AS 1085.21 Railway Track Material Part 21: Turnouts, Switches and Crossings Draft for Public Comment

Total Page:16

File Type:pdf, Size:1020Kb

AS 1085.21 Railway Track Material Part 21: Turnouts, Switches and Crossings Draft for Public Comment AS 1085.21:2020 Railway track material Part 21: Turnouts, switches and crossings crossings and Infrastructure Standard switches Please note this is a RISSB Australian Standard® draft Document content exists for RISSB product development1085.21 purposes onlyComment and should not be relied upon or considered as final published content. Turnouts, AS 21: Any questions in relation to this document or RISSB’s accredited development process should be referred to RISSB. Public Part for RISSB Office Phone: Email: Web: (07) 3724 0000 Draftinfo@ri ssb.com.au www.rissb.com.au Overseas: +61 7 3724 0000 material AS 1085.21 Assigned Standard Development Manager Name:track Phone: Email: Risharda Robertson 0438 879 916 [email protected] Railway AS 1085.21:2020 Railway track material Part 21: Turnouts, switches and crossings Notice to users This RISSB product has been developed using input from rail experts from across the rail industry and represents good practice for the industry. The reliance upon or manner of use of this RISSB product is the sole responsibility of the user who is to assess whether it meets their organisation’s operational environment and risk profile. AS 1085.21:2020 Railway track material Part 21: Turnouts, switches and crossings crossings Draft history (Draft history applies only during development) and Draft version Draft date Notes PC Draft 20/12/2019 Draft for Public Comment Copyright switches © RISSB All rights are reserved. No part of this work can be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of RISSB, unless otherwise permitted under the Copyright Act 1968. 1085.21 Comment Turnouts, Objective AS 21: The objective of this Standard is to provide information and requirements for the design and manufacture of turnouts, switches and crossings, and their components. Public Turnout switches and crossings are vital trackPart components that allow and control the safe diversion of rail vehicles from one track to another or to cross other tracks. for Compliance Draft There are two types of control contained within Australian Standards developed by RISSB: 1. Requirements.material 2. Recommendations. Requirements – it is mandatory to follow all requirements to claim full compliance with the Standard. Requirementstrack are identified within the text by the term ‘shall’. Recommendations – do not mention or exclude other possibilities but do offer the one that is preferred. Recommendations are identified within the text by the term ‘should’. Recommendations recognise that there could be limitations to the universal application of the control, i.e. the identified control is not able to be applied or other controls are more appropriate or better. For compliance purposes, where a recommended control is not applied as written in the standard it could be Railwayincumbent on the adopter of the standard to demonstrate their actual method of controlling the risk as part of their WHS or Rail Safety National Law obligations. Similarly, it could also be incumbent on an adopter of the standard to demonstrate their method of controlling the risk to contracting entities, or interfacing organisations where the risk may be shared. Controls in RISSB standards address known railway hazards are addressed in a Appendix A. RISSB ABN 58 105 001 465 Page 1 Accredited Standards Development Organisation AS 1085.21:2020 Railway track material Part 21: Turnouts, switches and crossings Contents 1 Scope and general ....................................................................................................... 4 1.1 Scope ............................................................................................................. 4 1.2 Referenced documents ................................................................................... 4 1.3 Definitions ....................................................................................................... 5 2 Turnout design ............................................................................................................. 7 2.1 General ........................................................................................................... 7 2.2 Design parameters .......................................................................................... 7 2.3 Tangential ..................................................................................................... 15 2.4 Secant .......................................................................................................... 20 3 Interfaces .................................................................................................................. 23 3.1 General ......................................................................................................... 23 3.2 Operating equipment .................................................................................... 23 3.3 Insulation ...................................................................................................... 24 3.4 Installation .................................................................................................... 24 3.5 Track and structure interfaces ....................................................................... 24 4 Manufacture ............................................................................................................... 25 4.1 Materials, tests and standards ...................................................................... 25 4.2 Rails, fishplates and sleeper plates ............................................................... 25 4.3 Castings ........................................................................................................ 25 4.4 Steel and iron castingsAS ................................ 1085.21 .................................................. 26 4.5 Manganese steel castings ............................................................................. 26 4.6 Fastening ...................................................................................................... 30 4.7 Flame cutting ................................................................................................ 31 4.8 Welding ......................................................................................................... 31 4.9 Hardening ..................................................................................................... 31 4.10 Rail drilling .................................................................................................... 32 4.11 Sawing and machiningDraft ................................ for Public................................ Comment .................. 32 4.12 Riveting ......................................................................................................... 32 4.13 Fitting ............................................................................................................ 32 4.14 Forgings ........................................................................................................ 32 4.15 Cast iron blocks ............................................................................................ 32 4.16 Cast steel blocks ........................................................................................... 32 4.17 Special heel bolt ferrules ............................................................................... 33 4.18 Nylon bushes ................................................................................................ 33 Railway4.19 track Epoxy material gluing of cro Partssings ................................21: Turnouts,................................ switches and............. crossings 33 4.20 Switch assembly ........................................................................................... 33 4.21 Crossing assembly ........................................................................................ 33 4.22 Tolerances .................................................................................................... 34 4.23 Stamping ...................................................................................................... 36 4.24 Match marking .............................................................................................. 37 4.26 Final assembly and inspection ...................................................................... 37 RISSB ABN 58 105 001 465 Page 2 Accredited Standards Development Organisation AS 1085.21:2020 Railway track material Part 21: Turnouts, switches and crossings 4.27 Preparation for dispatch ................................................................................ 37 5 Product acceptance .................................................................................................... 38 5.1 General ......................................................................................................... 38 5.2 Type approval ............................................................................................... 38 5.3 Certificate of compliance ............................................................................... 38 5.4 Trial assembly ............................................................................................... 38 5.5 Assembly maintenance manuals and drawings ............................................. 38 crossings Appendix Contents Appendix A Hazard register ...........................................................................................and 39 Appendix
Recommended publications
  • A Prototype of Track Gauge and Cant Measurement Device for Curved Railroad by Using Microcontroller
    Advances in Engineering Research, volume 193 2nd International Symposium on Transportation Studies in Developing Countries (ISTSDC 2019) A Prototype of Track Gauge and Cant Measurement Device for Curved Railroad by Using Microcontroller Rony Alvin Alfatah Wahyu Tamtomo Adi Line Building Engineering and Railways Line Building Engineering and Railways Indonesia Railway Polytechnique Indonesia Railway Polytechnique Madiun, Indonesia Madiun, Indonesia [email protected] [email protected] Dwi Samsu Al Musyafa Septiana Widi Astuti Line Building Engineering and Railways Line Building Engineering and Railways Indonesia Railway Polytechnique Indonesia Railway Polytechnique Madiun, Indonesia Madiun, Indonesia [email protected] [email protected] Abstract—The purpose of this study is to create a tool for (track gauge) and the difference in elevation between the measuring track gauge and cant in the curved railroad with outer rail and the inner rail which is called can’t on the digital systems which can improve railroad maintenance with railroad curvature using a vernier caliper sensor and an automatic recording system for more efficient and easy to gyroscope to get the parameters of the track gauge, cant of use. This tool uses Arduino IDE as an application the arch, and the temperature of the measuring instrument. programming language and microcontroller board combined with several sensors to measure many parameters of track The data can be processed and monitored directly through an gauge and cant. Android devices with a Wi-Fi connection can android device using node MCU as a liaison of an android display the measurement results display real-time data on the device with a measuring instrument via wifi connectivity.
    [Show full text]
  • the Swindon and Cricklade Railway
    The Swindon and Cricklade Railway Construction of the Permanent Way Document No: S&CR S PW001 Issue 2 Format: Microsoft Office 2010 August 2016 SCR S PW001 Issue 2 Copy 001 Page 1 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS 1 Document Status Record Status Date Issue Prepared by Reviewed by Document owner Issue 17 June 2010 1 D.J.Randall D.Herbert Joint PW Manager Issue 01 Aug 2016 2 D.J.Randall D.Herbert / D Grigsby / S Hudson PW Manager 2 Document Distribution List Position Organisation Copy Issued To: Copy No. (yes/no) P-Way Manager S&CR Yes 1 Deputy PW Manager S&CR Yes 2 Chairman S&CR (Trust) Yes 3 H&S Manager S&CR Yes 4 Office Files S&CR Yes 5 3 Change History Version Change Details 1 to 2 Updates throughout since last release SCR S PW001 Issue 2 Copy 001 Page 2 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS Table of Contents 1 Document Status Record ....................................................................................................................................... 2 2 Document Distribution List ................................................................................................................................... 2 3 Change History .....................................................................................................................................................
    [Show full text]
  • The Myth of the Standard Gauge
    The Myth of the Standard Guage: Rail Guage Choice in Australia, 1850-1901 Author Mills, John Ayres Published 2007 Thesis Type Thesis (PhD Doctorate) School Griffith Business School DOI https://doi.org/10.25904/1912/426 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/366364 Griffith Research Online https://research-repository.griffith.edu.au THE MYTH OF THE STANDARD GAUGE: RAIL GAUGE CHOICE IN AUSTRALIA, 1850 – 1901 JOHN AYRES MILLS B.A.(Syd.), M.Prof.Econ. (U.Qld.) DEPARTMENT OF ACCOUNTING, FINANCE & ECONOMICS GRIFFITH BUSINESS SCHOOL GRIFFITH UNIVERSITY Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy July 2006 ii ABSTRACT This thesis describes the rail gauge decision-making processes of the Australian colonies in the period 1850 – 1901. Federation in 1901 delivered a national system of railways to Australia but not a national railway system. Thus the so-called “standard” gauge of 4ft. 8½in. had not become the standard in Australia at Federation in 1901, and has still not. It was found that previous studies did not examine cause and effect in the making of rail gauge choices. This study has done so, and found that rail gauge choice decisions in the period 1850 to 1901 were not merely one-off events. Rather, those choices were part of a search over fifty years by government representatives seeking colonial identity/autonomy and/or platforms for election/re-election. Consistent with this interpretation of the history of rail gauge choice in the Australian colonies, no case was found where rail gauge choice was a function of the disciplined search for the best value-for-money option.
    [Show full text]
  • Effect of Vehicle Performance at High Speed and High Cant Deficiency
    Proceedings of the ASME/ASCE/IEEE 2011 Joint Rail Conference JRC2011 March 16-18, 2011, Pueblo, Colorado, USA JRC2011-56066 EXAMINATION OF VEHICLE PERFORMANCE AT HIGH SPEED AND HIGH CANT DEFICIENCY Brian Marquis Jon LeBlanc U.S. Department of Transportation, Research and U.S. Department of Transportation, Research and Innovative Technology Administration, Volpe Innovative Technology Administration, Volpe National Transportation Systems Center National Transportation Systems Center Cambridge, Massachusetts, United States Cambridge, Massachusetts, United States Ali Tajaddini U.S. Department of Transportation, Federal Rail Road Administration, Office of Research and Development, Washington D.C., United States ABSTRACT The research for this paper was part of work done for the FRA In the US, increasing passenger speeds to improve trip time to support the FRA Railroad Safety Advisory Committee usually involves increasing speeds through curves. Increasing (RSAC) Track Working Group’s Vehicle Track Interaction speeds through curves will increase the lateral force exerted on (VTI) Task Force. The mission of the VTI task force was to track during curving, thus requiring more intensive track update Parts 213 and 238 of the Code of Federal Regulations maintenance to maintain safety. These issues and other (CFR) regarding rules for high speed (above 90mph) and high performance requirements including ride quality and vehicle cant deficiency (about 5 inches) operations. The task force stability, can be addressed through careful truck design. focused on a number of issues including refinement of VTI Existing high-speed rail equipment, and in particular their safety criteria, track geometry standards, vehicle qualification bogies, are better suited to track conditions in Europe or Japan, procedures and requirements and track inspection in which premium tracks with little curvature are dedicated for requirements, all with a focus on treating the vehicle and track high-speed service.
    [Show full text]
  • Derailment of Freight Train 9204V, Sims Street Junction, West Melbourne
    DerailmentInsert document of freight title train 9204V LocationSims Street | Date Junction, West Melbourne, Victoria | 4 December 2013 ATSB Transport Safety Report Investigation [InsertRail Occurrence Mode] Occurrence Investigation Investigation XX-YYYY-####RO-2013-027 Final – 13 January 2015 Cover photo source: Chief Investigator, Transport Safety (Vic) This investigation was conducted under the Transport Safety Investigation Act 2003 (Cth) by the Chief Investigator Transport Safety (Victoria) on behalf of the Australian Transport Safety Bureau in accordance with the Collaboration Agreement entered into on 18 January 2013. Released in accordance with section 25 of the Transport Safety Investigation Act 2003 Publishing information Published by: Australian Transport Safety Bureau Postal address: PO Box 967, Civic Square ACT 2608 Office: 62 Northbourne Avenue Canberra, Australian Capital Territory 2601 Telephone: 1800 020 616, from overseas +61 2 6257 4150 (24 hours) Accident and incident notification: 1800 011 034 (24 hours) Facsimile: 02 6247 3117, from overseas +61 2 6247 3117 Email: [email protected] Internet: www.atsb.gov.au © Commonwealth of Australia 2015 Ownership of intellectual property rights in this publication Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia. Creative Commons licence With the exception of the Coat of Arms, ATSB logo, and photos and graphics in which a third party holds copyright, this publication is licensed under a Creative Commons Attribution 3.0 Australia licence. Creative Commons Attribution 3.0 Australia Licence is a standard form license agreement that allows you to copy, distribute, transmit and adapt this publication provided that you attribute the work.
    [Show full text]
  • Rail Accident Report
    Rail Accident Report Derailment of a passenger train near Cummersdale, Cumbria 1 June 2009 Report 06/2010 March 2010 This investigation was carried out in accordance with: l the Railway Safety Directive 2004/49/EC; l the Railways and Transport Safety Act 2003; and l the Railways (Accident Investigation and Reporting) Regulations 2005. © Crown copyright 2010 You may re-use this document/publication (not including departmental or agency logos) free of charge in any format or medium. You must re-use it accurately and not in a misleading context. The material must be acknowledged as Crown copyright and you must give the title of the source publication. Where we have identified any third party copyright material you will need to obtain permission from the copyright holders concerned. This document/publication is also available at www.raib.gov.uk. Any enquiries about this publication should be sent to: RAIB Email: [email protected] The Wharf Telephone: 01332 253300 Stores Road Fax: 01332 253301 Derby UK Website: www.raib.gov.uk DE21 4BA This report is published by the Rail Accident Investigation Branch, Department for Transport. * Cover photo courtesy of Network Rail Derailment of a passenger train near Cummersdale, Cumbria, 1 June 2009 Contents Preface 5 Key Definitions 5 The Accident 6 Summary of the accident 6 The parties involved 7 Location 8 External circumstances 8 The trains involved 10 Events preceding the accident 10 Events during the accident 10 Consequences of the accident 11 Events following the accident 11 The Investigation
    [Show full text]
  • Production Plants for Concrete Pre-Stressed and Post-Tensioned Sleepers, Turnout Bearers and Slabs
    PRODUCTION PLANTS FOR CONCRETE PRE-STRESSED AND POST-TENSIONED SLEEPERS, TURNOUT BEARERS AND SLABS Some of our references Updated on 31st October 2016 Type of Plant Carousel Type of Sleeper FSV 35 P Length of sleeper [m] 2,30 Type of fastening Pandrol AP6, K, Vossloh SCAC SCAC S.p.A. Productive capacity 300.000 (sleepers/year) Country Italy Type of Plant Carousel Type of Sleeper FSV 35 P Length of sleeper [m] 2,30 Type of fastening Pandrol AP6, K, Vossloh SCEV S.p.A. SCEV S.p.A. Productive capacity 300.000 (sleepers/year) Country Italy Type of Plant Long Line Type of Sleeper B 70 Length of sleeper [m] 2,60 & & KG Co. Type of fastening Vossloh Productive capacity GmbH 46.800 (sleepers/year) PFLEIDERER INFR. Country Germany Type of Plant Long Line Type of Sleeper Slab Track – Ballastless Type of fastening Pandrol AP6 VIANINI VIANINI IND. S.p.A. Country Italy Plants for railway sleepers - References 3 Type of Plant Carousel Type of Sleeper FSV 35 P Length of sleeper [m] 2,30 Type of fastening Pandrol e-clip, K, Vossloh Productive capacity STIARM S.p.A. 500.000 (sleepers/year) Country Italy Type of Plant Carousel Type of Sleeper Polivalente dual Gauge Length of sleeper [m] 2,60 Type of fastening Vossloh Productive capacity 500.000 DELTA SA SA DELTA FCC (sleepers/year) Country Spain Type of Plant Long Line Type of Sleeper Polivalente Dual Gauge - AI Length of sleeper [m] 2,60 Type of fastening Vossloh Productive capacity 190.000 TRAVIPOS TRAVIPOS S.A.
    [Show full text]
  • Unification of the Cant and Maximum Values for Cant Deficiency
    Technologijos ir menas, 2016 (7), ISSN 2029-400X UNIFICATION OF THE CANT AND MAXIMUM VALUES FOR CANT DEFICIENCY O. Patlasov, E. Patlasov Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan [email protected] Abstract. The article provides the analysis of the TSI requirement to technical specification of interoperability related to cant in curve. Based on the identified discrepancies it proposes to adopt uniform criteria for the established of maximum cant and cant deficiency for gauge 1435, 1520, 1600 and 1668 mm. Keywords: Interoperability Directives, Technical Specifications for Interoperability (TSI), cant, cant deficiency, accel- eration, conventional and high-speed rail network. Introduction revision of existing TSIs, keeps them up to date, and supports the sector in their application by issuing ap- In order to enable citizens of the Union, economic plication guides and by dissemination and training ac- operators and regional and local authorities to benefit tions. When necessary, ERA may also draft new TSIs, to the full from the advantages deriving from establish- based on a mandate from the Commission. Links to ing an area without internal frontiers, it is advisable, in all TSIs including their accompanying documents and particular, to improve the interlinking and interoper- previous versions are to be found on the right hand ability of national high-speed train networks, as well as side of this page. An overview of the chronology of access thereto. all TSIs (including the repealed
    [Show full text]
  • Investigation of Glued Insulated Rail Joints with Special Fiber-Glass Reinforced Synthetic Fishplates Using in Continuously Welded Tracks
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repository of the Academy's Library POLLACK PERIODICA An International Journal for Engineering and Information Sciences DOI: 10.1556/606.2018.13.2.8 Vol. 13, No. 2, pp. 77–86 (2018) www.akademiai.com INVESTIGATION OF GLUED INSULATED RAIL JOINTS WITH SPECIAL FIBER-GLASS REINFORCED SYNTHETIC FISHPLATES USING IN CONTINUOUSLY WELDED TRACKS 1 Attila NÉMETH, 2 Szabolcs FISCHER 1,2 Department of Transport Infrastructure, Széchenyi István University Győr, Egyetem tér 1 H-9026 Győr, Hungary, email: [email protected], [email protected] Received 29 December 2017; accepted 9 March 2018 Abstract: In this paper the authors partially summarize the results of a research on glued insulated rail joints with fiber-glass reinforced plastic fishplates (brand: Apatech) related to own executed laboratory tests. The goal of the research is to investigate the application of this new type of glued insulated rail joint where the fishplates are manufactured at high pressure, regulated temperature, glass-fiber reinforced polymer composite plastic material. The usage of this kind of glued insulated rail joints is able to eliminate the electric fishplate circuit and early fatigue deflection and it can ensure the isolation of rails’ ends from each other by aspect of electric conductivity. Keywords: Glued insulated rail joint, Fiber-glass reinforced fishplate, Polymer composite plastic material, Laboratory test 1. Introduction The role of the rail connections (rail joints) is to ensure the continuity of rails without vertical and horizontal ‘step’, as well as directional break. The opportunities to connect rails are the fishplate joints, welding, and dilatation structure (rail expansion device) [1].
    [Show full text]
  • JR East Technical Review No.27-AUTUMN.2013
    Interpretive article Clarification of Mechanism of Shinkansen Derailment in the 2011 Great East Japan Earthquake and Countermeasures Against Earthquakes Kenji Horioka Director, Safety Research Laboratory, Research and Development Center of JR East Group The Great East Japan Earthquake of March 11, 2011 resulted in tremendous damage to JR East railway facilitates due to seismic vibration and the ensuing tsunami. One incident was the derailment of a Tohoku Shinkansen train making a test run near Sendai Station. This marked the second time a JR East Shinkansen train had derailed, following that in the 2004 Mid Niigata Prefecture Earthquake. This article will cover the derailment accident investigation and its findings along with issues and lessons discovered in the process of that investigation. It will also cover past countermeasures against earthquakes and future issues in R&D. 1 Introduction of the process of clarifying derailment accident phenomena, lessons learned through that, and new issues that came up in Broad-ranging damage was suffered in the JR East area due to light the recent earthquake. seismic vibration and the ensuing tsunami of the Great East In clarifying derailment accident phenomena, we received Japan Earthquake of March 11, 2011. The earthquake was huge, much technical guidance from the Railway Technical Research measuring a magnitude (MW) of 9.0 (approx. 1,000 times the Institute (RTRI) related to issues such as analyzing response of energy of the 1995 Great Hanshin-Awagi Earthquake), but we structures affected by seismic motion and analyzing rolling stock were fortunate in that there were no major injuries to passengers. behavior. I would like to take this opportunity to express our JR East did, however, suffer unprecedented damage including gratitude for their assistance.
    [Show full text]
  • Railwayoccurrencerepo Rt
    RAILWAY OCCURRENCE REPORT 05-109 tourist Trains Linx and Snake, derailments, Driving 20 February 2005 - Creek Railway, Coromandel 3 March 2005 TRANSPORT ACCIDENT INVESTIGATION COMMISSION NEW ZEALAND The Transport Accident Investigation Commission is an independent Crown entity established to determine the circumstances and causes of accidents and incidents with a view to avoiding similar occurrences in the future. Accordingly it is inappropriate that reports should be used to assign fault or blame or determine liability, since neither the investigation nor the reporting process has been undertaken for that purpose. The Commission may make recommendations to improve transport safety. The cost of implementing any recommendation must always be balanced against its benefits. Such analysis is a matter for the regulator and the industry. These reports may be reprinted in whole or in part without charge, providing acknowledgement is made to the Transport Accident Investigation Commission. Report 05-109 tourist Trains Linx and Snake derailments Driving Creek Railway Coromandel 20 February 2005 - 3 March 2005 Abstract On Sunday 20 February 2005 at about 1300, the Driving Creek Train Linx derailed at Peg 1660. The rear bogie of the last passenger set derailed and was dragged about 15 m before one of the derailment bars hit a rail joint fishplate, causing the rear bogie to jump further to the left-hand side of the track. One passenger received moderate injuries. In the afternoon of Sunday 27 February 2005, the rear bogie of the last passenger set of the Train Linx derailed to the inside of a tight right-hand curve at Peg 1270 on the Driving Creek Railway.
    [Show full text]
  • Cant Deficiency and Negative Superelevation
    CANT DEFICIENCY AND NEGATIVE SUPERELEVATION Introduction Cant deficiency is the difference between the equilibrium cant that is necessary for the maximum permissible speed on a curve and the actual cant provided. Cant deficiency is limited due to two considerations: 1. Higher cant deficiency causes greater discomfort to passengers 2. Higher cant deficiency leads to greater unbalanced centrifugal force, which in turn leads to the requirement of stronger tracks and fastenings to withstand the resultant greater lateral forces. The maximum values of cant deficiency prescribed on Indian Railways are given in Table below. Table Allowable cant deficiency Gauge Group Normal cant Remarks deficiency (mm) BG AandB 75 For BG group BG C, D, and 75 For A and B routes; 1 00 mm cant deficiency E permitted only for nominated rolling stock and routes with the approval of the CE MG All routs 50 NG - 40 The limiting values of cant excess have also been prescribed. Cant excess should not be more than 75 mm on BG and 65 mm on MG for all types of rolling stock. Cant excess should be worked out taking into consideration the booked speed of the trains running on a particular section. In the case of a section that carries predominantly goods traffic, cant excess should be kept low to minimize wear on the inner rail. Table below lists the limiting values of the various parameters that concern a curve. NEGATIVE SUPERELEVATION When the main line lies on a curve and has a turnout of contrary flexure leading to a branch line, the superelevation necessary for the average speed of trains running over the main line curve cannot be provided.
    [Show full text]