Glioblastomas Induce T-Lymphocyte Death by Two Distinct Pathways Involving Gangliosides and CD70

Total Page:16

File Type:pdf, Size:1020Kb

Glioblastomas Induce T-Lymphocyte Death by Two Distinct Pathways Involving Gangliosides and CD70 Research Article Glioblastomas Induce T-Lymphocyte Death by Two Distinct Pathways Involving Gangliosides and CD70 Ali Chahlavi,1 Patricia Rayman,2 Amy L. Richmond,2 Kaushik Biswas,2 Renliang Zhang,3 Michael Vogelbaum,1 Charles Tannenbaum,2 Gene Barnett,1 and James H. Finke2 1Department of Neurosurgery, Brain Tumor Institute, 2Department of Immunology, Lerner Research Institute, and 3Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio Abstract T lymphocytes, can occur through mechanisms that increase the sensitivity of these cells to apoptosis. Here we report that glioblastoma multiforme (GBM) mediates immunosuppression by promoting T-cell death via tumor- Studies on the mechanisms by which tumor cells induce T-cell associated CD70 and gangliosides that act through receptor- apoptosis have shown a role for tumor-associated Fas ligand (FasL) dependent and receptor-independent pathways, respectively. and other tumor necrosis factor (TNF)–related ligands that activate GBM lines cocultured with T cells induced lymphocyte death. the receptor-dependent apoptotic pathway (4, 5). However, similar The GBM lines were characterized for their expression of immune dysfunction can also be mediated by tumor cell culture CD70, Fas ligand (FasL), and tumor necrosis factor-A (TNF-A), supernatants, which when added to normal activated human T and the possible participation of those molecules in T-cell cells, also induce T-cell death (6). Likewise, tumor cyst fluid and killing was assessed by doing GBM/T cell cocultures in the cerebrospinal fluid from patients with gliomas suppressed normal presence of anti-CD70 antibodies, Fas fusion proteins, or anti- lymphocyte activity (7). This is reminiscent of the finding that isolated, peripheral blood T cells from glioma patients are TNF-A antibodies. CD70 but not TNF-A or FasL is responsible for initiating T-cell death via the receptor-dependent pathway. apoptotic (6), suggesting that gliomas secrete soluble products Of the four GBM cell lines that induced T-cell death, three capable of distant immunosuppression. Given that GBM over- highly expressed CD70. Two nonapoptogenic GBM lines (CCF3 express various gangliosides (8–10) with known immunosuppres- and U138), on the other hand, had only minimally detectable sive and apoptotic activities (11, 12), it is possible that these CD70 expression. Blocking experiments with the anti-CD70 gangliosides are also involved in the observed apoptosis of T cells. antibody confirmed that elevated CD70 levels were involved in We defined the mechanisms of GBM-induced T-cell death in the apoptogenicity of the three GBM lines expressing that coculture experiments using multiple cell lines. GBM-induced molecule. Gangliosides were found to participate in the apoptosis of T cells is most pronounced in activated T cells induction of T-cell apoptosis, because the glucosylceramide suggesting that the activation status of lymphocytes is an synthase inhibitor (PPPP) significantly reduced the abilities of important determinant of sensitivity to tumor-mediated apoptosis. all four apoptogenic lines to kill the lymphocytes. High- T-cell death induced by some GBM lines is partially receptor performance liquid chromatography (HPLC) and mass spec- dependent, involving CD70 expression by the tumor cells. CD70, the ligand for CD27, seems the predominant receptor-dependent troscopy revealed that GM2, GM2-like gangliosides, and GD1a were synthesized in abundance by all four apoptogenic GBM pathway involved in T-cell death by GBM lines. The addition of lines but not by the two GBMs lacking activity. Furthermore, anti-CD70 antibody to the T-cell tumor cultures partially blocked a gangliosides isolated from GBM lines as well as HPLC T-cell death, whereas neither the Fas fusion protein nor anti-TNF- fractions containing GM2 and GD1a were directly apoptogenic antibody had any significant protective effect. Furthermore, death for T cells. Our results indicate that CD70 and gangliosides are induced by both receptor-dependent GBM lines (CCF52, U87, D54, both products synthesized by GBMs that may be key mediators and U251) and the receptor-independent line (CCF4) involved the of T-cell apoptosis and likely contribute to the T-cell participation of tumor associated gangliosides. Blocking glyco- dysfunction observed within the tumor microenvironment. sphingolipid production with the glucosylceramide synthase inhibitor PPPP partially protected T cells from GBM-mediated (Cancer Res 2005; 65(12): 5428-38) apoptosis. Additionally, gangliosides isolated from the GBM lines independently induced apoptosis of T lymphocytes. Our results Introduction also indicate that some GBM tumor lines may induce T-cell Depressed T-cell function, resulting in ineffective antitumor apoptosis via a cooperative interaction between CD70 and immune response, is common among cancer patients (1). The gangliosides, because greater protection was observed when PPPP tumor microenvironment has a deleterious effect on tumor- and anti-CD70 antibody were given in combination. infiltrating T cells, and there is evidence that the immunosuppres- sive effects extend into the periphery as well (1). Even glioblastoma Materials and Methods multiforme (GBM) that develops and remains usually within the brain can induce local and systemic host immunosuppression (2, 3). Reagents. The inhibitor of glucosylceramide synthase, 1-phenyl-2- hexadeanoylamino-3-pyrrolidino-1-propanol (PPPP), was purchased from This impairment of the immune system, specifically when it affects Matreya, Inc. (Pleasant Gap, PA). Monoclonal anti-CD3 (OKT3, Ortho Biotech, Raritan, NJ) and anti-CD28 antibody (Becton Dickinson Immuno- cytometry Systems, San Jose, CA) were used for the stimulation of T Requests for reprints: James H. Finke, Department of Immunology, NB30, Lerner lymphocytes. Human recombinant interleukin-2 (200 units/mL; IL-2, Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195. Phone: 216-444- 5186; Fax: 216-444-9329; E-mail: [email protected]. [Proleukin], CHIRON Corp., Emeryville, CA) was used to maintain the I2005 American Association for Cancer Research. viability of activated T cells. Mouse monoclonal anti-human CD70 and Cancer Res 2005; 65: (12). June 15, 2005 5428 www.aacrjournals.org Downloaded from cancerres.aacrjournals.org on September 24, 2021. © 2005 American Association for Cancer Research. Glioblastoma Multiforme Induced T-Cell Apoptosis BU69 (Ancell, Bayport, MN) was used at a dilution of 10 Ag/mL for blocking HPLC system. A normal phase Varian Microsorb-NH2 column (25 cm, 100 A˚) CD70 ligand. The isotype control for the CD70 antibody was purified mouse was used as the stationary phase. Ganglioside separation was carried out immunoglobulin G (BD PharMingen, San Jose, CA). Human Fas:Fc chimeric with a gradient of the following solvent mixtures, used as the mobile phase: fusion protein (BD PharMingen) was used at 7.5 Ag/mL (optimal Solvent A, Acetonitrile/5 mmol/L phosphate buffer, pH 5.6 (83:17); Solvent concentration). Mouse P-Selectin-immunoglobulin G fusion protein (BD B, Acetonitrile/20 mmol/L phosphate buffer, pH 5.6 (50:50). The gradient PharMingen) was used as the control at 7.5 Ag/mL. Surface expression of elution program was the same as described earlier (17). The elution profile FasL was detected using anti-FasL antibody from BD PharMingen. Positive was monitored by flow-through detection of UV absorbance at 197 nm. The controls used for the efficiency of Fas:Fc to block apoptosis included anti- retention times of individual gangliosides were compared with the retention Fas activating antibody (Upstate, Charlottesville, VA) and supernatants from times of purified bovine brain–derived gangliosides (Matreya). ecotropic retroviral packaging cells (GP+E 86) carrying human FasL- Measurement of total lipid-bound sialic acid. The concentration of expressing retroviral particles (13). isolated ganglioside expressed as lipid bound sialic acid was determined as Established cell lines and tissue culture conditions. The well described previously (18). Ganglioside (50 AL) was extracted with chloro- characterized, long-term GBM cell lines: U87, U138, U251, and D54 form/methanol (2:1). Proteins are precipitated with phosphotungstic acid. were obtained courtesy of Dr. Vogelbaum (Cleveland Clinic Foundation, Precipitated ganglioside was dissolved in boiling resorcinol-HCL reagent. The Cleveland, OH). These lines were maintained in DMEM (Bio Whittaker, concentration of LSA is determined by the absorption at 580 nm. Walkersville, MD) supplemented with 10% fetal bovine serum Mass spectrometric analysis of gangliosides. Mass spectrometric (HyClone, Logan, UT), 2 mmol/L L-glutamine, 50 Ag/mL gentamicin. analysis of the isolated gangliosides were done using a Waters Alliance 2690 The Jurkat leukemic T-cell line (American Type Culture Collection, HPLC connected to a Micromass Quattro-Ultima triple quadruple electro- Rockville, MD) was maintained in complete RPMI 1640 (Bio Whittaker) spray tandem mass spectrometer (LC-ESI-MS-MS). A Supelco Supelcosil LC- supplemented as described above. All the cell lines were found free of NH2 column (7.5 cm  2.1 mm, 3 Am) was used as the stationary phase for Mycoplasma (ELISA, Roche Technologies). the HPLC. Samples were dissolved in 83% acetonitrile and injected into the Primary cell cultures. GBM specimens were obtained from our Brain HPLC with a Waters-Alliance-2690 separation module autosampler. The Tumor Registry after being reviewed by a pathologist. Classification of column resolves
Recommended publications
  • A Fratricide-Resistant Allogeneic CAR T
    Investigation of ALLO-316: A Fratricide- Resistant Allogeneic CAR T Targeting CD70 As a Potential Therapy for the Treatment of AML Surabhi Srinivasan, Nguyen Tan, Hsin-Yuan Cheng, Yi Zhang, Silvia Tacheva-Grigorova, Tom Van Blarcom, Cesar Sommer, Duy Nguyen , Barbra Sasu, and Siler Panowski 1 Disclosures • Full-time employee of Allogene Therapeutics • Equity interest in Allogene Therapeutics ALLO-316 (CD70) utilizes TALEN® gene-editing technology pioneered and owned by Cellectis. Allogene has an exclusive license to the Cellectis technology for allogeneic products directed at this target and holds all global development and commercial rights for this investigational candidate. 22 CONFIDENTIAL Disclaimers This presentation is not intended for product promotion. All information is related to investigational therapies not available for commercial use. The safety and efficacy of the therapies have not been established for FDA approval. Forward-Looking Statements To the extent statements contained in this Presentation are not descriptions of historical facts regarding Allogene Therapeutics, Inc. (“Allogene,” “we,” “us,” or “our”), they are forward-looking statements reflecting management’s current beliefs and expectations. Forward-looking statements are subject to known and unknown risks, uncertainties, and other factors that may cause our or our industry’s actual results, levels or activity, performance, or achievements to be materially different from those anticipated by such statements. You can identify forward-looking statements by words such as “anticipate,” “believe,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “should,” “will,” “would” or the negative of those terms, and similar expressions that convey uncertainty of future events or outcomes. Forward-looking statements contained in this Presentation include, but are not limited to, statements regarding: the ability to progress the clinical development of allogeneic CAR T (AlloCAR T™) therapies and the potential benefits of AlloCAR T™ therapy, including ALLO-316.
    [Show full text]
  • Multiple Interactions of the Cytosolic Polyproline Region of the CD95
    FEBS 25561 FEBS Letters 509 (2001) 255^262 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Multiple interactions of the cytosolic polyproline region ofprovided the by CD95 Elsevier - Publisher Connector ligand: hints for the reverse signal transduction capacity of a death factor1 Jennifer Wenzela;2, Ralf Sanzenbachera;2, Markus Ghadimia, Marc Lewitzkyb, Qingchun Zhouc, David R. Kapland, Dieter Kabelitza, Stephan M. Fellerb, Ottmar Janssena;* aInstitute for Immunology, Christian-Albrechts-University, MichaelisstraMe 5, 24105 Kiel, Germany bCell Signalling Laboratory, Imperial Cancer Research Fund, University of Oxford, Institute of Molecular Medicine, John Radcli¡e Hospital, Headington, Oxford, UK cInstitute of Organic Synthesis, Center China Normal University, 430079 Wuhan, PR China dDepartment of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA Received 19 September 2001; revised 7 November 2001; accepted 7 November 2001 First published online 20 November 2001 Edited by Giulio Superti-Furga regulate activation of CD4- and CD8-positive T cells in Abstract The CD95/Fas/Apo-1 ligand is expressed on activated lymphocytes, NK cells, platelets, certain immune-privileged cells vivo. Upon stimulation with T cell receptor (TCR) agonists and some tumor cells and induces apoptosis through the death in the presence of CD95, cell cycle progression of CD4-pos- receptor CD95/Fas/Apo-1. In murine T cells, membrane-bound itive cells was found to be inhibited [14^16], while CD8-pos- CD95L (Fas ligand) also acts as a costimulatory receptor to itive cells were activated to proliferate [13^16]. The molecular coordinate activation and function in vivo.
    [Show full text]
  • Human Melanoma-Reactive CD4+ and CD8+ CTL Clones Resist Fas
    Human Melanoma-Reactive CD4+ and CD8+ CTL Clones Resist Fas Ligand-Induced Apoptosis and Use Fas/Fas Ligand-Independent Mechanisms for Tumor Killing This information is current as of September 29, 2021. Licia Rivoltini, Marina Radrizzani, Paola Accornero, Paola Squarcina, Claudia Chiodoni, Arabella Mazzocchi, Chiara Castelli, Paolo Tarsini, Vincenzo Viggiano, Filiberto Belli, Mario P. Colombo and Giorgio Parmiani J Immunol 1998; 161:1220-1230; ; Downloaded from http://www.jimmunol.org/content/161/3/1220 References This article cites 60 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/161/3/1220.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Human Melanoma-Reactive CD41 and CD81 CTL Clones Resist Fas Ligand-Induced Apoptosis and Use Fas/Fas Ligand-Independent Mechanisms for Tumor Killing1 Licia Rivoltini,2* Marina Radrizzani,* Paola Accornero,* Paola Squarcina,* Claudia Chiodoni,* Arabella Mazzocchi,* Chiara Castelli,* Paolo Tarsini,* Vincenzo Viggiano,† Filiberto Belli,‡ Mario P.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Balancing effector lymphocyte formation via CD27-CD70 interactions Arens, R. Publication date 2003 Link to publication Citation for published version (APA): Arens, R. (2003). Balancing effector lymphocyte formation via CD27-CD70 interactions. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Chapter 3 Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNy-mediated B cell depletion Ramon Arens*, Kiki Tesselaar*, Paul A. Baars, Gijs M.W. van Schijndel, Jenny Hendriks, Steven T. Pals, Paul Krimpenfort, Jannie Borst, Marinus H.J. van Oers, and René A.W. van Lier 'These authors contributed equally to this work Immunity 15, 801-812 (2001) Chapter 3 Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNy-mediated B cell depletion Ramon Arens123#, Kiki Tesselaar23", Paul A.
    [Show full text]
  • Increased Expression of CD154 and FAS in SLE Patients’ Lymphocytes Maria Elena Manea, Ruediger B
    Increased expression of CD154 and FAS in SLE patients’ lymphocytes Maria Elena Manea, Ruediger B. Mueller, Doru Dejica, Ahmed Sheriff, Georg Schett, Martin Herrmann, Peter Kern To cite this version: Maria Elena Manea, Ruediger B. Mueller, Doru Dejica, Ahmed Sheriff, Georg Schett, et al.. Increased expression of CD154 and FAS in SLE patients’ lymphocytes. Rheumatology International, Springer Verlag, 2009, 30 (2), pp.181-185. 10.1007/s00296-009-0933-4. hal-00568285 HAL Id: hal-00568285 https://hal.archives-ouvertes.fr/hal-00568285 Submitted on 23 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Increased expression of CD154 and FAS in SLE patients’ lymphocytes Maria Elena Manea1‡, MD, Ruediger B. Mueller2,3‡, MD, Doru Dejica1, PhD, Ahmed Sheriff2, PhD, Georg Schett2, MD, Martin Herrmann2, PhD, Peter Kern4, MD 1 Department of Immunopathology. “Iuliu Hatieganu" University of Medicine and Pharmacy, Str Croitorilor no 19-21, 3400 Cluj-Napoca, Romania. 2 Department for Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nürnberg, Germany 3 Departement of Rheumatologie, Kantonsspital St. Gallen, Switzerland 4 Franz von Prümmer Klinik, Bahnhofstraße 16, 97769 Bad Brückenau, Germany ‡ both authors equally contributed to the work Address correspondence and reprint requests to: Ruediger B.
    [Show full text]
  • CD95 Ligand - Death Factor and Costimulatory Molecule?
    Cell Death and Differentiation (2003) 10, 1215–1225 & 2003 Nature Publishing Group All rights reserved 1350-9047/03 $25.00 www.nature.com/cdd Review CD95 ligand - death factor and costimulatory molecule? O Janssen*,1, J Qian1, A Linkermann1 and D Kabelitz1 Tissue and Cellular Expression of CD95L 1 Institute for Immunology, Medical Center Schleswig-Holstein, Campus Kiel, Michaelisstrasse 5, D-24105 Kiel, Germany The CD95 ligand (CD95L, Apo-1L, FasL, CD178) is a 281- * Corresponding author: O Janssen. Tel: þ 49-431-5973377; Fax: þ 49-431- amino-acid-containing type II transmembrane protein of the 5973335; E-mail: [email protected] TNF family of death factors (Figure 1).1 Its death-inducing function is best documented in the context of activation- Received 24.4.03; revised 12.6.03; accepted 20.6.03; published online 1 August 2003 induced cell death (AICD) in T cells.2 CD95L is expressed as a Edited by T Ferguson death factor in cytotoxic T lymphocytes (CTL) to kill virally infected or transformed target cells and in natural killer (NK) cells, where it is upregulated by CD16 engagement and 3 Abstract cytokines including IL-2 and IL-12. Similarly, high levels of intracellular CD95L have been detected in monocytic cells The CD95 ligand is involved as a death factor in the with an inducible release upon activation.4 Under physiologi- regulation of activation-induced cell death, establishment cal conditions, CD95L is implicated in the control of erythroid of immune privilege and tumor cell survival. In addition, differentiation,5 angiogenesis in the eye6 and skin home- 7 CD95L may serve as a costimulatory molecule for T-cell ostasis.
    [Show full text]
  • Interaction Apoptosis Mediated by Fas/Fas Ligand Osteoclast Formation In
    Effect of IL-12 on TNF-α-Mediated Osteoclast Formation in Bone Marrow Cells: Apoptosis Mediated by Fas/Fas Ligand Interaction This information is current as of October 6, 2021. Hideki Kitaura, Noriko Nagata, Yuji Fujimura, Hitoshi Hotokezaka, Noriaki Yoshida and Koji Nakayama J Immunol 2002; 169:4732-4738; ; doi: 10.4049/jimmunol.169.9.4732 http://www.jimmunol.org/content/169/9/4732 Downloaded from References This article cites 54 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/169/9/4732.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 6, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Effect of IL-12 on TNF-␣-Mediated Osteoclast Formation in Bone Marrow Cells: Apoptosis Mediated by Fas/Fas Ligand Interaction1 Hideki Kitaura,2* Noriko Nagata,*† Yuji Fujimura,*† Hitoshi Hotokezaka,* Noriaki Yoshida,* and Koji Nakayama† Recently, it has been found that differentiation into osteoclasts is induced by TNF-␣.
    [Show full text]
  • Characterization of Murine CD70, the Ligand of the TNF Receptor Family Member CD 27
    UvA-DARE (Digital Academic Repository) Characterization of murine CD70, the ligand of the TNF receptor family member CD 27 Tesselaar, N.A.; Gravestein, L.A.; van Schijndel, G.; Borst, J.; van Lier, R.A.W. Publication date 1997 Published in The journal of immunology Link to publication Citation for published version (APA): Tesselaar, N. A., Gravestein, L. A., van Schijndel, G., Borst, J., & van Lier, R. A. W. (1997). Characterization of murine CD70, the ligand of the TNF receptor family member CD 27. The journal of immunology, 159, 4959-4965. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Characterization of Murine CD70, the Ligand of the TNF Receptor Family Member CD27' Kiki Tesselaar,* Loes A.
    [Show full text]
  • Co-Expression of CD40L with CD70 Or OX40L Increases B-Cell Viability and Antitumor Efficacy
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 29 Research Paper Co-expression of CD40L with CD70 or OX40L increases B-cell viability and antitumor efficacy Chang-Ae Shin1, Hyun-Woo Cho1, A-Ri Shin2,3, Hyun-Jung Sohn2, Hyun-Il Cho2,3, Tai-Gyu Kim1,2,3 1Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea 2Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea 3Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea Correspondence to: Hyun-Il Cho, email: [email protected] Tai-Gyu Kim, email: [email protected] Keywords: cancer vaccine, B-cells, costimulatory ligand, anti-apoptosis, tumor immunity Received: February 24, 2016 Accepted: May 29, 2016 Published: June 15, 2016 ABSTRACT Activated B-cells are a promising alternative source of antigen-presenting cells. They can generally be obtained in sufficient numbers for clinical use, but in most instances produce weak immune responses and therapeutic effects that are suboptimal for use in therapeutic cancer vaccines. To improve the immunogenic potency and therapeutic efficacy of B-cell-based vaccines, ex vivo-activated B-cells were transduced with recombinant lentiviruses in order to express additional costimulatory ligands—CD40L, CD70, OX40L, or 4-1BBL—either individually or in pairs (CD70/CD40L, OX40L/CD40L, or 4-1BBL/CD40L). We observed that the expression of CD40L molecules on B-cells was crucial for T-cell priming and activation. Administration of B-cells co-expressing CD40L with the other costimulatory ligands provided substantial antigen-specific CD8 T-cell responses capable of provoking in vivo proliferation and potent cytolytic activities.
    [Show full text]
  • Signaling by the Epstein–Barr Virus LMP1 Protein Induces Potent
    Signaling by the Epstein–Barr virus LMP1 protein + + induces potent cytotoxic CD4 and CD8 T cell responses Il-Kyu Choia,b, Zhe Wanga,b, Qiang Kea,c, Min Honga,d, Yu Qiana,b, Xiujuan Zhaoa,e, Yuting Liuf, Hye-Jung Kimg, Jerome Ritza,b, Harvey Cantorg, Klaus Rajewskyh,1, Kai W. Wucherpfennigg, and Baochun Zhanga,b,g,1 aDepartment of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA 02215; bDepartment of Medicine, Harvard Medical School, Boston, MA 02115; cDepartment of Diagnostics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; dDepartment of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; eDepartment of Cell Biology, Tianjin Medical University, Tianjin 300070, China; fProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115; gDepartment of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02215; and hImmune Regulation and Cancer, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany Contributed by Klaus Rajewsky, December 9, 2017 (sent for review August 3, 2017; reviewed by Alan B. Rickinson and Susan L. Swain) The B-lymphotropic Epstein–Barr virus (EBV), pandemic in humans, pressive molecules that foster local immune privilege (9, 10). is rapidly controlled on initial infection by T cell surveillance; there- Apparently, host immune cells, particularly T cells, keep EBV- after, the virus establishes a lifelong latent infection in the host. If infected cells under constant surveillance, and EBV-driven ma- surveillance fails, fatal lymphoproliferation and lymphomagenesis + lignancies only arise when surveillance fails. ensue. The initial T cell response consists of predominantly CD8 + T cell responses against EBV-infected or transformed B cells cytotoxic T cells and a smaller expansion of CD4 cells.
    [Show full text]
  • The Role of Fasl/Fas Signaling Network in Infections and Tumorigenesis
    The Role of FasL/Fas Signaling Network in Infections and Tumorigenesis T Cell-Mediated Cytotoxicity: All multicellular organisms are susceptible to tumor formation as well as infections from pathogenic viruses and bacteria, which serve as threats to the host organism. The host in turn deploys an immune response to ward off infections and eliminate malignant cells. T cell-mediated cytotoxicity is a complex and coordinated process that is critical for efficient immunological control of pathogenic infections and tumors (Kagi et al., 1996). This host defense mechanism is mediated by cytotoxic lymphocytes, a class of cells that includes CD8+ cytotoxic T lymphocytes (CTLs). As important effectors of the adaptive immune system, CTLs scan tissues for cellular abnormalities and infections and have the ability to directly destroy malignant/infected cells by inducing apoptosis. Briefly, CTLs screen potential target cells for expression of foreign peptide fragments from cellular proteins and then destroy identified cells. The specificity of this process is mediated through cell surface T cell receptors on CTLs, which interact with antigen-derived peptides presented by the class I molecules of the major histocompatibility complex (MHC1) on the surface of target cells. Once the CTL identifies its target cell, it delivers the “lethal hit” by one of two distinct mechanisms described below (Takayama et al., 1995). The initially characterized pathway is a Figure 1 calcium-dependent granule exocytosis pathway. In this pathway, effector cells secrete cytolytic proteins such as perforin and granzyme that penetrate target cells, initiate cytosolic and nuclear changes which culminate in apoptosis, thereby eliminating potentially harmful cells. The existence of an alternate pathway was proposed based on the observations that effector T cells from perforin knockout mice retained cytotoxic activity and were capable of inducing apoptosis in target cells.
    [Show full text]
  • CD70 Knockout: a Novel Approach to Augment CAR-T Cell Function
    #1537 CD70 knockout: A novel approach to augment CAR-T cell function Mary-Lee Dequeant, Jason Sagert, Demetri Kalaitzidis, Hui Yu, Ashley Porras, Brigid McEwan, Zinkal Padalia, Paul Tetteh, Thao Nguyen, Andrew Dunn, Sarah Spencer, Nicolette Lee, Henia Dar, Daniel Henderson, Sushant Karnik, Pooja Keerthipati, Jonathan A. Terrett CRISPR Therapeutics, 610 Main Street, Cambridge, MA, USA 02139 Abstract KO of certain checkpoint genes is detrimental to CAR-T function CD70 and its ligand, CD27, have been described as both activating and suppressing for different cell types including B and T cells. There has been speculation that the CD70/CD27 axis can act in a checkpoint or co-stimulatory manner in certain Figure 8: CD70 KO confers superior cytotoxic activity than PD1 KO against an RCC Figure 10: KO of multiple checkpoint genes impairs CAR-T cell function immuno-oncology settings. Knockout (KO) of CD70 function scored highly in a CRISPR/Cas9 screen of candidate genes for enhanced T cell activity. Deletion of other checkpoint candidates such as PD1, TIM3, LAG3 and TIGIT scored much lower than CD70, both alone and in combination with each other. T cells with CD70 KO showed resistance to exhaustion upon repeated stimulation in culture. CAR-T cells with CD70 KO similarly showed exhaustion resistance, as well as a reduction in tumor cell line overexpressing PD-L1 A Input Bone Marrow (Day 100) 10000 apoptosis, increased proliferation, and improved target cell lysis upon sequential rechallenges. CTX130 is an investigational allogeneic CAR-T therapy currently being studied in patients with CD70-expressing tumors, including clear cell renal cell 100 2500 No RNP or AAV carcinoma and B and T cell malignancies.
    [Show full text]