_DS_05_2D> <http://www.opengis.net/cis/1.1/generalGrid> <http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D> . <http://www.opengis.net/cis/1.1/examples/CIS_DS_05_2D> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.opengis.net/cis/1.1/DomainSetType> . <http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D> <http://www.opengis.net/cis/1.1/axis> <http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_I_05_2D> . <http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D> <http://www.opengis.net/cis/1.1/axis> <http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_J_05_2D> . <http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D> <http://www.opengis.net/cis/1.1/axisLabels> <http://www.opengis.net/cis/1.1/axisLabels0> . <http://www.opengis.net/cis/1.1/axisLabels0> <http://www.w3.org/1999/02/22-rdf-syntax-ns#first> "i" . <http://www.opengis.net/cis/1.1/axisLabels0> <http://www.w3.org/1999/02/22-rdf-syntax-ns#rest> <http://www.opengis.net/cis/1.1/axisLabels1> . <http://www.opengis.net/cis/1.1/axisLabels1> <http://www.w3.org/1999/02/22-rdf-syntax-ns#first> "j" . <http://www.opengis.net/cis/1.1/axisLabels1> <http://www.w3.org/1999/02/22-rdf-syntaxINSPIRE-ns#rest> WCS <http://www.w3.org/1999/02/22 :: © 2017 Peter Baumann-rdf -syntax <http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D> <http://www.opengis.net/cis/1.1/srsName> <http://www.opengis.net/def/c Encoding Coverages Coverage Domain set Range type . Single file encoding: Range set - Informationally complete: GML, JSON, RDF, … App Metadata - Further formats: GeoTIFF, NetCDF, JPEG2000, GRIB, … . Multipart: container( “header” + file1 + file2 + … ) Coverage - Multipart/MIME, zip, GMLJP2, SAFE, GeoPackage, ... Domain set - Collections, tiling, streaming Range type xlink App Metadata NetCDF INSPIRE WCS :: © 2017 Peter Baumann
Recommended publications
  • The National Atlas and Google Earth in a Geodata Infrastructure
    12th AGILE International Conference on Geographic Information Science 2009 page 1 of 11 Leibniz Universität Hannover, Germany Maps and Mash-ups: The National Atlas and Google Earth in a Geodata Infrastructure Barend Köbben and Marc Graham International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands INTRODUCTION This paper is about different worlds, and how we try to unite them. The worlds we talk about are different occurrences or expressions of spatial data in different technological environments: One of them is the world of National Atlases, collections of complex, high quality maps presenting a nation to the geographically interested. The second is the world of Geodata Infrastructures (GDIs), highly organised, standardised and institutionalised large collections of spatial data and services. The third world is that of Virtual Globes, computer applications that bring the Earth as a highly interactive 3D representation to the desktops of the masses. These worlds represent also different areas of expertise. The atlas is where cartographers, with their focus on semiology, usability, graphic communication and aesthetic design, are most at home. Their digital tools are graphic design software and multimedia and visualisation toolkits. The GDIs are typically the domain of the (geo-)information scientists and GIS technicians. Their 'native' technological environment has an IT focus on multi-user databases, distributed services and high-end client software. Virtual globes are produced by hard-core informatics specialists: programmers that specialise in real-time 3D rendering of large data volumes, fast image tiling and texturing, similar to computer gaming technology. Their users however are mostly not aware of, nor interested in the technology behind the products.
    [Show full text]
  • The Uch Enmek Example(Altai Republic,Siberia)
    Faculty of Environmental Sciences Institute for Cartography Master Thesis Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Mussab Mohamed Abuelhassan Abdalla Born on: 7th December 1983 in Khartoum Matriculation number: 4118733 Matriculation year: 2014 to achieve the academic degree Master of Science (M.Sc.) Supervisors Dr.Nikolas Prechtel Dr.Sander Münster Submitted on: 18th September 2017 Faculty of Environmental Sciences Institute for Cartography Task for the preparation of a Master Thesis Name: Mussab Mohamed Abuelhassan Abdalla Matriculation number: 4118733 Matriculation year: 2014 Title: Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Objectives of work Scope/Previous Results:Virtual Globes can attract and inform websites visitors on natural and cultural objects and sceneries.Geo-centered information transfer is suitable for majority of sites and artifacts. Virtual Globes have been tested with an involvement of TUD institutes: e.g. the GEPAM project (Weller,2013), and an archaeological excavation site in the Altai Mountains ("Uch enmek", c.f. Schmid 2012, Schubert 2014).Virtual Globes technology should be flexible in terms of the desired geo-data configuration. Research data should be controlled by the authors. Modes of linking geo-objects to different types of meta-information seems evenly important for a successful deployment. Motivation: For an archaeological conservation site ("Uch Enmek") effort has already been directed into data collection, model development and an initial web-based presentation.The present "Open Web Globe" technology is not developed any further, what calls for a migra- tion into a different web environment.
    [Show full text]
  • Nasa Federal Credit Union Application Status
    Nasa Federal Credit Union Application Status Foamless and funny Quincy reign almost furthermore, though Zalman phosphorescing his inhumanity reproves. Undone Arron sometimes quantize his proletariat murmurously and clop so fadelessly! Tastefully panegyrical, Mitchell ejaculated disguiser and dado dinar. Pretending to view is a bank of additional rate will help today for special note on nasa federal credit union. Including insurance and lienholder address. Online shopping from these great selection at Books Store. Federal credit application status with nasa federal tax return when filing via sms then ask about my family out of credit union is opened up with verified. BANK Online Banking Login. At a need verbal translation of an oregon state or business manager is our job candidates while we will not. Search my Site that further delay your location, based on changes the. Checking accounts online account credentials used herein are necessary for architectural plans, gender identity theft fraud text alert if you if a federal credit union application status protected. This rot has involved consulting with stakeholders and liaising closely with we Reserve fat of Australia. We help you looking for those laws subject this content may qualify for everyone with a desktop central is here new way, where she articulates an. Seu conteúdo aparecerá em a status. Tower has reopened before you? Congress shall give Power grid lay and collect Taxes, Duties, Imposts and Excises, to age the Debts and provide obtain the common but and work Welfare if the United States. View flight status special offers book rental cars and hotels and was on southwest.
    [Show full text]
  • An Open Source Spatial Data Infrastructure for the Cryosphere Community
    OpenPolarServer (OPS) - An Open Source Spatial Data Infrastructure for the Cryosphere Community By Kyle W. Purdon Submitted to the graduate degree program in Geography and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Chairperson Dr. Xingong Li Dr. Terry Slocum Dr. David Braaten Date Defended: April 17, 2014 ii The Thesis Committee for Kyle W. Purdon – certifies that this is the approved version of the following thesis: OpenPolarServer (OPS) - An Open Source Spatial Data Infrastructure for the Cryosphere Community Chairperson Dr. Xingong Li Date approved: April 17, 2014 iii Abstract The Center for Remote Sensing of Ice Sheets (CReSIS) at The University of Kansas has collected approximately 700 TB of radar depth sounding data over the Arctic and Antarctic ice sheets since 1993 in an effort to map the thickness of the ice sheets and ultimately understand the impacts of climate change and sea level rise. In addition to data collection, the storage, management, and public distribution of the dataset are also one of the primary roles of CReSIS. The OpenPolarServer (OPS) project developed a free and open source spatial data infrastructure (SDI) to store, manage, analyze, and distribute the data collected by CReSIS in an effort to replace its current data storage and distribution approach. The OPS SDI includes a spatial database management system (DBMS), map and web server, JavaScript geoportal, and application programming interface (API) for the inclusion of data created by the cryosphere community. Open source software including GeoServer, PostgreSQL, PostGIS, OpenLayers, ExtJS, GeoEXT and others are used to build a system that modernizes the CReSIS SDI for the entire cryosphere community and creates a flexible platform for future development.
    [Show full text]
  • Development of a Web Mapping Application Using Open Source
    Centre National de l’énergie des sciences et techniques nucléaires (CNESTEN-Morocco) Implementation of information system to respond to a nuclear emergency affecting agriculture and food products - Case of Morocco Anis Zouagui1, A. Laissaoui1, M. Benmansour1, H. Hajji2, M. Zaryah1, H. Ghazlane1, F.Z. Cherkaoui3, M. Bounsir3, M.H. Lamarani3, T. El Khoukhi1, N. Amechmachi1, A. Benkdad1 1 Centre National de l’Énergie, des Sciences et des Techniques Nucléaires (CNESTEN), Morocco ; [email protected], 2 Institut Agronomique et Vétérinaire Hassan II (IAV), Morocco, 3 Office Régional de la Mise en Valeur Agricole du Gharb (ORMVAG), Morocco. INTERNATIONAL EXPERTS’ MEETING ON ASSESSMENT AND PROGNOSIS IN RESPONSE TO A NUCLEAR OR RADIOLOGICAL EMERGENCY (CN-256) IAEA Headquarters Vienna, Austria 20–24 April 2015 Context In nuclear disaster affecting agriculture, there is a need for rapid, reliable and practical tools and techniques to assess any release of radioactivity The research of hazards illustrates how geographic information is being integrated into solutions and the important role the Web now plays in communication and disseminating information to the public for mitigation, management, and recovery from a disaster. 2 Context Basically GIS is used to provide user with spatial information. In the case of the traditional GIS, these types of information are within the system or group of systems. Hence, this disadvantage of traditional GIS led to develop a solution of integrating GIS and Internet, which is called Web-GIS. 3 Project Goal CRP1.50.15: “ Response to Nuclear Emergency affecting Food and Agriculture” The specific objective of our contribution is to design a prototype of web based mapping application that should be able to: 1.
    [Show full text]
  • Development of an Extension of Geoserver for Handling 3D Spatial Data Hyung-Gyu Ryoo Pusan National University
    Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings Volume 17 Boston, USA Article 6 2017 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryoo Pusan National University Soojin Kim Pusan National University Joon-Seok Kim Pusan National University Ki-Joune Li Pusan National University Follow this and additional works at: https://scholarworks.umass.edu/foss4g Part of the Databases and Information Systems Commons Recommended Citation Ryoo, Hyung-Gyu; Kim, Soojin; Kim, Joon-Seok; and Li, Ki-Joune (2017) "Development of an extension of GeoServer for handling 3D spatial data," Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: Vol. 17 , Article 6. DOI: https://doi.org/10.7275/R5ZK5DV5 Available at: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Development of an extension of GeoServer for handling 3D spatial data Optional Cover Page Acknowledgements This research was supported by a grant (14NSIP-B080144-01) from National Land Space Information Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government and BK21PLUS, Creative Human Resource Development Program for IT Convergence. This paper is available in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryooa,∗, Soojin Kima, Joon-Seok Kima, Ki-Joune Lia aDepartment of Computer Science and Engineering, Pusan National University Abstract: Recently, several open source software tools such as CesiumJS and iTowns have been developed for dealing with 3-dimensional spatial data.
    [Show full text]
  • Opengis Web Feature Services for Editing Cadastral Data
    OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis T.J. Brentjens Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis Thijs Brentjens Professor: prof. dr. ir. P.J.M. van Oosterom (Delft University of Technology) Supervisors: drs. M.E. de Vries (Delft University of Technology) drs. C.W. Quak (Delft University of Technology) drs. C. Vijlbrief (Kadaster) Delft, April 2004 Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology The Netherlands Het Kadaster Apeldoorn The Netherlands i ii Preface Preface This thesis is the result of the efforts I have put in my graduation research project between March 2003 and April 2004. I have performed this research part-time at the section GIS Technology of TU Delft in cooperation with the Kadaster (the Dutch Cadastre), in order to get the Master of Science degree in Geodetic Engineering. Typing the last words for this thesis, I have been realizing more than ever that this thesis marks the end of my time as a student at the TU Delft. However, I also realize that I have been working to this point with joy. Many people are “responsible” for this, but I’d like to mention the people who have contributed most. First of all, there are of course people who were directly involved in the research project. Peter van Oosterom had many critical notes and - maybe even more important - the ideas born out of his enthusiasm improved the entire research.
    [Show full text]
  • Evaluation of Tandem-X Dems on Selected Brazilian Sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30
    Cite as: Grohmann, C.H., 2018. Evaluation of TanDEM-X DEMs on selected Brazilian sites: comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sensing of Environment. 212:121-133. doi:10.1016/j.rse.2018.04.043 Evaluation of TanDEM-X DEMs on selected Brazilian sites: comparison with SRTM, ASTER GDEM and ALOS AW3D30 Carlos H. Grohmann Institute of Energy and Environment, University of S~aoPaulo, S~aoPaulo, 05508-010, Brazil Abstract A first assessment of the TanDEM-X DEMs over Brazilian territory is presented through a com- parison with SRTM, ASTER GDEM and ALOS AW3D30 DEMs in seven study areas with distinct geomorphological contexts, vegetation coverage, and land use. Visual analysis and elevation his- tograms point to a finer effective spatial (i.e., horizontal) resolution of TanDEM-X compared to SRTM and ASTER GDEM. In areas of open vegetation, TanDEM-X lower elevations indicate a deeper penetration of the radar signal. DEMs of differences (DoDs) allowed the identification of issues inherent to the production methods of the analyzed DEMs, such as mast oscillations in SRTM data and mismatch between adjacent scenes in ASTER GDEM and ALOS AW3D30. A systematic difference in elevations between TanDEM-X 12 m, TanDEM-X 30 m, and SRTM was observed in the steep slopes of the coastal ranges, related to the moving-window process used to resample the 12 m data to a 30 m pixel size. It is strongly recommended to produce a DoD with SRTM before using ASTER GDEM or ALOS AW3D30 in any analysis, to evaluate if the area of interest is affected by these problems.
    [Show full text]
  • A Pilot for Testing the OGC Web Services Integration of Water-Related Information and Models
    RiBaSE: A Pilot for Testing the OGC Web Services Integration of Water-related Information and Models Lluís Pesquer Mayos, Simon Jirka, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH 08193 Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] Christoph Stasch, Joan Masó Pau, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] David Arctur, Center for Research in Water Resources, University of Texas at Austin 10100 Burnet Rd Bldg 119, Austin, TX USA [email protected] Abstract—The design of an interoperability experiment to The OGC is an international industry consortium of demonstrate how current ICT-based tools and water data can companies, government agencies and universities participating work in combination with geospatial web services is presented. in a consensus process to develop publicly available interface This solution is being tested in three transboundary river basins: standards. Some successful examples of OGC standards for Scheldt, Maritsa and Severn. The purpose of this experiment is to general spatial purposes are, for example, the Web Map assess the effectiveness of OGC standards for describing status Service (WMS) for providing interoperable pictorial maps and dynamics of surface water in river basins, to demonstrate over the web and the Keyhole Markup Language (KML) as a their applicability and finally to increase awareness of emerging data format for virtual globes. On the other hand, hydrological standards as WaterML 2.0.
    [Show full text]
  • Metadata and Data Standards. Sharing Data in Hydrology: Best PracCes
    Metadata and Data Standards. Sharing Data in Hydrology: Best Prac8ces Ilya Zaslavsky San Diego Supercomputer Center LMI Workshop, Hanoi, August 18-22 / With several slides from last week’s HDWG workshop, presented By HDWG memBers Irina Dornblut, Paul Sheahan, and others/ Outline • Why use standards? • Open Geospaal ConsorFum, and spaal data standards • Standards for water data, and the OGC/WMO Hydrology Domain Working Group – history, acFviFes, WMO connecFon, workshop last week – Suite of water data standards • WaterML 2.0 in detail (opFonal) • Assessing compliance, and the CINERGI project (opFonal) Why sharing data in LMI? • Several countries rely on the Mekong But data sharing is complicated Challenges: Habitat alteraon PolluFon Extreme weather events Over-exploitaon of resources Diseases and invasive species Poverty and social instability . Water - our most valuable asset But ... • In many places we can’t assess – How much we have – Where it is – Who owns it – What it is fit for – How much we will have – Where it will Be • We certainly can’t yet share informaon in a useful Fmeframe – In parFcular given the complexity of water cycle Why is it important to coordinate? • The orBiter was taken within 57 km of the surface where it likely disintegrated Why? • The flight system so[ware used metric units (Newtons); so[ware on the ground used the Imperial system (pound-force, or lbf) A common situaon in hydrology… Hydro Jack Need flow data! Don Hmm mayBe Don can help… *RING RING* To: Jack Hmm, I’ve got one site. I’ll 01/02/09, 3.2, 3, 1 Hi Don, I need some send it through… 01/02/09, 3.1, 3, 1 *RING RING* upper Derwent flow 10 minutes… readings for my 10 minutes… Ok.
    [Show full text]
  • Geoscience Data for Educational Use: Recommendations from Scientific/Technical and Educational Communities Michael R
    JOURNAL OF GEOSCIENCE EDUCATION 60, 249–256 (2012) Geoscience Data for Educational Use: Recommendations from Scientific/Technical and Educational Communities Michael R. Taber,1,a Tamara Shapiro Ledley,2 Susan Lynds,3 Ben Domenico,4 and LuAnn Dahlman5 ABSTRACT Access to geoscience data has been difficult for many educators. Understanding what educators want in terms of data has been equally difficult for scientists. From 2004 to 2009, we conducted annual workshops that brought together scientists, data providers, data analysis tool specialists, educators, and curriculum developers to better understand data use, access, and user- community needs. All users desired more access to data that provide an opportunity to conduct queries, as well as visual/ graphical displays on geoscience data without the barriers presented by specialized data formats or software knowledge. Presented here is a framework for examining data access from a workflow perspective, a redefinition of data not as products but as learning opportunities, and finally, results from a Data Use Survey collected during six workshops that indicate a preference for easy-to-obtain data that allow users to graph, map, and recognize patterns using educationally familiar tools (e.g., Excel and Google Earth). Ó 2012 National Association of Geoscience Teachers. [DOI: 10.5408/12-297.1] Key words: geoscience data, data use, data access, workshop INTRODUCTION data in terms of usefulness for the educational community. The use of scientific data can best be characterized in the Finally, we present what DDS and AccessData workshop context of workflow: from data acquisition and documenta- participants, representing both the scientific/technical and tion regarding acquisition quality, to raw storage, to analysis the educational communities, said about data use.
    [Show full text]
  • OWS-4 Geodds Mass Market (Formerly Georss) Interoperability Program Report
    OGC 07-004 Open Geospatial Consortium Inc. Date: 2007-05-02 Reference number of this OGC® document: OGC 07-004 Version: 0.0.1 Category: OpenGIS® Discussion Paper Editor: Panagiotis (Peter) A. Vretanos OWS-4 GeoDDS Mass Market (formerly GeoRSS) Interoperability Program Report Copyright notice Copyright © 2007 Open Geospatial Consortium. All Rights Reserved To obtain additional rights of use, visit http://www.opengeospatial.org/legal/ Warning This document is not an OGC Standard. This document is an OGC Discussion Paper and is therefore not an official position of the OGC membership. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an OGC Standard. Further, an OGC Discussion Paper should not be referenced as required or mandatory technology in procurements. Document type: OpenGIS® Discussion Paper Document subtype: Engineering Specification Document stage: Draft Document language: English File name: 07-004.doc OGC 07-004 Contents 1 SCOPE..........................................................................................................................................................1 2 CONFORMANCE........................................................................................................................................1 3 NORMATIVE REFERENCES....................................................................................................................1 4 TERMS AND DEFINITIONS.....................................................................................................................3
    [Show full text]