Reconstructing Past Disturbance Dynamics in Mountain Spruce Forests from Fossil Insect Remains

Total Page:16

File Type:pdf, Size:1020Kb

Reconstructing Past Disturbance Dynamics in Mountain Spruce Forests from Fossil Insect Remains Czech University of Life Sciences in Prague Department of Forestry and Wood Sciences Reconstructing past disturbance dynamics in mountain spruce forests from fossil insect remains Author: Nick B. Schafstall, MSc Supervisor: Prof. Ing. Miroslav Svoboda, PhD Co-supervisors: Dr. Jennifer L. Clear, PhD and Dr. Niina Kuosmanen, PhD 2020 1 With this text, I confirm that this PhD thesis “Reconstructing past disturbance dynamics in mountain spruce forests from fossil insect remains” was elaborated independently with the use of quoted literature and consultations with my supervisor and other advisors. I agree with publishing this Ph.D. thesis according to Czech law n. 111/1998 Sb. about the universities in its current valid wording. This agreement is independent from the result of the official defense of this thesis. Prague, 10-12-2020 2 Acknowledgements Miroslav Svoboda has acted as my supervisor during my PhD and I want to thank him for all the good advice about working at the Czech University of Life Sciences. All the support from the department secretaries Blanka Ptačková, Marketa Chaloupková, Jana Dolejšová and Lucia Parpelová is very much appreciated and, at times, really lifesaving. Jennifer Clear and Niina Kuosmanen have been acting as my co-supervisors during my PhD. Their advices on everything that crosses one’s path in the academic world- conferences, collaborations, writing, publishing and much more- have made me what I am today in my professional career. I want to thank especially Niina for putting so much of her time and effort in reviewing all of my work. I want to thank Jennifer for hiring me on the PEDECO project, a GAČR project that ran from 2016 until the end of 2018, for her valuable advice on topics for manuscripts and for helping me in finalizing this thesis. The PEDECO project, as well as internal grants from my faculty, provided financial support to attend conferences. Jennifer introduced me to PAGES, a community dedicated to paleo-research. The early-career network of PAGES (PAGES-ECN), and my role in the steering group of this network, has been a great support in developing my soft skills. During my second year I went on a six-months study stay with Nicki Whitehouse at Plymouth University. I want to thank her for becoming my advisor and for teaching me a lot of methodology and theory behind the reconstruction of landscapes based on fossil beetle assemblages. Peter Fleischer Sr. of Tatra National Park has helped the PEDECO project with identifying sites in the Tatra National Park, but the collaboration with him on my articles was of great importance as well. He brought me in contact with other researchers in this region and provided literature about the human history in the Spiš region. Martin Fikáček of Charles University and Jan Ružička of the ČZU Environmental Faculty have helped me in great lengths to get in touch with the coleopterist community in and outside Prague. I consider them my friends. Many thanks to the curators of the different museums who allowed me access to their museum collections of Coleoptera, and to all the experts on beetle families who helped with the identification and ecological interpretation of those identifications, especially Milos Knížek (Scolytinae) and Oldřich Hovorka (Carabidae). Thanks to my colleagues Joey Pettit and Mélanie Saulnier who have helped me to deal with the statistical program R, and thanks to the colleagues from Charles University who were only sideways involved with my studies but provided much support, especially Petr Kuneš, Alice Moravcová, Vachel Carter and Daniel Vondrák. Thanks to my office mates Yumei Jiang and Krešimir Begovič and finally, I would like to thank my friends in Prague and my family in The Netherlands for their support during the last four years. 3 Abstract The identification of fossil insects has been part of paleoecological studies since the 1960’s, when it became apparent that insect taxa have kept their ecological preferences for thousands of years. As insects use the strategy of dispersal rather than adaptation to local climate, insect remains can be used in climate reconstructions, archaeological reconstructions and landscape reconstructions. Several groups of insects, such as chironomids, ants, mites and beetles can be used in these studies. Of the terrestrial insect groups, beetles (Coleoptera) are most widely used because of their enormous variety, diversity and range of habitat, appearing in almost every environment. Moreover, beetle exoskeletons are one of the hardiest in the insect world, and many fossil insect assemblages consist primarily of beetle remains. Recently, the use of paleoecology in the reconstruction of natural disturbances has sparked new interest. Under current climate change, natural disturbances such as floods, drought, wildfires, windstorms and insect outbreaks are becoming more frequent, while increasing in magnitude. Paleoecology can contribute to the development of disturbance models which predict future disturbance events, by reconstructing past disturbance events to create a baseline or analogue for these past disturbance events. Currently, several reconstructions of natural disturbances related to fire or windstorms have been published, but no study has focused on reconstructing past bark beetle outbreaks. This thesis aims to demonstrate how the application of subfossil insect remains can aid in the reconstruction of former landscapes and past disturbances in central Europe, in order to better understand environmental change in this region, and to create a historical analogue of changing landscapes to evaluate current and future adaptation to anthropogenic land-use pressures and climate change. Fossil insect remains were isolated from a lake core from Šumava National Park in Czechia and from a peat bog in Tatra National Park in Slovakia. In addition to these two new study sites, a data synthesis was conducted to summarize the fossil sites with bark beetle remains currently known from Europe and North America. Results from these studies from central Europe show that conifer bark beetle remains from this region are abundant, when compared to the existing records from Europe and North America (Article I & II). The fossil beetle records produced during this PhD work provide a substantial addition to the knowledge of bark beetle remains recorded from fossil sites in central Europe. The high-resolution beetle record from Diera Hollow forest hollow (Article I) contributes to the reconstruction of the changing mountain landscape through time, affected by natural and anthropogenic 4 disturbances. Changes in beetle diversity could potentially be used to direct restoration and conservation practices in this region. A peak in conifer bark beetle remains from the beetle assemblages of Diera Hollow (Article III) could be correlated to the recent bark beetle outbreak in the region. These results allow for further interpretation of the presence of conifer bark beetle remains in sediment records. Trichoptera larvae remains from Prašilské Lake (Article IV), used to reconstruct long-term environmental conditions around the lake, show that acidic conditions of this alpine lake were not only prevailing in recent decades but are a natural feature of this glacial lake. Despite the challenges of this PhD project, due to limited local knowledge on Quaternary entomology and limited knowledge on the ecology and distribution of several montane insect species, the results of this study are encouraging further research and an expansion of the field in this region. The articles in this thesis highlight that previous methods, developed to use insect remains in environmental reconstructions, can contribute in several ways to paleoecological research in central Europe. 5 Contents Acknowledgements 3 Abstract 4 List of original publications 8 List of tables and figures 9 1. Introduction 10 1.1 Paleoecology and its applications 10 1.1.1 The practice of paleoecology 10 1.1.2 Quaternary sciences 10 1.1.3 Archaeology 11 1.2 Quaternary entomology 11 1.2.1 The history and applications of Quaternary entomology 11 1.2.2 Temperature reconstructions 12 1.2.2.1 Coleoptera 12 1.2.2.2 Chironomidae 13 1.2.3 Archaeological reconstructions 15 1.2.4 Landscape reconstructions 16 1.3 Reconstructions of past disturbances in Europe 18 1.4 Aims of this thesis 19 2. Methods 20 2.1 Study area and sites 20 2.2 Sediment sampling, geochemistry and chronology 21 2.2.1 Prašilské Lake 21 2.2.2 Diera Hollow 22 2.3 Fossil beetle analysis 24 2.4 Trichoptera larvae analysis 25 2.5 Other proxies 25 2.6 Statistical analysis 26 2.6.1 Shannon’s diversity index 26 2.6.2 Hierarchical cluster analysis 27 2.6.3 Disturbance Frequency Index 27 2.6.4 CharAnalysis 28 2.6.5 Linear regressions 28 2.7 Literature studies 29 6 2.7.1 Data from databases 29 2.7.2 Human occupation data 29 3. Results 30 3.1 Using beetle remains to reconstruct changes in a montane landscape over time 31 3.1.1 Changes in species composition and diversity of a montane beetle community over the last millennium in the High Tatras, Slovakia: Implications for forest conservation and management 31 Extended summary 32 3.2 Fossil bark beetle records as indicator of bark beetle outbreaks and other natural disturbances 47 3.2.1 Late Glacial and Holocene records of tree-killing conifer bark beetles in Europe and North America: Implications for forest disturbance dynamics. 47 Extended summary 48 3.2.2 Using a fossil bark beetle record as indicator of past bark beetle outbreaks in a Norway spruce mountain forest 62 Extended summary 63 3.3 Reconstructions based on insect remains from lake sediments 106 3.3.1 Postglacial succession of caddisfly (Trichoptera) assemblages in a central European montane lake. 106 Extended summary 107 4. Discussion 124 4.1 An expansion of fossil insect records in central Europe 125 4.2 Long term environmental changes reconstructed from insects 126 4.3 Natural and anthropogenic disturbances 127 4.4 Limitations of this research 132 4.5 Future studies 133 5.
Recommended publications
  • A Remarkable Caddisfly with Bipectinate Antennae in Cretaceous
    Cretaceous Research 69 (2017) 198e203 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication A remarkable caddisfly with bipectinate antennae in Cretaceous Burmese amber (Insecta, Trichoptera) * Wilfried Wichard a, Bo Wang b, c, a Institute of Biology, University of Koeln, Gronewaldstr. 2, D 50931 Koeln, Germany b State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China c Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China article info abstract Article history: A new caddisfly (Trichoptera), Palaeopsilotreta xiai gen. et sp. nov. is described based on three well- Received 8 August 2016 preserved male specimens from mid-Cretaceous Burmese amber. It is assigned to the extant family Received in revised form Odontoceridae. Palaeopsilotreta is similar to the extant genus Psilotreta but differs from the latter by 19 September 2016 partially bipectinate antennae which are unknown among living Trichoptera. Our fossils are not only the Accepted in revised form 28 September only Mesozoic Odontoceridae, but also hitherto the earliest record of this family. 2016 © Available online 29 September 2016 2016 Elsevier Ltd. All rights reserved. Keywords: Taxonomy Fossil caddisfly Palaeopsilotreta xiai Psilotreta Odontoceridae 1. Introduction insights into the evolution of this lineage. In this paper, we describe a new extinct genus and species placed in the family Odontocer- Burmese amber (from northern Myanmar) contains the most idae: Palaeopsilotreta xiai gen. et sp. nov., based on three well- diverse biota in amber from the mid-Cretaceous and more than 250 preserved male specimens.
    [Show full text]
  • Bark Beetles
    Bark Beetles O & T Guide [O-#03] Carol A. Sutherland Extension and State Entomologist Cooperative Extension Service z College of Agriculture and Home Economics z October 2006 Although New Mexico bark beetle adults are In monogamous species such as the Douglas small, rarely exceeding 1/3 inch in length, they fir beetle, Dendroctonus pseudotsugae, the are very capable of killing even the largest female bores the initial gallery into the host host trees with a mass assault, girdling them or tree, releases pheromones attractive to her inoculating them with certain lethal pathogens. species and accepts one male as her mate. Some species routinely attack the trunks and major limbs of their host trees, other bark beetle species mine the twigs of their hosts, pruning and weakening trees and facilitating the attack of other tree pests. While many devastating species of bark beetles are associated with New Mexico conifers, other species favor broadleaf trees and can be equally damaging. Scientifically: Bark beetles belong to the insect order Coleoptera and the family Scolytidae. Adult “engraver beetle” in the genus Ips. The head is on the left; note the “scooped out” area Metamorphosis: Complete rimmed by short spines on the rear of the Mouth Parts: Chewing (larvae and adults) beetle, a common feature for members of this Pest Stages: Larvae and adults. genus. Photo: USDA Forest Service Archives, USDA Forest Service, www.forestryimages.org Typical Life Cycle: Adult bark beetles are strong fliers and are highly receptive to scents In polygamous species such as the pinyon bark produced by damaged or stressed host trees as beetle, Ips confusus, the male bores a short well as communication pheromones produced nuptial chamber into the host’s bark, releases by other members of their species.
    [Show full text]
  • An Annotated Checklist of Wisconsin Handsome Fungus Beetles (Coleoptera: Endomychidae)
    The Great Lakes Entomologist Volume 40 Numbers 3 & 4 - Fall/Winter 2007 Numbers 3 & Article 9 4 - Fall/Winter 2007 October 2007 An Annotated Checklist of Wisconsin Handsome Fungus Beetles (Coleoptera: Endomychidae) Michele B. Price University of Wisconsin Daniel K. Young University of Wisconsin Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Price, Michele B. and Young, Daniel K. 2007. "An Annotated Checklist of Wisconsin Handsome Fungus Beetles (Coleoptera: Endomychidae)," The Great Lakes Entomologist, vol 40 (2) Available at: https://scholar.valpo.edu/tgle/vol40/iss2/9 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Price and Young: An Annotated Checklist of Wisconsin Handsome Fungus Beetles (Cole 2007 THE GREAT LAKES ENTOMOLOGIST 177 AN Annotated Checklist of Wisconsin Handsome Fungus Beetles (Coleoptera: Endomychidae) Michele B. Price1 and Daniel K. Young1 ABSTRACT The first comprehensive survey of Wisconsin Endomychidae was initiated in 1998. Throughout Wisconsin sampling sites were selected based on habitat type and sampling history. Wisconsin endomychids were hand collected from fungi and under tree bark; successful trapping methods included cantharidin- baited pitfall traps, flight intercept traps, and Lindgren funnel traps. Examina- tion of literature records, museum and private collections, and field research yielded 10 species, three of which are new state records. Two dubious records, Epipocus unicolor Horn and Stenotarsus hispidus (Herbst), could not be con- firmed.
    [Show full text]
  • Genomic Signals of Adaptation Towards Mutualism and Sociality in Two Ambrosia Beetle Complexes
    life Article Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes Jazmín Blaz 1, Josué Barrera-Redondo 2, Mirna Vázquez-Rosas-Landa 1, Anahí Canedo-Téxon 1, Eneas Aguirre von Wobeser 3 , Daniel Carrillo 4, Richard Stouthamer 5, Akif Eskalen 6, Emanuel Villafán 1, Alexandro Alonso-Sánchez 1, Araceli Lamelas 1 , Luis Arturo Ibarra-Juarez 1,7 , Claudia Anahí Pérez-Torres 1,7 and Enrique Ibarra-Laclette 1,* 1 Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico; [email protected] (J.B.); [email protected] (M.V.-R.-L.); [email protected] (A.C.-T.); [email protected] (E.V.); [email protected] (A.A.-S.); [email protected] (A.L.); [email protected] (L.A.I.-J.); [email protected] (C.A.P.-T.) 2 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04500, Mexico; [email protected] 3 Cátedras CONACyT/Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; [email protected] 4 Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA; dancar@ufl.edu 5 Department of Plant Pathology, University of California–Riverside, Riverside, CA 92521, USA; [email protected] 6 Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA; [email protected] 7 Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico * Correspondence: [email protected]; Tel.: +52-(228)-842-18-00 Received: 14 October 2018; Accepted: 20 December 2018; Published: 22 December 2018 Abstract: Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages.
    [Show full text]
  • Minutes of the January 25, 2010, Meeting of the Board of Regents
    MINUTES OF THE JANUARY 25, 2010, MEETING OF THE BOARD OF REGENTS ATTENDANCE This scheduled meeting of the Board of Regents was held on Monday, January 25, 2010, in the Regents’ Room of the Smithsonian Institution Castle. The meeting included morning, afternoon, and executive sessions. Board Chair Patricia Q. Stonesifer called the meeting to order at 8:31 a.m. Also present were: The Chief Justice 1 Sam Johnson 4 John W. McCarter Jr. Christopher J. Dodd Shirley Ann Jackson David M. Rubenstein France Córdova 2 Robert P. Kogod Roger W. Sant Phillip Frost 3 Doris Matsui Alan G. Spoon 1 Paul Neely, Smithsonian National Board Chair David Silfen, Regents’ Investment Committee Chair 2 Vice President Joseph R. Biden, Senators Thad Cochran and Patrick J. Leahy, and Representative Xavier Becerra were unable to attend the meeting. Also present were: G. Wayne Clough, Secretary John Yahner, Speechwriter to the Secretary Patricia L. Bartlett, Chief of Staff to the Jeffrey P. Minear, Counselor to the Chief Justice Secretary T.A. Hawks, Assistant to Senator Cochran Amy Chen, Chief Investment Officer Colin McGinnis, Assistant to Senator Dodd Virginia B. Clark, Director of External Affairs Kevin McDonald, Assistant to Senator Leahy Barbara Feininger, Senior Writer‐Editor for the Melody Gonzales, Assistant to Congressman Office of the Regents Becerra Grace L. Jaeger, Program Officer for the Office David Heil, Assistant to Congressman Johnson of the Regents Julie Eddy, Assistant to Congresswoman Matsui Richard Kurin, Under Secretary for History, Francisco Dallmeier, Head of the National Art, and Culture Zoological Park’s Center for Conservation John K.
    [Show full text]
  • Spruce Beetle
    QUICK GUIDE SERIES FM 2014-1 Spruce Beetle An Agent of Subalpine Change The spruce beetle is a native species in Colorado’s spruce forest ecosystem. Endemic populations are always present, and epidemics are a natural part of the changing forest. There usually are long intervals between such events as insect and disease epidemics and wildfires, giving spruce forests time to regenerate. Prior to their occurrence, the potential impacts of these natural disturbances can be reduced through proactive forest management. The spruce beetle (Dendroctonus rufipennis) is responsible for the death of more spruce trees in North America than any other natural agent. Spruce beetle populations range from Alaska and Newfoundland to as far south as Arizona and New Mexico. The subalpine Engelmann spruce is the primary host tree, but the beetles will infest any Figure 1. Engelmann spruce trees infested spruce tree species within their geographical range, including blue spruce. In with spruce beetles on Spring Creek Pass. Colorado, the beetles are most commonly observed in high-elevation spruce Photo: William M. Ciesla forests above 9,000 feet. At endemic or low population levels, spruce beetles generally infest only downed trees. However, as spruce beetle population levels in downed trees increase, usually following an avalanche or windthrow event – a high-wind event that topples trees over a large area – the beetles also will infest live standing trees. Spruce beetles prefer large (16 inches in diameter or greater), mature and over- mature spruce trees in slow-growing, spruce-dominated stands. However, at epidemic levels, or when large-scale, rapid population increases occur, spruce beetles may attack trees as small as 3 inches in diameter.
    [Show full text]
  • A Catalogue of Coleoptera Specimens with Potential Forensic Interest in the Goulandris Natural History Museum Collection
    ENTOMOLOGIA HELLENICA Vol. 25, 2016 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection Dimaki Maria Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece Anagnou-Veroniki Maria Makariou 13, 15343 Aghia Paraskevi (Athens), Greece Tylianakis Jason Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand http://dx.doi.org/10.12681/eh.11549 Copyright © 2017 Maria Dimaki, Maria Anagnou- Veroniki, Jason Tylianakis To cite this article: Dimaki, M., Anagnou-Veroniki, M., & Tylianakis, J. (2016). A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection. ENTOMOLOGIA HELLENICA, 25(2), 31-38. doi:http://dx.doi.org/10.12681/eh.11549 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/12/2018 06:22:38 | ENTOMOLOGIA HELLENICA 25 (2016): 31-38 Received 15 March 2016 Accepted 12 December 2016 Available online 3 February 2017 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection MARIA DIMAKI1’*, MARIA ANAGNOU-VERONIKI2 AND JASON TYLIANAKIS3 1Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece 2Makariou 13, 15343 Aghia Paraskevi (Athens), Greece 3Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand ABSTRACT This paper presents a catalogue of the Coleoptera specimens in the Goulandris Natural History Museum collection that have potential forensic interest. Forensic entomology can help to estimate the time elapsed since death by studying the necrophagous insects collected on a cadaver and its surroundings. In this paper forty eight species (369 specimens) are listed that belong to seven families: Silphidae (3 species), Staphylinidae (6 species), Histeridae (11 species), Anobiidae (4 species), Cleridae (6 species), Dermestidae (14 species), and Nitidulidae (4 species).
    [Show full text]
  • Coleoptera: Endomychidae: Leiestinae) with a Checklist and Nomenclatural Notes Regarding Fossil Endomychidae
    Zootaxa 3755 (4): 391–400 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3755.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:13446D49-76A1-4C12-975E-F59106AF4BD3 Glesirhanis bercioi, a new genus and species from Baltic amber (Coleoptera: Endomychidae: Leiestinae) with a checklist and nomenclatural notes regarding fossil Endomychidae FLOYD W. SHOCKLEY1& VITALY I. ALEKSEEV2 1Department of Entomology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 165, Washington, DC 20013-7012, U.S.A. Email: [email protected] 2Department of Zootechny, Kaliningrad State Technical University, Sovetsky av. 1. 236000, Kaliningrad, Russia. E-mail: [email protected] Abstract A new genus and species of handsome fungus beetle, Glesirhanis bercioi gen. nov., sp. nov. (Coleoptera: Endomychidae: Leiestinae) is described from Baltic amber. The newly described genus is compared with all known extant and extinct genera of the subfamily. A key to the genera of Leiestinae including fossils and a checklist of fossil Endomychidae are provided. The status of two taxa previously placed in Endomychidae, Palaeoendomychus gymnus Zhang and Tetrameropsis mesozoica Kirejtshuk & Azar, is discussed, and a new status for the latter, elevating it to the family-level as Tetrameropseidae status nov., is proposed. Key words: new genus, new species, new status, Coleoptera, Endomychidae, Leiestinae, Baltic amber, Tertiary, Eocene, key, checklist, fossil Introduction Baltic amber (succinite) constitutes the largest known deposit of fossil plant resin and the richest repository of fossil insects of any age. Unfortunately, most references to Coleoptera in Baltic amber are only determined to family or generic levels.
    [Show full text]
  • Faune De Belgique / Fauna Van België
    Faune de Belgique / Fauna van Belgi Bulletin de la Société royale belge d’Entomologie/Bulletin van de Koninklijke Belgische Vereniging voor Entomologie, 153 (2017): 15–20 Donacia crassipes Fabricius, 1775 a rare or a neglected species in Belgium? (Coleoptera: Chrysomelidae: Donaciinae) Kevin S CHEERS 1,2 , Edward V ERCRUYSSE 2, Vincent SMEEKENS 2 & Steven DE SAEGER 2 1 Corresponding author: [email protected] 2 Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium Abstract Donacia crassipes Fabricius, 1775 is an easily recognizable species of reed beetles (Donaciinae). The species is associated with Nymphaeaceae (both Nymphaea and Nuphar species). The species was not uncommon in Belgium until 1950, afterwards a notable decline was seen in the number of known records and from 1950 onwards only five records are known. A survey was carried out to assess the present status and distribution of the species in Belgium. 47 sites in the north of Belgium with stable populations of Nymphaeaceae were checked for the presence of D. crassipes . Of these sampled sites D. crassipes was present at 35 (74,5%) and thus the species seems currently not as rare as recent records indicated. This species was encountered for the first time in the province Limburg. Furthermore we present the first records of D. crassipes on non-indigenous water-lilies ( Nymphaea cultivars). Keywords : Donacia crassipes , Donaciinae , water beetle, reed beetle, Belgium, neglected species, Nymphaeaceae, water lilies Samenvatting Donacia crassipes Fabricius, 1775 is een relatief makkelijk herkenbaar riethaantje (Donaciinae). De soort is gebonden aan vegetaties van Nymphaeaceae (zowel Nymphaea en Nuphar soorten).
    [Show full text]
  • Fungus-Farming Insects: Multiple Origins and Diverse Evolutionary Histories
    Commentary Fungus-farming insects: Multiple origins and diverse evolutionary histories Ulrich G. Mueller* and Nicole Gerardo* Section of Integrative Biology, Patterson Laboratories, University of Texas, Austin, TX 78712 bout 40–60 million years before the subterranean combs that the termites con- An even richer picture emerges when com- Aadvent of human agriculture, three in- struct within the heart of nest mounds (11). paring termite fungiculture to two other sect lineages, termites, ants, and beetles, Combs are supplied with feces of myriads of known fungus-farming insects, attine ants independently evolved the ability to grow workers that forage on wood, grass, or and ambrosia beetles, which show remark- fungi for food. Like humans, the insect leaves (Fig. 1d). Spores of consumed fungus able evolutionary parallels with fungus- farmers became dependent on cultivated are mixed with the plant forage in the ter- growing termites (Fig. 1 a–c). crops for food and developed task-parti- mite gut and survive the intestinal passage tioned societies cooperating in gigantic ag- (11–14). The addition of a fecal pellet to the Ant and Beetle Fungiculture. In ants, the ricultural enterprises. Agricultural life ulti- comb therefore is functionally equivalent to ability to cultivate fungi for food has arisen mately enabled all of these insect farmers to the sowing of a new fungal crop. This unique only once, dating back Ϸ50–60 million years rise to major ecological importance. Indeed, fungicultural practice enabled Aanen et al. ago (15) and giving rise to roughly 200 the fungus-growing termites of the Old to obtain genetic material of the cultivated known species of fungus-growing (attine) World, the fungus-growing ants of the New fungi directly from termite guts, circumvent- ants (4).
    [Show full text]
  • Scarabaeidae) in Finland (Coleoptera)
    © Entomologica Fennica. 27 .VIII.1991 Abundance and distribution of coprophilous Histerini (Histeridae) and Onthophagus and Aphodius (Scarabaeidae) in Finland (Coleoptera) Olof Bistrom, Hans Silfverberg & Ilpo Rutanen Bistrom, 0., Silfverberg, H. & Rutanen, I. 1991: Abundance and distribution of coprophilous Histerini (Histeridae) and Onthophagus and Aphodius (Scarabaeidae) in Finland (Coleoptera).- Entomol. Fennica 2:53-66. The distribution and occmTence, with the time-factor taken into consideration, were monitored in Finland for the mainly dung-living histerid genera Margarinotus, Hister, and Atholus (all predators), and for the Scarabaeidae genera Onthophagus and Aphodius, in which almost all species are dung-feeders. All available records from Finland of the 54 species studied were gathered and distribution maps based on the UTM grid are provided for each species with brief comments on the occmTence of the species today. Within the Histeridae the following species showed a decline in their occurrence: Margarinotus pwpurascens, M. neglectus, Hister funestus, H. bissexstriatus and Atholus bimaculatus, and within the Scarabaeidae: Onthophagus nuchicornis, 0. gibbulus, O.fracticornis, 0 . similis , Aphodius subterraneus, A. sphacelatus and A. merdarius. The four Onthophagus species and A. sphacelatus disappeared in the 1950s and 1960s and are at present probably extinct in Finland. Changes in the agricultural ecosystems, caused by different kinds of changes in the traditional husbandry, are suggested as a reason for the decline in the occuJTence of certain vulnerable species. Olof Bistrom & Hans Si!fverberg, Finnish Museum of Natural Hist01y, Zoo­ logical Museum, Entomology Division, N. Jarnviigsg. 13 , SF-00100 Helsingfors, Finland llpo Rutanen, Water and Environment Research Institute, P.O. Box 250, SF- 00101 Helsinki, Finland 1.
    [Show full text]
  • Larvae of Ataenius (Coleoptera: Scarabaeidae: Aphodiinae
    Eur. J. Entomol. 96: 57—68, 1999 ISSN 1210-5759 Larvae ofAtaenius (Coleóptera: Scarabaeidae: Aphodiinae): Generic characteristics and species descriptions José R. VERDÚ and E duardo GALANTE Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, E-03080 Alicante, Spain Key words.Scarabaeidae, Aphodiinae, Ataenius, larvae, description, key, dung beetles, turfgrass beetles, taxonomy Abstract. We compared the larval morphology of the genera Ataenius and Aphodius. The third larval instars of five Ataenius species: Ataenius opatrinus Harold, A. picinus Harold, A. platensis (Blanchard), A. simulator Harold and A. strigicauda Bates, are described or redescribed and illustrated. The most important morphological characteristics of the larvae of Ataenius are found in the respiratory plate of thoracic spiracle, the setation of venter of the last abdominal segment, the setation of the epicranial region and the morphology of the epipharynx. A key to larvae of the known species of Ataenius is included. INTRODUCTION del Sacramento (Uruguay). For the purpose of laboratory studies, a total of 10 to 20 adult specimens of each species were The genus Ataenius Harold comprises 320 species, of kept in cylindrical plastic breeding cages (20 cm high, 10 cm which 228 species are found in America, 49 in Australia, wide) with moist soil and dry cow dung from which they had 11 in Africa, 6 in East Asia, 2 in Madagascar, and single been collected. The lid was an opening (6 cm diameter) covered species in India, Sri Lanka, Turkestan, Japan, Hawaii and with gauze screen. These breeding cages were maintained in an Sumatra, respectively (Dellacasa, 1987). Despite the rich­ environmental chamber at 25 : 20°C (L : D), 80 ± 5% RH, with ness of this genus and its worldwide distribution, the lar­ a photoperiod of 15 : 9 (L : D).
    [Show full text]