An Approach to the Development of Inherent Soil Productivity Indices

Total Page:16

File Type:pdf, Size:1020Kb

An Approach to the Development of Inherent Soil Productivity Indices ational November 2006 Issue 37 N ooperative oil C urvey SS Newsletter In This Issue— An Approach to the indices occur with only a minor difference in the numerical values Development of Inherent between the same data element. Figure An Approach to the Development Soil Productivity Indices 1 demonstrates the use of a continuous of Inherent Soil Productivity evaluation to assign numerical rating Indices ............................................ 1 By H. Raymond Sinclair, Jr., Robert R. Dobos, and Sharon W. Waltman, Soil Scientists, values for a soil property. The Wade G. Hurt Receives SSSA NRCS. continuous evaluation typically assigns Award ............................................. 6 values ranging from 0.01 to 1.0. In table 1, rating classes are assigned NRCS Receives ESRI Award ............. 7 Introduction numerical values. The rating classes are Retirement of Frederick M. Kaisaki ... 8 This article describes a prototype typically assigned values ranging from model of Soil Rating for Plant Growth, 5 to 100. The numerical values Retirement of Robert J. Engel ............ 8 version 4 (SRPG4), which generates assigned to the rating classes are more Nonretirement of Stanley P. inherent productivity indices for soils ambiguous than the values in a Anderson: A Reprise..................... 8 in the United States using soil survey continuous evaluation. In this example, data. The article demonstrates how this both the class and continuum indicate a Web-Based Soil Extent Mapping system assigns productivity indices to condition that is more favorable for Tool ................................................ 9 soils growing commodity crops. The plant growth as the assigned numerical Phil Derr Passes Away ...................... 10 soil data elements in NASIS and soil values become larger. interpretations model (Soil Survey Rooftops to Rivers Publication Staff, 2006a and 2006b) in the NASIS Table 1.—Values assigned to crisp Available ...................................... 11 interpretation module will be used to classes Job Aids ............................................ 11 generate the productivity indices. The Class definition Assigned value article will outline how the model is being developed. It is the first in a Most favorable 100, or else series of publications that will explain 95, or else, the development and use of this model. Future publications will discuss all 85, or else aspects of the SRPG4 model in detail. 75, or else This article will not discuss some aspects that are still in developmental 60, or else Editor’s Note stages. These planned aspects are Least favorable 5. Issues of this newsletter are available in the NASIS interpretation available on the World Wide Web module. (http://soils.usda.gov/). Under Quick The Soil Survey Staff (2000) K.W. Flach (1985) indicated the Access, click on NCSS, then on explained the use of rating classes or need for modeling in soil science, that Newsletters, and then on the desired traditional “crisp” limits (table 1) to is, the need for “a model of the issue number. assign soil productivity indices for relationship between kinds of soils and You are invited to submit stories for commodity crops. Users suggested that landscape.” The mapper “maps ahead this newsletter to Stanley Anderson, a continuous evaluation of soil using this model.” Verbalizing the National Soil Survey Center, Lincoln, properties (SRPG4) could possibly model usually is difficult, as is “putting Nebraska. Phone—402-437-5357; assign soil productivity indices that it into quantitative terms,” but the FAX—402-437-5336; email— avoid boundary conditions where mapper “could not function effectively [email protected]. drastically different productivity without it.” 1 NCSS Newsletter module of the soil survey database indicates the degree of membership of system (Soil Survey Staff, 2006b) to that attribute in the set of soils that are assess the impact of numerous soil productive. In this example, a soil constraints or qualities on plant growth component having a pH of 6.5 would and thus compute a soil productivity or receive a score of 1, whereas a soil inherent soil quality index for component having a pH of 5.0 would components of soil map units (Soil receive a score of less than 1. The Figure 1.—Values assigned for a continuous Survey Staff, 2006a). The SRPG4 shape of the curve depends on the soil evaluation. calculations followed the “Storie Index attribute being modeled (see figures 2 Rating” (Storie and Weir, 1958; Storie, through 5). 1978), which was based on soil The rating from the evaluation is fed Many crop indices with their characteristics that govern the land’s into a base rule indicating the impact of published methodology have been potential utilization and productive the soil attribute in question on the land developed for many geographical areas capacity. The Storie index was use. The base rule is a logical diagram over the past years. Each model originally adapted to semiarid and arid depicting the relationship between the developed criteria and used data regions and included profile soil attributes and the land use being elements that enable it to work for a characteristics that influenced the modeled. Base rules can be put selected area. Everyone should study effective rooting depth and the quality together to make various levels of the methodology that results in the of the root zone; subsurface properties subrules, depending on the complexity generation of indices that satisfy the (permeability, available water capacity, of the land use situation being customers using these models. After the drainage class, and soluble salts); and considered (Soil Survey Staff, 2001). models were examined, none seemed to landscape properties, such as slope, Table 2 lists the four subrules generate indices that would array the microrelief, and the degree of erosion. (chemical and physical properties and soils of the United States for growing SRPG4 also considers climate as an climate and landscape factors) used to commodity crops. Huddleston (1984) additional factor in calculating the calculate SRPG4. As is indicated in details the development and use of soil index. Climate is a particularly table 2, base rule level 2 has 22 productivity ratings in the U.S. The significant parameter, given the range elements, which mathematically Storie Index is a method of soil rating of climate across regions. SRPG4 calculate the values for the four that is based on soil characteristics that provides a reasonable semi-quantitative elements in subrule level 1. govern the land’s potential utilization index (from 0.01 to 1) of soil Soil attribute data can be and productive capacity. It is productivity applicable to map unit manipulated in a variety of ways to independent of other physical and components of the soil survey database. arrive at a value that is meaningful in economic factors that might determine A table near the end of this article terms of soil productivity. For example, the desirability of growing certain (table 4) shows a productivity index roots are sensitive to the bulk density of plants in a given location. The generated by an early version of a soil layer, since penetration resistance publications by Huddleston and Storie SRPG4. is partially a function of bulk density. are only two of the more than 90 The conceptual model of the soil At some point, a soil layer becomes too citations available on the subject of interpretations module, or prototype as dense for root ramification. The values crop indices. outlined in this article, consists of four for nonlimiting, critical, and root- basic parts. These are “main rules” limiting bulk densities for each family Methodology and Development (also called “interpretations”), particle-size class are shown in table 3 of SRPG4 “subrules” (composed of “base rules”), (Pierce et al., 1983). “evaluations,” and “properties.” A The information in table 3 is Soil productivity is strongly “property” is a Structured Query manipulated in a property script to influenced by the capacity of a soil to Language (SQL) script that retrieves arrive at a way of comparing the supply the nutrients and soil-stored the desired soil attribute data, such as populated bulk density to a bulk water that a crop growing in a given the pH of the surface horizon. This density that is conducive to root growth climate needs (Olson and Lang, 2002). piece of data is placed into an for any particular combination of sand, SRPG4 uses the soil interpretations evaluation, which is a graph that silt, and clay. The resulting number is 2 NCSS Newsletter Figure 2.—Precipitation. Figure 3.—pH, 0-20 cm, weighted average. Figure 4.—Available water capacity (AWC), 0-150 cm. Figure 5.—Frost-free days. then scored on the basis of its zone. Table 4 illustrates the numerical productivity index for commodity estimated impact on soil productivity values generated by the rule, subrules, crops. using the appropriate evaluation. and base rules in the SRPG4 model. The SRPG4 model should be The soil interpretations module The table also indicates the taxonomic tested in many different geographical allows the logical relationships, such as classification of the soil. areas. Constructive suggestions interactions and weighting, among soil, The ratings for the subrule level 1 would be appreciated. Ideas and landscape, and site features to be factors are weighted and used in the suggestions are continually being modeled. In SRPG4, the weight of a calculation of the final SRPG tested and incorporated into the particular variable can be assigned in the subrule diagram. Figure 6 is an example of how physical soil factors might be related in a subrule. The “divide” boxes are used to adjust the weight of the individual factors or groups of factors. The results are multiplied together, as in the Storie index. Some products that can be generated using the SRPG4 model are indicated in figure 7 and table 4. Figure 7 shows the available water capacity of the root zone for the soils in Tazewell County, Illinois (Soil Survey Staff, 2005). There is a very good relationship between crop yields and the available water capacity of the root Figure 6.—A subrule diagram of physical soil properties.
Recommended publications
  • Soil Quality: Why and How?
    Geoderma 114 (2003) 145–156 www.elsevier.com/locate/geoderma Soil quality: why and how? Douglas L. Karlena,*, Craig A. Ditzlerb, Susan S. Andrewsa a USDA-ARS National Soil Tilth Laboratory, 2150 Pammel Drive, Ames, IA 50011-4420, USA b National Soil Survey Center, 100 Centennial Mall North, Lincoln, NE 68508-3866, USA Abstract The soil quality concept evolved throughout the 1990s in response to increased global emphasis on sustainable land use and with a holistic focus emphasizing that sustainable soil management requires more than soil erosion control. The concept includes two areas of emphasis—education and assessment—both based soundly on principles of soil science. Soil quality test kits, farmer-based scorecards, visual assessment procedures, fact sheets, and video presentations were developed as educational materials because many people have no basis to recognize, understand or appreciate the complexity of soil resources. Assessment tools for indexing soil quality at various scales were pursued to show the multiple functions (e.g. nutrient and water cycling, filtering and buffering of contaminants, decomposition of crop residues and other organic matter sources, and recycling of essential plant nutrients) that soils provide as the foundation for sustainable land management. Worldwide research and technology transfer efforts have increased awareness that soil resources have both inherent characteristics determined by their basic soil formation factors and dynamic characteristics influenced by human decisions and management practices. Soil quality assessment and education are intended to provide a better understanding and awareness that soil resources are truly living bodies with biological, chemical, and physical properties and processes performing essential ecosystem services.
    [Show full text]
  • Agricultural Resources Assessment
    2017 Agricultural Resources Assessment CHINO PARCEL DELIVERY FACILITY PROJECT PREPARED BY: T&B PLANNING, INC. Agricultural Resources Assessment for the Chino Parcel Delivery Facility Project City of Chino, California Prepared For: Scannell Properties 800 East 96th Street, Suite 175 Indianapolis, IN 46077 Prepared By: T&B Planning, Inc. 17542 East 17th Street, Suite 100 Tustin, CA 92780 October 4, 2017 Abstract The Chino Parcel Delivery Facility Project site is located in the City of Chino, San Bernardino County, California. The Project proposes the construction of industrial land uses on a 74.4-acre property, and is subject to review under the California Environmental Quality Act (CEQA). In this report, the California Land Evaluation and Site Assessment (LESA) Model is used as an evaluation tool to determine if the subject property qualifies as an important agricultural resource. Based on the methodology established by the California LESA Model, this report concludes that the Project site is an important agricultural resource. Agricultural Resources Assessment Chino Parcel Delivery Facility City of Chino TABLE OF CONTENTS Section Number/Title Page 1.0 Introduction ...................................................................................................................................................................1 1.1 Document Purpose .................................................................................................................................................1 1.2 Project Location .......................................................................................................................................................1
    [Show full text]
  • Indicators of Agricultural Soil Genesis Under Varying Conditions of Land Use, Steppe Crimea
    Geoderma 239–240 (2015) 304–316 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Indicators of agricultural soil genesis under varying conditions of land use, Steppe Crimea Fedor Lisetskii a, Vladimir F. Stolba b,⁎,OlgaMarininа a a Belgorod State National Research University, 308015, Belgorod, ul. Pobedy 85, Russia b Aarhus University, Nordre Ringgade 1, DK-8000 Aarhus C, Denmark article info abstract Article history: This study investigates the effects of agricultural exploitation of soils of the north-western Crimea, the active and Received 12 May 2014 large-scale cultivation of which began with the Greek colonization of the area. In order to compare soils using a Received in revised form 29 October 2014 wide spectrum of physical and chemical properties, the studied objects (virgin land, post-antique idle land, con- Accepted 8 November 2014 tinually plowed land, modern-day plowed land, idle land of the modern era) have been grouped into a Available online 20 November 2014 chronosequence. This makes it possible to apply the method of factor sequences of agrogenic transformations Keywords: in soils, which takes into account different periods of human activities. The other factors involved in soil forma- Soil formation tion are considered to be relatively invariable. From the mass of physiochemical properties of these soils that Idle lands have endured long-term agricultural stress, the most informative indicators of agrogenesis have been identified. Agrogenic soils The authors propose a procedure for calculating an integral agrophysical soil indicator based on five parameters Chronosequence that can be used to determine the soil structure and cloddiness as well as water-stability, the amount of water- Agrogenic indicators stable aggregates and their mean mass-weighted diameter.
    [Show full text]
  • Literature Review on Soil Health and Conservation
    AUG 30, 2017 Methods to Assess Co-Benefits of California Climate Investments Soil Health and Conservation Center for Resource Efficient Communities, UC-Berkeley Agreement #15TTD002, Project Order #1, Task 2 Literature Review Primary Author: Bill Eisenstein and Sara Litke I. Background Under California’s Cap-and-Trade program, the State’s portion of the proceeds from Cap-and-Trade auctions is deposited in the Greenhouse Gas Reduction Fund (GGRF). The Legislature and Governor enact budget appropriations from the GGRF for State agencies to invest in projects that help achieve the State’s climate goals. These investments are collectively called California Climate Investments (CCI). Senate Bill 862 requires the California Air Resources Board (CARB) to develop guidance on reporting and quantification methods for all State agencies that receive appropriations from the GGRF. Guidance includes developing quantification methodologies for greenhouse gas (GHG) emission reductions and other social, economic, and environmental benefits of projects, referred to as “co-benefits.” This document is one of a series that reviews the available methodologies for assessing selected co-benefits for CCI projects at two phases: estimating potential project-level co-benefits prior to project implementation (i.e., forecasting of co-benefits), and measuring actual co-benefits after projects have been implemented (i.e. tracking of co-benefits). The assessment methodology at each of these phases may be either quantitative or qualitative. As with CARB’s existing GHG
    [Show full text]
  • California Revised Storie Index (CA)—Tehama County, California (Old Russell Farm Package) 122° 22' 15'' W 122° 21' 13'' W
    California Revised Storie Index (CA)—Tehama County, California (Old Russell Farm Package) 122° 22' 15'' W 15'' 22' 122° W 13'' 21' 122° 553700 553800 553900 554000 554100 554200 554300 554400 554500 554600 554700 554800 554900 555000 40° 6' 32'' N 40° 6' 32'' N 4440000 4440000 4439900 4439900 4439800 4439800 4439700 4439700 4439600 4439600 4439500 4439500 4439400 4439400 4439300 4439300 4439200 4439200 Soil Map may not be valid at this scale. 40° 6' 1'' N 4439100 40° 6' 1'' N 4439100 553700 553800 553900 554000 554100 554200 554300 554400 554500 554600 554700 554800 554900 555000 Map Scale: 1:6,730 if printed on A landscape (11" x 8.5") sheet. Meters N 0 50 100 200 300 122° 22' 15'' W 15'' 22' 122° W 13'' 21' 122° Feet 0 300 600 1200 1800 Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 10N WGS84 Natural Resources Web Soil Survey 3/2/2018 Conservation Service National Cooperative Soil Survey Page 1 of 4 California Revised Storie Index (CA)—Tehama County, California (Old Russell Farm Package) MAP LEGEND MAP INFORMATION Area of Interest (AOI) Grade 5 - Very Poor The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) 1:20,000. Grade 6 - Nonagricultural Soils Not rated Warning: Soil Map may not be valid at this scale. Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Grade 1 - Excellent Not rated or not available misunderstanding of the detail of mapping and accuracy of soil Grade 2 - Good Water Features line placement.
    [Show full text]
  • For Peer Review Only
    ORE Open Research Exeter TITLE Comparison of methods for evaluating the suitability of Vertisols for Gossypium hirsutum (Bt cotton) in two contrasting agro-ecological regions AUTHORS Karthikeyan, , K; Vasu, , D; Tiwary, , P; et al. JOURNAL Archives of Agronomy and Soil Science DEPOSITED IN ORE 20 November 2018 This version available at http://hdl.handle.net/10871/34827 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Archives of Agronomy and Soil Science For Peer Review Only Comparison of methods for evaluating the suitability of Vertisols for Gossypium hirsutum (Bt cotton) in two contrasting agro-ecological regions Journal: Archives of Agronomy and Soil Science Manuscript ID GAGS-2018-0638.R2 Manuscript Type: Original Article Agro-ecological regions, Land suitability evaluation, Soil quality index, Keywords: Vertisols, Principal component analysis URL: http://mc.manuscriptcentral.com/GAGS E-mail: [email protected] Page 1 of 34 Archives of Agronomy and Soil Science Comparison of methods for evaluating the suitability of Vertisols for Gossypium hirsutum (Bt cotton) in two contrasting agro-ecological regions Karunakaran Karthikeyana, Duraisamy Vasua, Pramod Tiwarya, Andrew M. Cunliffeb, Padikkal Chandrana, Sankar Mariappanc, Surendra K Singhd For Peer Review Only aDivision of Soil
    [Show full text]
  • On the Use of Multivariate Analysis and Land Evaluation for Potential Agricultural Development of the Northwestern Coast of Egypt
    agronomy Article On the Use of Multivariate Analysis and Land Evaluation for Potential Agricultural Development of the Northwestern Coast of Egypt Mohamed El Sayed Said 1,*, Abdelraouf. M. Ali 1,2 , Maurizio Borin 3,* , Sameh Kotb Abd-Elmabod 4 , Ali A. Aldosari 5 , Mohamed M. N. Khalil 6 and Mohamed K. Abdel-Fattah 6 1 National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 11843, Egypt; [email protected] 2 Agrarian-Technological Institute of the Peoples Friendship University of Russia, ul. Miklukho-Maklaya 6, 117198 Moscow, Russia 3 Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padua, Agripolis Campus, Viale dell’ Università 16, 35020 Legnaro (PD), Italy, Veneto 4 Soils & Water Use Department, Agricultural and Biological Research Division, National Research Centre, Cairo 12622, Egypt; [email protected] 5 Geography Department, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] 6 Soil Science Department, Faculty of Agriculture, ZagazigUniversity, Zagazig 44519, Egypt; [email protected] (M.M.N.K.); [email protected] (M.K.A.-F.) * Correspondence: [email protected] (M.E.S.S.); [email protected] (M.B.); Tel.: +20-10-6144-5686 (M.E.S.S.) Received: 20 July 2020; Accepted: 21 August 2020; Published: 3 September 2020 Abstract: The development of the agricultural sector is considered the backbone of sustainable development in Egypt. While the developing countries of the world face many challenges regarding food security due to rapid population growth and limited agricultural resources, this study aimed to assess the soils of Sidi Barrani and Salloum using multivariate analysis to determine the land capability and crop suitability for potential alternative crop uses, based on using principal component analysis (PCA), agglomerative hierarchical cluster analysis (AHC) and the Almagra model of MicroLEIS.
    [Show full text]
  • A Contribution to Soil Fertility Assessment for Arid and Semi-Arid Lands
    Review A Contribution to Soil Fertility Assessment for Arid and Semi-Arid Lands Hussam Hag Husein 1,* , Bernhard Lucke 1 , Rupert Bäumler 1 and Wahib Sahwan 2 1 Institute of Geography, FAU Erlangen-Nürnberg Universität, 91058 Erlangen, Germany; [email protected] (B.L.); [email protected] (R.B.) 2 Physical Geography, Institute of Geographical Sciences, Freie Universität Berlin, Malteserstraße 74-100, 12249 Berlin, Germany; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +49-9131-85-23305 Abstract: Soil fertility must be viewed as a dynamic concept that involves the constant cycling of nutrients between organic and inorganic forms. In this context, it refers also to supply adequate amounts of water and aeration for plant growth. Soil fertility under arid and semi-arid lands is constrained not only by limited water availability but also by small organic matter contents. Most fertility assessment systems are based on organic matter contents as the main parameter. However, crop experiments from various irrigated arid and semi-arid soils indicate that productivity is less- affected by organic matter contents than assumed. Therefore, we propose a new soil fertility system for dryland soils. It is a rule-based set of algorithms, mainly using additions and subtractions. Soil, climate, and landscape factors are integrated to calculate the numerical value of fertility for a given soil. We expect the system, which is focused on soil properties that keep or increase optimum soil moisture (such as texture), to be applicable in arid and semi-arid lands and to provide more realistic estimates of fertility regarding agricultural purposes.
    [Show full text]
  • Land Use, Land Cover and Soil Sciences
    CONTENTS LAND USE, LAND COVER AND SOIL SCIENCES Land Use, Land Cover and Soil Sciences - Volume 1 No. of Pages: 331 ISBN: 978-1-84826-235-5 (eBook) ISBN: 978-1-84826-685-8 (Print Volume) Land Use, Land Cover and Soil Sciences - Volume 2 No. of Pages: 307 ISBN: 978-1-84826-236-2 (eBook) ISBN: 978-1-84826-686-5 (Print Volume) Land Use, Land Cover and Soil Sciences - Volume 3 No. of Pages: 278 ISBN: 978-1-84826-237-9 (eBook) ISBN: 978-1-84826-687-2 (Print Volume) Land Use, Land Cover and Soil Sciences - Volume 4 No. of Pages: 433 ISBN: 978-1-84826-238-6 (eBook) ISBN: 978-1-84826-688-9 (Print Volume) Land Use, Land Cover and Soil Sciences - Volume 5 No. of Pages: 378 ISBN: 978-1-84826-239-3 (eBook) ISBN: 978-1-84826-689-6 (Print Volume) Land Use, Land Cover and Soil Sciences - Volume 6 No. of Pages: 389 ISBN: 978-1-84826-240-9 (eBook) ISBN: 978-1-84826-690-2 (Print Volume) Land Use, Land Cover and Soil Sciences - Volume 7 No. of Pages: 285 ISBN: 978-1-84826-241-6 (eBook) ISBN: 978-1-84826-691-9 (Print Volume) For more information of e-book and Print Volume(s) order, please click here Or contact :[email protected] ©Encyclopedia of Life Support Systems (EOLSS) LAND USE, LAND COVER AND SOIL SCIENCES CONTENTS Preface xxxviii VOLUME I Land Use, Land Cover and Soil Sciences 1 Willy H. Verheye, Research Director, National Science Foundation, Flanders, Belgium, and Geography Department, University of Ghent, Belgium 1.
    [Show full text]
  • Developing a Multi-Factor Crop Production Environmental Risk Index
    Developing a multi-factor crop production environmental risk index R. R. Dobos, L. T. West, H. R. Sinclair, Jr., and K. W. Hipple National Soil Survey Center, USDA Natural Resources Conservation Service, Lincoln, NE, USA Corresponding author: [email protected] Abstract The production of crops is not always done without soil degradation or damage to the environment. Many indexes have been developed to define the productivity of soils but fewer are designed to integrate many soil and landscape factors to describe the potential hazards of crop production. The objective of this work is to report on a method of quantifying the environmental risk that may occur to the soil resource and the environment as a result of crop production. The risk of erosion by water and wind, compaction, acidification, salinization, denitrification, surface and subsurface water contamination, and organic matter loss are examined using the soil interpretations module of the National Soil Information System. This system allows the magnitude of soil properties to be evaluated in terms of their degree contribution to a risk factor and also permits weighting of the importance of each risk factor. Productivity index and the environmental risk ratings are mapped for Mason County, Illinois, USA. The result of combining the risk and productivity indices has clear implications for biofuels and other land uses. Key Words Soil productivity, soil degradation, dynamic soil properties, sustainable land use. Introduction Many models have been developed to quantify the relative inherent productivity of soils. These include the Storie Index (Storie 1978), and the National Commodity Crop Productivity Index (Dobos et al.
    [Show full text]
  • A Decision Support System for Soil Productivity and Erosion in Polk County, Nebraska
    A DECISION SUPPORT SYSTEM FOR SOIL PRODUCTIVITY AND EROSION IN POLK COUNTY, NEBRASKA A.E. Gadem1, S. Narumalani1, W. J. Waltman2 S.E. Reichenbach2, and P.Dappen1 1 CALMIT, University of Nebraska--Lincoln 2 Dept. of Computer Science & Engineering, University of Nebraska—Lincoln ABSTRACT GIS-based decision-support systems are powerful, new tools for assessing inherent soil productivity and potential erosion. This study integrates digital soil survey (SSURGO) information, climate, LandSat TM-derived land cover, and 30m digital elevation data (NEDS) to spatially model regions of soil productivity and highly erodible lands in Polk County, Nebraska. The approach combines soil productivity indices, derived from the "Soil Ratings for Plant Growth" (SRPG), and land cover to identify poorer quality soil landscapes in corn and soybean production. Models using the Revised Universal Soil-Loss Equation test possible conservation strategies to reduce soil-loss in areas with high potential erosion rates. These decision support tools target conservation needs at both the county and farm scales and hold promise for federal and state agencies. INTRODUCTION Land resource evaluation is the process of assessing the suitability of land for a specified kind of land use. Physical land evaluation can provide spatial information on the potentials and constraints of land for a particular use, such as crop production, natural resource conservation (e.g., riparian zone), and urban development. Land use planning relies upon the assessments of land and its specific attributes, such as climate, topography, hydrology, and soil (Bouma., 1989; Dumanski et al., 1986). In an agricultural context, soil quality is usually defined in terms of soil productivity, and specifically in regard to soil’s capacity to sustain and nurture plant growth (Carter et al., 1997).
    [Show full text]
  • Anthony (Toby) O'geen Soil Resource Specialist in Cooperative
    Anthony (Toby) O’Geen Soil Resource Specialist in Cooperative Extension http://casoilresource.lawr.ucdavis.edu Dept. of Land, Air & Water Resources [email protected] University of California work: (530) 752-2155 Davis, CA 95616-8527 home: (530) 753-8457 EDUCATION Ph.D., 2002. University of Idaho, Soil Science (Hydrology emphasis) Dissertation: Assessment of hydrologic processes across multiple scales in soil/paleosol sequences using environmental tracers M.S., 1998. Washington State University, Soil Science (Entomology emphasis) Thesis: Faunal paleoecology of late Quaternary paleosols on the Columbia Plateau B.S., 1994. California Polytechnic State University, Soil Science Thesis: Effects of deep tillage on organic carbon content of forest soils RESEARCH EXPERIENCE Soil Resource Specialist in Cooperative Extension 7/2011-present): UC Davis Associate Soil Resource Specialist in Cooperative Extension 7/2007-6/2011): UC Davis Assistant Soil Resource Specialist in Cooperative Extension (10/02 to 6/2007): UC Davis TEACHING& OUTREACH EXPERIENCE Instructor • Soils land use and the environment SSC 118 UC Davis (Spring 2011 to present) • Field Investigations in Soil Resources UC Davis (Summer 2004, 2009, & 2013) • Soil Development and Classification University of Idaho (Spring 02) • Introductory Soils Laboratory University of Idaho (Spring & Fall 99-01) • Soil and Site Evaluation University of Idaho (99-02) Websites & Apps • D.E. Beaudette and A.T. O’Geen, SoilWeb: http://casoilresource.lawr.ucdavis.edu/soilweb/ • M. Walkinshaw, D.E. Beaudette and A.T. O’Geen, Soil Properties: http://casoilresource.lawr.ucdavis.edu/ca-soil-properties/ • M. Walkinshaw, D.E. Beaudette and A.T. O’Geen Series Extent Explorer: http://casoilresource.lawr.ucdavis.edu/see/ • M.
    [Show full text]