Falconiformes, Accipitriformes, Strigiformes) in the Slovak Republic

Total Page:16

File Type:pdf, Size:1020Kb

Falconiformes, Accipitriformes, Strigiformes) in the Slovak Republic ©2017 Institute of Parasitology, SAS, Košice DOI 10.1515/helm-2017-0038 HELMINTHOLOGIA, 54, 4: 314 – 321, 2017 New data on helminth fauna of birds of prey (Falconiformes, Accipitriformes, Strigiformes) in the Slovak Republic P. KOMOROVÁ1*, J. SITKO2, M. ŠPAKULOVÁ3, Z. HURNÍKOVÁ3,1, R. SAŁAMATIN4, 5, G. CHOVANCOVÁ6 1Department of Epizootology and Parasitology, Institute of Parasitology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic, *E-mail: [email protected]; 2Ornitological Station of Commenius Museum in Přerov, Bezručova 10, 750 02 Přerov, Czech Republic; 3Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic; 4Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; 5Department of Parasitology, National Institute of Public Health – National Institute of Hygiene, Chocimska 24, 00-719 Warsaw, Poland; 6Research Station and Museum of the Tatra National Park, 059 60 Tatranská Lomnica, Slovak Republic Article info Summary Received December 1, 2016 In the years 2012-2014, carcasses of 286 birds of prey from the territory of Slovakia were examined Accepted July 4, 2017 for the presence of helminth parasites. The number of bird species in the study was 23; fi ve belonging to the Falconiformes order, eleven to Accipitriformes, and seven to Strigiformes. A fi nding of Cestoda class comprehended 4 families: Paruterinidae (4), Dilepididae (2), Mesocestoididae (2) and Anoplo- cephalidae (1). Birds of prey were infected with 6 families Nematoda species of the Secernentea class: Syngamidae (1), Habronematidae (2), Tetrameridae (3), Physalopteridae (1), Acuariidae (1), and Anisakidae (2). Out of the Adenophorea class, the Capillariidae family (1) was confi rmed. The Acanthocephala group was represented by the Paleacanthocephala class, the Centrorhynchidae family (3). Out of the Trematoda class, 12 different species of fl ukes were found, belonging to the Diplostomidae (5), Cyathocotylidae (1), Strigeidae (4), Opistorchidae (1), and Plagiorchidae (1) fami- lies. The most frequent helminth species infecting diurnal birds of prey was Strigea falconis. This fl uke was confi rmed in one bird species from the Falconiformes order and in eight species from the Accipitriformes order. In nocturnal birds of prey, the most common fi nding was the acanthocephalan Centrorhynchus aluconis, identifi ed in four different host species of the Strigiformes order. In total, 23 helminth species were recorded for the fi rst time in Slovakia. Keywords: helminth parasites; infection; nocturnal and diurnal birds of prey Introduction Sanmartín et al. (2004), Illescas Gomez et al. (1993), and Santoro et al. (2012a, b). Birds of prey are predatory animals residing at the top of a food Forty-three different species of birds of prey, belonging to the Fal- chain and they usually get infected with parasites via ingestion of coniformes, Accipitriformes, and Strigiformes orders, nest or occur prey, thus serving as intermediate hosts of many parasite species. in Slovakia territory (Kovalik et al., 2010). The most abundant spe- Types and diversity of the prey preferred by individual species rep- cies is the common buzzard (Buteo buteo) that nests in different resent one of the factors affecting the parasite diversity in those forest biotopes, but it is very well adapted also to the agricultural hosts. land. However in low quantities, on the territory of Slovakia we can Since majority of birds of prey species in Europe are protected, the also fi nd the species that are very sensitive to the environmental research and knowledge of the parasite fauna is only fragmentary. changes associated with anthropogenic impacts (Circus pygargus, Comprehensive research projects studying all helminth groups in Milvus milvus) (Krivjanský, 2009). birds of prey were accomplished by the Borgsteede et al. (2003), In Slovakia, only two research papers, aimed at parasites in birds * – corresponding author 314 of prey, have been published in the 20th century. Tenora & Lusk minths, 17 out of 85 diurnal birds of prey from the Falconiformes or- (1960) and Škarda (1964) studied the helminth fauna of birds in der were infected (20 %), and the parasitic infection was confi rmed Czechoslovakia and published several fi ndings in birds of prey in 114 out of 156 birds from the Accipitriformes order (73.1 %). In from the Slovak part of the country. For a subsequent period of 50 nocturnal birds of prey (Strigiformes order), helminths were found years, at the times of dynamic climate changes, no comprehen- in 28 out of 45 individuals (62.2 %). sive research of this host group has been carried out. Recently, A total of 33 helminth taxa were registered. In the Falconiformes two papers on fl ukes and thorny-headed worms were published order, 9 different helminth taxa were determined – 2 Trematoda, 1 (Komorová et al., 2015; Komorová et al., 2016). Cestoda, 4 Secernentea, and 1 Paleacanthocephala. In birds from The aim of our study was to obtain the complex knowledge about the Accipitriformes order, in total 27 helminth species were found the current status of the parasite fauna in birds of prey in Slovakia. – 9 Trematoda, 6 Cestoda, 1 Adenophorea, 8 Secernentea, and 3 Paleacanthocephala. In nocturnal birds of prey (Strigiformes) 10 Material and Methods helminth species were detected – 2 Trematoda, 2 Cestoda, 1 Ad- enophorea, 4 Secernentea, and 1 Paleacanthocephala (Table 1). During the period of 2012 – 2014, 286 carcasses of birds of prey The information on parasite species, names and numbers of in- belonging to 23 species of the Falconiformes, Accipitriformes, and fected hosts (NIH), prevalence (P in %), intensity of infection (II), Strigiformes orders were examined for the presence of helminths mean intensity (MI), and site of infection is summarized below. (Table 1). The research was conducted upon the permission is- sued by the Ministry of Environment of the Slovak Republic No. Platyhelminthes 6467/2012-2.26467/2012-2.2. The samples were collected from Trematoda various locations of Slovakia in cooperation with departments Diplostomidae Poirier, 1886 of the State Nature Conservancy of the Slovak Republic – The Conodiplostomum perlatum (Ciurea, 1911) Slovenský Kras National Park, The Slovenský Raj National Park, Host: H. albicilla (NIH=1; P=100 %; II=43) – fi rst record in Slovakia The Pieniny National Park, The Regional Conservation Centre in Site of infection: small intestine Prešov, and The Vihorlat Protected Area, as well as with the Mu- seum of the Tatra National Park, the Clinic for Birds and Exotic Conodiplostomum spathula (Creplin, 1829) Animals at the University of Veterinary Medicine and Pharmacy Host: A. heliaca (NIH=1; P=16.7 %; II=13) – fi rst record in Slovakia in Košice, The Raptor Protection of Slovakia, The Rehabilitation Site of infection: small intestine Station in The ZOO Bojnice, and The Košice Airport. Collected bird carcasses were frozen and subjected to helminthological necrop- Neodiplostomum attenuatum (Linstow, 1906) sy. After de-freezing, all organ systems and body cavities were Host: B. buteo (NIH=29; P=24.4 %; II=1-224; MI=25), B. lagopus examined for the presence of parasites. Collected helminths were (NIH=1; P=20 %; II=70), B. rufi nus (NIH=2; P=50 %; II=6-10; washed in distilled water and preserved in 70 % ethanol. For mor- MI=8), P. apivorus (NIH=1; P=100 %; II=3) – fi rst records in Slo- phological identifi cation, the species belonging to the Trematoda vakia and Cestoda classes were stained with iron acetocarmine (Geor- Site of infection: small intestine giev et al, 1986). Lightening of specimens from the Adenopoho- rea, Secernentea, and Paleacanthocephala classes was carried Neodiplostomum canaliculatum (Nicoll, 1914) out using glycerine or lactophenol. The species identifi cation was Host: B. bubo (NIH=1; P=50 %; II=1), S. uralensis (NIH=5; conducted according to Dubois (1968, 1970), Gibson et al. (2002), P=33.3 %; II=5-23; MI=14) – fi rst records in Slovakia Sitko (1998, 2001), and Bray et al. (2008) for Trematoda; Joyeux Site of infection: small intestine & Timon-David (1934), Joyeux & Baer (1936), Rausch (1948), and Khalil et al. (1994) for Cestoda; Hartwich (1975), Baruš et al. Neodiplostomum spathoides Dubois, 1937 (1978), and Gibbons (2010) for Adenophorea; and Secernentea Host: B. rufi nus (NIH=1; P=25 %; II=4), C. aeruginosus (NIH=2; and Meyer (1933), Petrochenko (1958), Dimitrova et al. (1997), P=50 %; II=8-15; MI=11.5) – fi rst records in Slovakia and Dimitrova & Gibson (2005) for Paleacanthocephala. Ecologi- Site of infection: small intestine cal parameters (prevalence, mean intensity, diversity) were evalu- ated according to Bush et al. (2007). Cyathocotylidae Mühling, 1898 The voucher specimens are deposited in the collection of The In- Paracoenogonimus ovatus Katsurada, 1914 stitute of Parasitology at the SAS in Košice. Host: H. albicilla (NIH=1; P=100 %; II=1) – fi rst record in Slovakia Site of infection: small intestine Results Strigeidae Railiet, 1919 Out of 286 examined birds, 156 (54.5 %) were infected with hel- Parastrigea fl exilis (Dubois, 1934) 315 Table 1. List of birds of prey species investigated and nubmers of hosts infected with individual parasite classes. Order/bird species No. of birds parasitized by: No. of examined/ parasitized birds Tremtoda Cestoda Secernentea Adenophorea Paleacanthocephala Falconiformes 85/15 3 3 8 0 2 Falco cherrug Gray, 1834 3/2 - - 2 - - Falco columbarius L., 1758
Recommended publications
  • A Global Assessment of Parasite Diversity in Galaxiid Fishes
    diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus.
    [Show full text]
  • RUNNING HEAD: Farrow-Aspects of the Life Cycle of Apharyngostrigea Pipientis
    RUNNING HEAD: Farrow-Aspects of the life cycle of Apharyngostrigea pipientis Aspects of the life cycle of Apharyngostrigea pipientis in Central Florida wetlands Abigail Farrow Florida Southern College RUNNING HEAD: Farrow-Aspects of the life cycle of Apharyngostrigea pipientis Abstract Apharyngostrigea pipientis (Trematoda: Strigeidae) is known to form metacercariae around the pericardium of anuran tadpoles in Michigan and other northern locations. Definitive hosts are thought to be wading birds, while the intermediate host is a freshwater snail. Apharyngostrigea pipientis is not commonly reported from Florida, yet we have found several populations of snails (Biopholaria havaensis) and tadpoles, primarily the Cuban treefrog (Osteopilus septentrionalis), to host this trematode. We used experimental infections to elucidate the transmission dynamics and development of A. pipientis inside the tadpole host. Surprisingly, we found two types (species?) of cercariae being shed from B. havaensis that enter Cuban treefrog tadpoles to form seemingly identical metacercariae. Further, both of these develop into metaceracariae inside the tadpoles over 5-7 days after wondering inside the host's body cavity as mesocercariae, and metacercariae are commonly concentrated around the pericardium cavity. However, they differ in entry mode, with one being ingested, whereas the other penetrates the skin. This project is ongoing. 1. Introduction The study of parasitology plays a vital role in understanding the foundation of communities in different ecosystems. Parasites have the ability to exploit their hosts, directly affecting the health of the organism and the environment. By having these abilities, it could mean a change in the way the organism contributes to and balances the overall ecosystem (Poulin, 1999).
    [Show full text]
  • From Ghost and Mud Shrimp
    Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 .
    [Show full text]
  • (Digenea: Diplostomidae) from the Catfish Clarias Gariepinus (Clariidae) in Freshwater Habitats of Tanzania
    Journal of Helminthology, page 1 of 7 doi:10.1017/S0022149X15001005 q Cambridge University Press 2015 The nervous systems of Tylodelphys metacercariae (Digenea: Diplostomidae) from the catfish Clarias gariepinus (Clariidae) in freshwater habitats of Tanzania F.D. Chibwana* and G. Nkwengulila Department of Zoology and Wildlife Conservation, University of Dar es Salaam, PO Box 35064, Dar es Salaam, Tanzania (Received 29 July 2015; Accepted 27 October 2015) Abstract The nervous systems of three Tylodelphys metacercariae (T. mashonense, Tylodelphys spp. 1 and 2) co-occurring in the cranial cavity of the catfish, Clarias gariepinus, were examined by the activity of acetylthiocholine iodide (AcThI), with the aim of better understanding the arrangement of sensillae on the body surface and the nerve trunks and commissures, for taxonomic purposes. Enzyme cytochemistry demonstrated a comparable orthogonal arrangement in the three metacercariae: the central nervous system (CNS) consisting of a pair of cerebral ganglia, from which anterior and posterior neuronal pathways arise and inter- link by cross-connectives and commissures. However, the number of transverse nerves was significantly different in the three diplostomid metacercariae: Tylodelphys sp. 1 (30), Tylodelphys sp. 2 (21) and T. mashonense (15). The observed difference in the nervous system of the three metacercariae clearly separates them into three species. These findings suggest that consistent differences in the transverse nerves of digenean metacercariae could enable the differentiation
    [Show full text]
  • Zoonotic Abbreviata Caucasica in Wild Chimpanzees (Pan Troglodytes Verus) from Senegal
    pathogens Article Zoonotic Abbreviata caucasica in Wild Chimpanzees (Pan troglodytes verus) from Senegal Younes Laidoudi 1,2 , Hacène Medkour 1,2 , Maria Stefania Latrofa 3, Bernard Davoust 1,2, Georges Diatta 2,4,5, Cheikh Sokhna 2,4,5, Amanda Barciela 6 , R. Adriana Hernandez-Aguilar 6,7 , Didier Raoult 1,2, Domenico Otranto 3 and Oleg Mediannikov 1,2,* 1 IRD, AP-HM, Microbes, Evolution, Phylogeny and Infection (MEPHI), IHU Méditerranée Infection, Aix Marseille Univ, 19-21, Bd Jean Moulin, 13005 Marseille, France; [email protected] (Y.L.); [email protected] (H.M.); [email protected] (B.D.); [email protected] (D.R.) 2 IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005 Marseille, France; [email protected] (G.D.); [email protected] (C.S.) 3 Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; [email protected] (M.S.L.); [email protected] (D.O.) 4 IRD, SSA, APHM, VITROME, IHU Méditerranée Infection, Aix-Marseille University, 19-21, Bd Jean Moulin, 13005 Marseille, France 5 VITROME, IRD 257, Campus International UCAD-IRD, Hann, Dakar, Senegal 6 Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal; [email protected] (A.B.); [email protected] (R.A.H.-A.) 7 Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain * Correspondence: [email protected]; Tel.: +33-041-373-2401 Received: 19 April 2020; Accepted: 23 June 2020; Published: 27 June 2020 Abstract: Abbreviata caucasica (syn.
    [Show full text]
  • Molecular and Immunological Characterisation of Proteins from Anisakis Pegreffii and Their Immune Stimulatory Effect on the Human Health System
    Title Molecular and immunological characterisation of proteins from Anisakis pegreffii and their immune stimulatory effect on the human health system A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) Abdouslam Hassan Asnoussi Alsharif (M.Sc. in Applied Biology & Biotechnology) School of Applied Sciences College of Science Engineering and Health RMIT University June 2015 Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis/project is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. Abdouslam Hassan Asnoussi Alsharif 27/06/2015 i ACKNOWLEDGMENTS I would like to express my sincere thanks and deepest gratitude to my supervisors Professor Andreas Lopata, Professor Peter M. Smooker and Professor Robin Gasser for their guidance, constant support, advice and encouragement throughout the course of my study. I gratefully acknowledge the financial support provided by Ministry of Higher Education in Libya- Scholarship Program, without which my PhD studies would not be possible. I thank Luke Norbury, Natalie Kikidopoulos, Aya Taki, Ibukun Aibinu, Eltaher Elshgmani, Khaled Allemailem, Mohamed Said, Abdulatif Mansur and members of the biotechnology laboratory for their support and encouragement all the way. I am not able to mention everybody’s name here but I hold all members of the biotechnology laboratory dear to my heart and I thank you all for your assistance and friendship.
    [Show full text]
  • Tetrameres Numida N. Sp
    Onderstepoort Journal of Veterinary Research, 74:115–128 (2007) Tetrameres numida n. sp. (Nematoda: Tetrameridae) from Helmeted guineafowls, Numida meleagris (Linnaeus, 1758), in South Africa K. JUNKER and J. BOOMKER* Department of Veterinary Tropical Diseases, University of Pretoria Private Bag X04, Onderstepoort, 0110 South Africa ABSTRACT JUNKER, K. & BOOMKER, J. 2007. Tetrameres numida n. sp. (Nematoda: Tetrameridae) from Hel - meted guineafowls, Numida meleagris (Linnaeus, 1758), in South Africa. Onderstepoort Journal of Veterinary Research, 74:115–128 Tetrameres numida n. sp. from the proventriculus of Helmeted guineafowls, Numida meleagris, in South Africa is described from eight male and four female specimens. The new species shares some characteristics with other Tetrameres species, but can be differentiated by a unique combination of characters. It bears two rows of cuticular spines extending over the whole length of the body and pos- sesses two spicules. The left spicule measures 1 699–2 304 μm and the right one 106–170 μm. Caudal spines are arranged in three ventral and three lateral pairs and the tail is 257–297 μm long. Diagnostic criteria of some of the previously described species of the genus Tetrameres from Africa and other parts of the world have been compiled from the literature and are included here. Keywords: Helmeted guineafowls, nematodes, Tetrameres numida INTRODUCTION commonly reported ones (Permin, Magwisha, Kassu- ku, Nansen, Bisgaard, Frandsen & Gibbons 1997; The genus Tetrameres Creplin, 1846 are cosmopol- Poulsen, Permin, Hindsbo, Yelifari, Nansen & Bloch itan parasites, infecting a variety of aquatic and ter- 2000). restrial avian hosts. Females are usually located in the proventricular glands, and the males are found Tetrameres coccinea (Seurat, 1914) Travassos, free in the lumen of the proventriculus (Ander son 1914 from the Greater flamingo, Phoenicopterus ru- 1992).
    [Show full text]
  • From Monopterus Cuchia (Hamilton) (Osteichthyes: Synbranchidae) in India, with Notes on the Taxonomy of Heliconema Spp
    ©2019 Institute of Parasitology, SAS, Košice DOI 10.2478/helm-2019-0002 HELMINTHOLOGIA, 56, 2: 124 – 131, 2019 Heliconema monopteri n. sp. (Nematoda: Physalopteridae) from Monopterus cuchia (Hamilton) (Osteichthyes: Synbranchidae) in India, with notes on the taxonomy of Heliconema spp. F. MORAVEC1*, A. CHAUDHARY2, H. S. SINGH2 1Institute of Parasitology, Biology Centre, Czech Academy of Sciences (CAS), Branišovská 31, 370 05 České Budějovice, Czech Republic, *E-mail: [email protected]; 2Department of Zoology, Chaudhary Charan Singh University, Meerut (UP) - 250004, India Article info Summary Received December 11, 2018 A new nematode species, Heliconema monopteri n. sp. (Physalopteridae), is described from the Accepted January 17, 2019 stomach and intestine of the freshwater fi shMonopterus cuchia (Hamilton) (Synbranchidae) in Bijnor district, Uttar Pradesh, India. It is mainly characterized by the lengths of spicules (468 – 510 µm and 186 – 225 µm), the postequatorial vulva without elevated lips, the presence of pseudolabial lateroterminal depressions and by the number and arrangement of caudal papillae. This is the fi rst representative of the genus reported from a synbranchiform fi sh. Another new congeneric species, Heliconema pisodonophidis n. sp. is established based on a re-examination of nematodes previously reported as H. longissimum (Ortlepp, 1922) from Pisodonophis boro (Hamilton) (Ophichthidae) in Thailand; ovoviviparity in this species is a unique feature among all physalopterids. Heliconema hamiltonii Bilqees et Khanum, 1970 is designated as a species dubia and the nematodes previously reported as H. longissimum from Mastacembelus armatus (Lacépède) in India are considered to belong to H. kherai Gupta et Duggal, 1989. A key to species of Heliconema Travassos, 1919 is provided.
    [Show full text]
  • Microtetrameres Sp. (Nematoda: Tetrameridae) Host and Geographic Records Extended
    Proceedings of the Iowa Academy of Science Volume 84 Number Article 6 1977 Microtetrameres sp. (Nematoda: Tetrameridae) Host and Geographic Records Extended Charles J. Ellis Iowa State University Gregory Calderwood Iowa State University Let us know how access to this document benefits ouy Copyright ©1977 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Ellis, Charles J. and Calderwood, Gregory (1977) "Microtetrameres sp. (Nematoda: Tetrameridae) Host and Geographic Records Extended," Proceedings of the Iowa Academy of Science, 84(1), 30-31. Available at: https://scholarworks.uni.edu/pias/vol84/iss1/6 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Ellis and Calderwood: Microtetrameres sp. (Nematoda: Tetrameridae) Host and Geographic Microtetrameres sp. (Nematoda: Tetrameridae) Host and Geographic Records Extended CHARLES J. ELLIS1 and GREGORY CALDERWOOD ELLIS , CHARLES J. and G. CALDERWOOD (Department of Zoology, extended. One hundred thirty-eight birds were examined including 10 genera, Iowa State University , Ames IA 50011). Microtetrameres sp. (Nematoda: 10 species and 5 families. Two species were infected with Tetrameres sp. , Tetrameridae) Host and Geographic Records Extended. Proc . Iowa Acad. one with over 40 females
    [Show full text]
  • (Trematoda; Cestoda; Nematoda) Geographic Records from Three Species of Owls (Strigiformes) in Southeastern Oklahoma Chris T
    92 New Ectoparasite (Diptera; Phthiraptera) and Helminth (Trematoda; Cestoda; Nematoda) Geographic Records from Three Species of Owls (Strigiformes) in Southeastern Oklahoma Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 John M. Kinsella HelmWest Laboratory, 2108 Hilda Avenue, Missoula, MT 59801 Lance A. Durden Department of Biology, Georgia Southern University, Statesboro, GA 30458 Will K. Reeves Colorado State University, C. P. Gillette Museum of Arthropod Diversity, Fort Collins, CO 80521 Abstract: We are just now beginning to learn about the ectoparasites and helminth parasites of some owls of Oklahoma. Some recent contributions from our lab have attempted to help fill a previous void in that information. Here, we report, four taxa of ectoparasites and five helminth parasites from three species of owls in Oklahoma. They include two species of chewing lice (Strigiphilus syrnii and Kurodeia magna), two species of hippoboscid flies (Icosta americana and Ornithoica vicina), a trematode (Strigea elegans) and a cestode (Paruterina candelabraria) from barred owls (Strix varia), and three nematodes, Porrocaecum depressum from an eastern screech owl (Megascops asio), Capillaria sp. eggs from S. varia, and Capillaria tenuissima from a great horned owl (Bubo virginianus). With the exception of Capillaria sp. eggs and I. americana, all represent new state records for Oklahoma and extend our knowledge of the parasitic biota of owls of the state. to opportunistically examine raptors from the Introduction state and document new geographic records for their parasites in Oklahoma. Over 455 species of birds have been reported Methods from Oklahoma and several are species of raptors or birds of prey that make up an important Between January 2018 and September 2019, portion of the avian fauna of the state (Sutton three owls were found dead on the road in 1967; Baumgartner and Baumgartner 1992).
    [Show full text]
  • (Digenea, Diplostomidae) in Pumpkinseed (Lepomis
    New record of metacercariae of the North American Posthodiplostomum centrarchi (Digenea, Diplostomidae) in pumpkinseed (Lepomis gibbosus) in Hungary Acta Veterinaria Hungarica p GABOR CECH1 ,DIANA SANDOR 1,2,KALM AN MOLNAR 1, 68 (2020) 1, 20–29 PETRA PAULUS3, MELITTA PAPP3,BALINT PREISZNER4, 4 1 1 DOI: ZOLTAN VITAL , ADAM VARGA and CSABA SZEKELY 10.1556/004.2020.00001 © 2020 The Author(s) 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungaria krt. 21, H-1143, Budapest, Hungary 2 Eotv€ os€ Lorand University, Doctoral School of Biology, Programme of Zootaxonomy, Animal Ecology and Hydrobiology, Budapest, Hungary 3 fi ORIGINAL ARTICLE National Food Chain Safety Of ce, Veterinary Diagnostic Directorate, Budapest, Hungary 4 Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary Received: October 18, 2019 • Accepted: November 21, 2019 Published online: May 8, 2020 ABSTRACT Two species of the genus Posthodiplostomum (Digenea: Diplostomatidae) (Posthodiplostomum brevicaudatum Nordmann, 1832 and Posthodiplostomum cuticola Nordmann, 1832) are known as parasites of Hungarian native fishes. Metacercariae of P. cuticola are widespread in Europe and cause black spot disease. Several species of Posthodiplostomum were described also from North America but none of them has been isolated in Hungary up to now. Posthodiplostomum centrarchi Hoffman, 1958 has been detected recently in pumpkinseeds (Lepomis gibbosus L., 1758) in several European countries. Posthodiplostomum centrarchi was isolated for the first time in Hungary from pumpkinseeds caught in the Maconka water reservoir in 2015. Thereafter, several natural waters (e.g. the River Danube, Lake Balaton and the Sio channel) were sampled in order to determine its presence and distribution.
    [Show full text]
  • Parasitology Volume 60 60
    Advances in Parasitology Volume 60 60 Cover illustration: Echinobothrium elegans from the blue-spotted ribbontail ray (Taeniura lymma) in Australia, a 'classical' hypothesis of tapeworm evolution proposed 2005 by Prof. Emeritus L. Euzet in 1959, and the molecular sequence data that now represent the basis of contemporary phylogenetic investigation. The emergence of molecular systematics at the end of the twentieth century provided a new class of data with which to revisit hypotheses based on interpretations of morphology and life ADVANCES IN history. The result has been a mixture of corroboration, upheaval and considerable insight into the correspondence between genetic divergence and taxonomic circumscription. PARASITOLOGY ADVANCES IN ADVANCES Complete list of Contents: Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa T. Nozaki, V. Ali and M. Tokoro The Use and Implications of Ribosomal DNA Sequencing for the Discrimination of Digenean Species M. J. Nolan and T. H. Cribb Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes P P. D. Olson and V. V. Tkach ARASITOLOGY Wolbachia Bacterial Endosymbionts of Filarial Nematodes M. J. Taylor, C. Bandi and A. Hoerauf The Biology of Avian Eimeria with an Emphasis on Their Control by Vaccination M. W. Shirley, A. L. Smith and F. M. Tomley 60 Edited by elsevier.com J.R. BAKER R. MULLER D. ROLLINSON Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes Peter D. Olson1 and Vasyl V. Tkach2 1Division of Parasitology, Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 2Department of Biology, University of North Dakota, Grand Forks, North Dakota, 58202-9019, USA Abstract ...................................166 1.
    [Show full text]