Jahresbericht 2015 Max-Planck-Institut Für Astronomie

Total Page:16

File Type:pdf, Size:1020Kb

Jahresbericht 2015 Max-Planck-Institut Für Astronomie Max-Planck-Institut t für Astron titu om ns ie -I k H c e n id la e l P b - e x r a g für Astronomie M M g a r x e b P l la e n id c e k H In y s m titu no Heidelberg-Königstuhl te for Astro Jahresbericht 2015 Titelbild: Hochaufgelöste Spektren wie dieses des Sterns μ Leonis wurden mit dem NARVAL-Spektrografen am Télescope Ber- nard Lyot des Observatoire Midi-Pyrénées als Teil eines großen Programmes bodengebundener Beobachtungen er- stellt. Sie sollen die mit dem Astrometriesatelliten Gaia aufgenommenen Daten ergänzen. Die detaillierte Analyse von Hunderttausenden solcher Spektren aus allen Regionen unserer Heimatgalaxie sind der Schlüssel zum Verständnis der Herkunft der chemischen Elemente und der Ent ste hungs ge schichte der Milchstraße. Siehe Kapitel II.2, Seite 25. Quelle: Maria Bergemann / MPIA / NARVAL@TBL für Astro itut no st m n ie -I k H c e n id la e l P b Max-Planck-Institut - e x r a g M M g a r x e b für Astronomie P l la e n id c e k H In y s m titu no Heidelberg-Königstuhl te for Astro Jahresbericht 2015 Max-Planck-Institut für Astronomie Wissenschaftliche Mitglieder, Kollegium, Direktoren: Prof. Thomas Henning (Geschäftsführender Direktor) Prof. Hans-Walter Rix (Direktor) Wissenschaftlicher Referent: Dr. Klaus Jäger (Telefon: +49 6221 528 379) Öffentlichkeitsarbeit (Leitung), Haus der Astronomie (Leitung): Dr. Markus Pössel (Telefon: +49 6221 528 261) Verwaltung (Leitung): Mathias Voss (Telefon: +49 6221 528 230) MPIA-Observatorien: Dr. Roland Gredel (Telefon: +49 6221 528 264) Emeritierte Wissenschaftliche Mitglieder: Prof. Immo Appenzeller, Heidelberg Prof. Guido Münch, La Jolla Prof. Karl-Heinz Böhm, Seattle † 2. März 2015 Auswärtige Wissenschaftliche Mitglieder: Prof. Steven V. W. Beckwith, Berkeley Prof. Rafael Rebolo, Teneriffa Prof. Willy Benz, Bern Prof. Volker Springel, Heidelberg Fachbeirat: Prof. Rolf-Peter Kudritzki, Honolulu (Vorsitz) Prof. Sabine Schindler, Innsbruck Prof. Ewine van Dishoeck, Leiden Prof. Stephan Shectman, Pasadena Dr. Philip John Puxley, Arlington Prof. Rens Waters, Amsterdam Prof. Dieter Reimers, Hamburg Prof. Robert Williams, Baltimore Prof. Anneila I. Sargent, Pasadena Prof. Harold Yorke, Pasadena Kuratorium: Prof. Karlheinz Meier, Heidelberg (Leitung) Dr. Wolfgang Niopek, Heidelberg Prof. Bernhard Eitel, Heidelberg Dipl.-Ing. Stefan Plenz, Wiesloch Dr. Reinhold Ewald, Weißling Prof. Roland Sauerbrey, Dresden Dr. Peter Hartmann, Mainz Dr. Bernd Scheifele, Heidelberg Prof. Matthias Hentze, Heidelberg Dr. h.c. Klaus Tschira, Heidelberg † 31. März 2015 Dr. Michael Kaschke, Oberkochen Prof. Andreas Tünnermann, Jena Min.-Dirig. Dr. Heribert Knorr, Stuttgart Dipl.-Phys. Ranga Yogeshwar, Köln Dipl.-Ing. Matthias Nagel, Bonn Anschrift: MPI für Astronomie, Königstuhl 17, D-69117 Heidelberg Telefon: +49 6221 5280 Fax:+49 6221 528 246 E-Mail: [email protected] Internet: www.mpia.de Calar-Alto-Observatorium Anschrift: Centro Astronómico Hispano Alemán, Calle Jesús Durbán 2/2, E-04004 Almería Telefon: +34 950 230 988, 0034 950 632 500 Fax: +34 950 632 504 E-Mail: [email protected] Internet: www.caha.es Arbeitsgruppe »Laboratorastrophysik«, Jena Anschrift: Institut für Festkörperphysik der FSU, Helmholtzweg 3, D-07743 Jena Telefon: +49 3641 947 354 Fax: +49 3641 947 308 E-Mail: [email protected] © 2015 Max-Planck-Institut für Astronomie, Heidelberg Herausgeber: Thomas Henning, Hans-Walter Rix Redaktion: Markus Pössel Graphik-Redaktion: Axel M. Quetz Lektorat/Korrektorat: Sigrid Brümmer, Markus Pössel, Axel M. Quetz Texte: Ingrid Apfel (V.1), Thomas Henning (II.1), Klaus Jäger (V.1–2), Knud Jahnke (III.2), Oliver Krause (III.2), Martin Kürster (III.1, III.4, III.5), Markus Pössel (I, II.3–7, IV.1–3), Hans- Walter Rix (II.2); mit Beiträgen der unter den jeweiligen Texten als Ansprechpartner/Beteiligte angegebenen Mitarbeiter Listenteil: Axel M. Quetz Graphiken und Layout: Karin Meißner, Judith Neidel Druck: Neumann Druck, 69126 Heidelberg Gedruckt im Juni 2016 ISSN 1437-2924; Internet: ISSN 1617-0490 Inhalt Vorwort ............................................................................ 5 IV. Öffentlichkeits- und Bildungsarbeit ................... 75 I. Das Institut im Überblick ........................................ 7 IV.1 Universitäre Lehre und Doktorandenförderung 76 IV.2 Wissenschaftliche Öffentlichkeitsarbeit ........... 78 Unsere Forschungsgebiete .................................... 8 IV.3 Haus der Astronomie .......................................... 81 MPIA-Teleskope in aller Welt .............................. 10 Weltraumteleskope ................................................ 12 V. Menschen und Ereignisse ...................................... 87 Infrastruktur .......................................................... 14 MPIA in Zahlen ..................................................... 15 V.1 Auszeichnungen und Preise ............................... 88 V.2 Ereignisse und Veranstaltungen ........................ 93 II. Forschung: Abteilungen, V.3 Beruf und Familie / Doppelkarrieren Kooperationen, Highlights ....................................... 17 (Dual Career) / Work-Life-Balance .................. 99 II.1 Planeten- und Sternentstehung ........................... 18 VI. Anhang ................................................................. 101 II.2 Galaxien und Kosmologie .................................... 25 II.3 Wissenschaftliche Initiativen ............................... 30 VI.1 Mitarbeiter ............................................................ 102 II.4 Galaktischer »Raketenantrieb« erklärt VI.2 Gästeliste ............................................................... 104 ungewöhnliche Sternbewegungen in Galaxien .. 32 VI.3 Tagungen, Vorträge ............................................. 104 II.5 Wenn das scheinbar Unmögliche passiert: VI.4 Lehre und Service ................................................ 109 Astronomen rätseln über Entdeckung eines Quasar-Quartetts ................................................... 36 VI.5 Haus der Astronomie .......................................... 111 II.6 Ungewöhnliche bewegte Strukturen in der VI.6 Veröffentlichungen .............................................. 115 Staubscheibe eines Sterns ..................................... 40 VI.7 Zusammenarbeit mit Firmen ............................ 133 II.7 Wie massereiche Sterne ihre Masse bekommen .............................................................. 44 III. Instrumentierung und Technik ............................. 51 III.1 Instrumentierung für bodengebundene Astronomie ........................................................... 52 III.2 Instrumentierung für Weltraumteleskope ....... 57 III.3 LINC-NIRVANA: Vom Königstuhl ans Large Binocular Telescope ............................................ 62 III.4 Übersicht aktueller Projekte .............................. 68 III.5 Technische Abteilungen ..................................... 72 5 Vorwort stronomischer Fortschritt ist eng an die Verfügbarkeit geeigneter Daten gekoppelt. Qualität und Menge der Daten, die astronomische Entdeckungen ermöglichen, hängen wiederum eng mit dem aktuellen Stand der Technik zusammen – und das Ain einer Weise, von der beide Seiten profitieren. Die diesjährigen Entwicklungen am Max-Planck-Institut für Astronomie (MPIA) bieten dafür eindrucksvolle Beispiele. So fanden unsere Forscher in der Staubscheibe um den na- hen Stern AU Microscopii ungewöhnliche bewegte Strukturen. Diese ersten Beobachtun- gen zeitlicher Veränderungen solcher Strukturen überhaupt waren nur mithilfe des Instru- ments SPHERE möglich, an dessen Konstruktion das Institut in entscheidender Weise be- teiligt war und das Ende 2014 am Paranal-Observatorium der ESO in Betrieb gegangen ist. Umgekehrt wirken die Anforderungen der beobachtenden Astronomie als Technolo- gietreiber. Ein Beispiel ist das Instrument LINC-NIRVANA, das dieses Jahr nach mehr als einem Jahrzehnt Entwicklungs- und Bauzeit am MPIA fertiggestellt und zur Installation an das Large Binocular Telescope in Arizona verschifft wurde, an das größte Einzelteles- kop der Welt. In diesem Jahr gab es außerdem erstes Licht, »first light« für den neuen Planetenjäger CARMENES, der gleichzeitig mit seinem optischen und seinem Infrarot-Arm Spektren aufnahm. CARMENES ist das größte deutsch-spanische Instrumentierungsprojekt, und das MPIA hat dazu in entscheidender Weise beigetragen. Das Instrument soll im Frühjahr 2016 an der Calar Alto-Sternwarte die Jagd nach Exoplaneten aufnehmen. Noch deutlich weiter in die Zukunft weist der offizielle Baubeginn für die Instrumente MICADO und METIS, der Ende des Jahres von der ESO beschlossen wurde: den ersten Instrumenten für das zukünftige 39-Meter European Extremely Large Telescope (E-ELT). Das MPIA ist Teil der Konsortien für beide Instrumente. Zur Beobachtung gehört andererseits auch grundlegendes Verständnis – und zusätzlich zur sorgfältigen Planung nicht selten ein gewisses Quäntchen Glück! Die Arbeit unserer Doktorandin Athanasia Tsatsi zum »Raketenantrieb« für verschmelzende Galaxien ist ein schönes Beispiel für das erstere, die Entdeckung eines Vierfach-Quasars durch Joe Hen- nawi und Kollegen für das letztere. Beide Ergebnisse werden im wissenschaftlichen High- light-Teil dieses Berichts vorgestellt. Institute sind in unserer Zeit nur dann erfolgreich, wenn sie Teil eines größeren Netz- werks sind. Beispiele für wissenschaftliche Zusammenarbeit ziehen sich quer durch diesen Bericht. Hervorzuheben ist die Gründung der Heidelberg Initiative for the Origins of Life (HIFOL), die Forscher aus der Astrophysik,
Recommended publications
  • Curriculum Vitae - 24 March 2020
    Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution
    [Show full text]
  • In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs
    Weather on Other Worlds IV: In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs Item Type text; Electronic Thesis Authors Flateau, Davin C. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/09/2021 07:25:39 Link to Item http://hdl.handle.net/10150/594630 WEATHER ON OTHER WORLDS IV: IN-DEPTH STUDY OF PHOTOMETRIC VARIABILITY AND RADIATIVE TIMESCALES FOR ATMOSPHERIC EVOLUTION IN FOUR L DWARFS by Davin C. Flateau A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Updated Astrometry and Masses of the LUH 16 Brown Dwarf Binary
    Astronomy & Astrophysics manuscript no. 33626_corr_LAZ c ESO 2018 August 24, 2018 Updated astrometry and masses of the LUH 16 brown dwarf binary P. F. Lazorenko1 and J. Sahlmann2 1 Main Astronomical Observatory, National Academy of Sciences of the Ukraine, Zabolotnogo 27, 03680 Kyiv, Ukraine e-mail: [email protected] 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Received ; accepted ABSTRACT The nearest known binary brown dwarf WISE J104915.57-531906.1AB (LUH 16) is a well-studied benchmark for our understanding of substellar objects. Previously published astrometry of LUH 16 obtained with FORS2 on the Very Large Telescope was affected by errors that limited its use in combination with other datasets, thereby hampering the determination of its accurate orbital param- eters and masses. We improve upon the calibration and analysis of the FORS2 astrometry with the help of Gaia DR2 to generate a high-precision dataset that can be combined with present and future LUH 16 astrometry. We demonstrate its use by combining it with available measurements from the Hubble Space Telescope (HST) and Gemini/GeMS and deriving updated orbital and mass parameters. Using Gaia DR2 as astrometric reference field, we derived the absolute proper motion and updated the absolute parallax of the binary to 501.557 0.082 mas. We refined the individual dynamical masses of LUH 16 to 33.5 0.3 M (component A) and ± ± Jup 28.6 0.3 MJup (component B), which corresponds to a relative precision of 1% and is three to four times more precise than previous estimates.± We found that these masses show a weak dependence on one datapoint∼ extracted from a photographic plate from 1984.
    [Show full text]
  • Detection of Polarization Due to Cloud Bands in the Nearby Luhman 16 Brown Dwarf Binary
    The Astrophysical Journal, 894:42 (25pp), 2020 May 1 https://doi.org/10.3847/1538-4357/ab6ef2 © 2020. The Author(s). Published by the American Astronomical Society. Detection of Polarization due to Cloud Bands in the Nearby Luhman 16 Brown Dwarf Binary Maxwell A. Millar-Blanchaer1,2,12 , Julien H. Girard3,4 , Theodora Karalidi5 , Mark S. Marley6 , Rob G. van Holstein7, Sujan Sengupta8 , Dimitri Mawet2 , Tiffany Kataria1 , Frans Snik7, Jos de Boer7 , Rebecca Jensen-Clem9 , Arthur Vigan10, and Sasha Hinkley11 1 Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; [email protected] 2 Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA 3 Space Telescope Science Institute, Baltimore, MD 21218, USA 4 Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France 5 Department of Astronomy, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA 6 NASA Ames Research Center, Mountain View, CA 94035, USA 7 Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands 8 Indian Institute of Astrophysics, Koramangala 2nd Block, Bangalore 560 034, India 9 Astronomy Department, University of California, Berkeley, Berkeley, CA 94720, USA 10 Aix-Marseille Univ., CNRS, LAM, Laboratoire d’Astrophysique de Marseille, F-13013 Marseille, France 11 School of Physics, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK Received 2019 May 21; revised 2020 January 8; accepted 2020 January 13; published 2020 May 5 Abstract Brown dwarfs exhibit patchy or spatially varying banded cloud structures that are inferred through photometric and spectroscopic variability modeling techniques.
    [Show full text]
  • The 10 Parsec Sample in the Gaia Era?,?? C
    A&A 650, A201 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140985 & c C. Reylé et al. 2021 Astrophysics The 10 parsec sample in the Gaia era?,?? C. Reylé1 , K. Jardine2 , P. Fouqué3 , J. A. Caballero4 , R. L. Smart5 , and A. Sozzetti5 1 Institut UTINAM, CNRS UMR6213, Univ. Bourgogne Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France e-mail: [email protected] 2 Radagast Solutions, Simon Vestdijkpad 24, 2321 WD Leiden, The Netherlands 3 IRAP, Université de Toulouse, CNRS, 14 av. E. Belin, 31400 Toulouse, France 4 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 5 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy Received 2 April 2021 / Accepted 23 April 2021 ABSTRACT Context. The nearest stars provide a fundamental constraint for our understanding of stellar physics and the Galaxy. The nearby sample serves as an anchor where all objects can be seen and understood with precise data. This work is triggered by the most recent data release of the astrometric space mission Gaia and uses its unprecedented high precision parallax measurements to review the census of objects within 10 pc. Aims. The first aim of this work was to compile all stars and brown dwarfs within 10 pc observable by Gaia and compare it with the Gaia Catalogue of Nearby Stars as a quality assurance test. We complement the list to get a full 10 pc census, including bright stars, brown dwarfs, and exoplanets.
    [Show full text]
  • Long-Term, Multiwavelength Light Curves of Ultra-Cool Dwarfs: Ii
    Draft version November 28, 2016 A Preprint typeset using LTEX style emulateapj v. 03/07/07 LONG-TERM, MULTIWAVELENGTH LIGHT CURVES OF ULTRA-COOL DWARFS: II. THE EVOLVING LIGHT CURVES OF THE T2.5 SIMP 0136 & THE UNCORRELATED LIGHT CURVES OF THE M9 TVLM 513 Bryce Croll1, Philip S. Muirhead1 2, Jack Lichtman3, Eunkyu Han2, Paul A. Dalba2, Jacqueline Radigan4 Draft version November 28, 2016 ABSTRACT We present 17 nights of ground-based, near-infrared photometry of the variable L/T transition brown dwarf SIMP J013656.5+093347 and an additional 3 nights of ground-based photometry of the radio-active late M-dwarf TVLM 513-46546. Our TVLM 513-46546 photometry includes 2 nights of simultaneous, multiwavelength, ground-based photometry, in which we detect obvious J-band vari- ability, but do not detect I-band variability of similar amplitude, confirming that the variability of TVLM 513-46546 most likely arises from clouds or aurorae, rather than starspots. Our photometry of SIMP J013656.5+093347 includes 15 nights of J-band photometry that allow us to observe how the variable light curve of this L/T transition brown dwarf evolves from rotation period to rotation period, night-to-night and week-to-week. We estimate the rotation period of SIMP J013656.5+093347 as 2.406 ± 0.012 hours, and do not find evidence for obvious differential rotation. The peak-to-peak amplitude displayed by SIMP J013656.5+093347 in our light curves evolves from greater than 6% to less than 1% in a matter of days, and the typical timescale for significant evolution of the SIMP J013656.5+093347 light curve appears to be approximately <1 to 10 rotation periods.
    [Show full text]
  • Arxiv:1708.02714V2 [Astro-Ph.SR] 12 Aug 2017 7Gemini Telescope, Colina El Pino S/N, La Serena, Chile
    Individual, Model-Independent Masses of the Closest Known Brown Dwarf Binary to the Sun E. Victor Garcia1, S. Mark Ammons1, Maissa Salama2, Ian Crossfield3;4, Eduardo Bendek5, Jeffrey Chilcote6, Vincent Garrel7, James R. Graham8, Paul Kalas8, Quinn Konopacky9, Jessica R. Lu2, Bruce Macintosh10, Eduardo Marin7, Christian Marois11;12 Eric Nielsen10;13, Beno^ıtNeichel14, Don Pham1, Robert J. De Rosa8, Dominic M. Ryan8, Maxwell Service2, Gaetano Sivo7 Abstract At a distance of ∼ 2 pc, our nearest brown dwarf neighbor, Luhman 16 AB, has been exten- sively studied since its discovery 3 years ago, yet its most fundamental parameter { the masses of the individual dwarfs { has not been constrained with precision. In this work we present the full astrometric orbit and barycentric motion of Luhman 16 AB and the first precision measurements of the individual component masses. We draw upon archival observations spanning 31 years from the European Southern Observatory (ESO) Schmidt Telescope, the Deep Near-Infrared Survey of the Southern Sky (DENIS), public FORS2 data on the Very Large Telescope (VLT), and new astrometry from the Gemini South Multiconjugate Adaptive Optics System (GeMS). Finally, we include three radial velocity measurements of the two components from VLT/CRIRES, span- ning one year. With this new data sampling a full period of the orbit, we use a Markov Chain Monte Carlo algorithm to fit a 16-parameter model incorporating mutual orbit and barycen- +1:1 tric motion parameters and constrain the individual masses to be 27:9−1:0 MJ for the T dwarf +1:3 and 34:2−1:1 MJ for the L dwarf.
    [Show full text]
  • 15884 (Stsci Edit Number: 3, Created: Thursday, November 5, 2020 at 9:00:17 PM Eastern Standard Time) - Overview
    Proposal 15884 (STScI Edit Number: 3, Created: Thursday, November 5, 2020 at 9:00:17 PM Eastern Standard Time) - Overview 15884 - Confirmation of an Astrometrically Detected Exoplanet Candidate Orbiting the closest Brown Dwarfs Cycle: 27, Proposal Category: GO (Availability Mode: SUPPORTED) INVESTIGATORS Name Institution E-Mail Dr. Luigi R. Bedin (PI) (ESA Member) (Contact) Osservatorio Astronomico di Padova [email protected] Prof. Daniel Apai (CoI) University of Arizona [email protected] Prof. Adam J. Burgasser (CoI) University of California - San Diego [email protected] Dr. Mattia Libralato (CoI) (AdminUSPI) Space Telescope Science Institute [email protected] VISITS Visit Targets used in Visit Configurations used in Visit Orbits Used Last Orbit Planner Run OP Current with Visit? 01 (1) LUHMAN-16-SFT WFC3/UVIS 1 05-Nov-2020 21:00:15.0 yes 02 (3) LUHMAN16AB-SFT WFC3/UVIS 1 05-Nov-2020 21:00:17.0 yes 2 Total Orbits Used ABSTRACT At a distance of slightly less than 2 pc WISE 1049-5319 (or Luhman 16 AB) is the closest system to Earth after those of alpha Centauri and Barnard's Star. The analysis of astrometric measurements collected in 12 HST epochs (between 2014.64 and 2016.76) revealed a weak astrometric signature indicating the presence of an exoplanet in the Luh16AB system. This candidate was reported in 2017. A single additional epoch ---collected in August 2018--- and re-analysis of the data with more advanced methods increased the significance level of the planet candidate. 1 Proposal 15884 (STScI Edit Number: 3, Created: Thursday, November 5, 2020 at 9:00:17 PM Eastern Standard Time) - Overview Here we propose to use HST in the same observing mode to collect data at two new epochs to confirm or disprove the astrometric signature that suggest the presence of a sub-Neptune-mass exoplanet orbiting one component of the closest known brown dwarf system.
    [Show full text]
  • Science & Technology
    IAS YAN Academy for Civil Services Pvt. Ltd. 2021 SCIENCE & TECHNOLOGY Complete Current Affairs Compilation Vol- I from July 2020 to March 2021 SCIENCE & TECHNOLOGY Content Biotechnology 2 Space Technology 6 IT & Computer 46 Health 55 Alternate Energy 71 Defence Technology 76 Miscellaneous & New discovery 79 P a g e | 1 BIOTECHNOLOGY Nobel Prize in Chemistry What is in news? This year‘s Nobel Prize in Chemistry has been awarded to two scientists who transformed a bacterial immune mechanism, called CRISPR, into a tool that can edit the DNA/genomes of everything from wheat to mosquitoes to humans. CRISPR CRISPR (clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. The CRISPR-Cas system is a prokaryotic immune system. It defends against phage and conjugative plasmid infection. o A bacteriophage, also known informally as a phage, is a virus that infects and replicates within bacteria and archaea. o A plasmid is a small, extra-chromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. It can cause infection. Cas9 Cas9 – is one of the enzymes produced by the CRISPR system – which binds to the DNA and cuts it, shutting the targeted gene off. Significance The ability to cut DNA wherever we want has revolutionized the life sciences. This editing process has a wide variety of applications including basic biological research, development of biotechnology products, and treatment of diseases. CRISPR-based therapies hold promise for the treatment of cancer and inherited disorders such as sickle cell disease and for the prevention and treatment of infectious diseases.
    [Show full text]
  • Lightning Climatology of Exoplanets and Brown Dwarfs Guided by Solar System Data
    MNRAS 000,1{23 (2016) Preprint 8 November 2018 Compiled using MNRAS LATEX style file v3.0 Lightning climatology of exoplanets and brown dwarfs guided by Solar System data G. Hodos´an1?, Ch. Helling1, R. Asensio-Torres2;3, I. Vorgul1 and P. B. Rimmer1 1SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK 2Department of Astronomy, Stockholm University, Alba Nova University Center, SE-106 91 Stockholm, Sweden 3Universidad de La Laguna, Departamento de Astrof´ısica, E-38206 La Laguna, Tenerife, Spain Accepted 2016 June 28. Received 2016 June 28; in original form 2015 October 19 ABSTRACT Clouds form on extrasolar planets and brown dwarfs where lightning could occur. Lightning is a tracer of atmospheric convection, cloud formation and ionization pro- cesses as known from the Solar System, and may be significant for the formation of prebiotic molecules. We study lightning climatology for the different atmospheric en- vironments of Earth, Venus, Jupiter and Saturn. We present lightning distribution maps for Earth, Jupiter and Saturn, and flash densities for these planets and Venus, based on optical and/or radio measurements from the WWLLN and STARNET radio networks, the LIS/OTD satellite instruments, the Galileo, Cassini, New Horizons and Venus Express spacecraft. We also present flash densities calculated for several phases of two volcano eruptions, Eyjafjallaj¨okull's (2010) and Mt Redoubt's (2009). We es- timate lightning rates for sample, transiting and directly imaged extrasolar planets and brown dwarfs. Based on the large variety of exoplanets, six categories are sug- gested for which we use the lightning occurrence information from the Solar System.
    [Show full text]
  • Extended Baseline Photometry of Rapidly Changing Weather Patterns on the Brown Dwarf Binary Luhman-16 R
    The Astrophysical Journal, 812:161 (21pp), 2015 October 20 doi:10.1088/0004-637X/812/2/161 © 2015. The American Astronomical Society. All rights reserved. EXTENDED BASELINE PHOTOMETRY OF RAPIDLY CHANGING WEATHER PATTERNS ON THE BROWN DWARF BINARY LUHMAN-16 R. A. Street1, B. J. Fulton1,2, A. Scholz3, Keith Horne3, C. Helling3, D. Juncher3, G. Lee3, and S. Valenti1 1 LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117, USA; [email protected] 2 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822-1839, USA 3 School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK Received 2014 April 15; accepted 2015 September 10; published 2015 October 20 ABSTRACT Luhman-16 (WISE J1049-5319) was recently discovered to be a nearby (∼2pc) brown dwarf binary that exhibits a high degree of photometric variability (Δm ∼ 0.1 mag). This is thought to be due to the evolution of “cloud” features on the photosphere, but Luhman-16 has been found to show unusually rapid changes, possibly resulting from fast-evolving “weather.” This target is of particular interest because it consists of a co-evolutionary pair of brown dwarfs spanning the transition between L and T spectral types (L7.5 and T0.5), which are expected to be associated with changes in cloud surface coverage. Being comparatively bright (I ∼ 15.5 mag), the target is well suited for observation with the new Las Cumbres Observatory Global Telescope Network (LCOGT) of 1 m telescopes. We present long-time baseline photometric observations from two of LCOGTʼs southern hemisphere sites, which were used in tandem to monitor Luhman-16 for up to 13.25 hr at a time (more than twice the rotation period), for a total of 41.2 days in the SDSS-i′ and Pan-STARRS-Z filters.
    [Show full text]