Growth of Two-Dimensional Molybdenum Disulfide Via Chemical Vapor Deposition

Total Page:16

File Type:pdf, Size:1020Kb

Growth of Two-Dimensional Molybdenum Disulfide Via Chemical Vapor Deposition Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2019 Growth of Two-Dimensional Molybdenum Disulfide via Chemical Vapor Deposition Zachary Durnell Ganger Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Engineering Science and Materials Commons Repository Citation Ganger, Zachary Durnell, "Growth of Two-Dimensional Molybdenum Disulfide via Chemical aporV Deposition" (2019). Browse all Theses and Dissertations. 2174. https://corescholar.libraries.wright.edu/etd_all/2174 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. GROWTH OF TWO-DIMENSIONAL MOLYBDENUM DISULFIDE VIA CHEMICAL VAPOR DEPOSITION A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Materials Science and Engineering By ZACHARY DURNELL GANGER B.S.M.S.E. Wright State University, 2015 2019 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL March 28th, 2019 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Zachary Durnell Ganger ENTITLED Growth of Two Dimensional Molybdenum Disulfide via Chemical Vapor Deposition BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Materials Science and Engineering. Committee on Final Examination ______________________________ Hong Huang, Ph.D. ________________________________ Thesis Director Hong Huang, Ph.D. Joseph C. Slater, Ph.D., P.E. ________________________________ Chair, Department of Mechanical and Materials Engineering Yan Zhuang, Ph.D. _______________________________ Shin Mou, Ph.D. _______________________________ Barry Milligan, Ph.D. Interim Dean of the Graduate School ABSTRACT Ganger, Zachary Durnell. M.S.M.S.E., Department of Mechanical and Materials Engineering, Wright State University, 2019. Growth of Two-Dimensional Molybdenum Disulfide via Chemical Vapor Deposition. Graphene has successfully been a 2D material applied in various fields, but it is not the most appropriate candidate for many electronic devices unless its bandgap structure is tuned through functionalization. Among all other 2D material families, transition metal dichalcogenides (TMDs), represented by molybdenum disulfide (MoS2), are promising and emerging in power electronics due to their large direct bandgap and other electronic properties. 2D MoS2 has been fabricated through different approaches such as mechanical exfoliation, chemical etching, and chemical vapor deposition (CVD). The current major challenge in fabricating 2D MoS2 films is to produce a high-quality large- area monolayer film at a controlled condition. This thesis study is to grow 2D MoS2 films by CVD method at various experimental settings and to characterize the size, thickness, and morphology of the films, towards finding an optimal processing condition. Experimental settings for the growth parameters include the precursor amounts and placements, growth time, growth temperature, carrier gas flow rate, substrates, and seeding promoters. The growth films are characterized with the help of optical microscopy, Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). It is found that 1) MoS2 growth is sensitive to the carrier flow rate and temperature; and 2) 2D MoS2 grain size and areal coverage are correlated with grow time as well as the distance from the promoter PTAS (perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt) resource. Existence of monolayer MoS2, in the presence of PTAS promotor, is iii confirmed with Raman Spectroscopy and AFM. Multilayer MoS2 films with grains up to several hundreds of micrometers, confirmed with optical microscopy, SEM and Raman, are successfully grown on clean Si/SiO2 substrate in the presence of PTAS promotor vapor in the vicinity. Growth of monolayer/multilayer MoS2 on sapphire and graphene was also demonstrated. iv TABLE OF CONTENTS 1 INTRODUCTION AND BACKGROUND ............................................................................ 1 1.1 Motivation ........................................................................................................................ 1 1.2 Different Kinds of 2D Semiconducting Materials ............................................................... 3 1.2.1 First Generation 2D Materials - Graphene ................................................................................... 3 1.2.2 Second Generation 2D Materials ................................................................................................. 5 1.2.3 Third Generation 2D Materials .................................................................................................... 9 1.3 2D TMDs and Their Emerging Applications ...................................................................... 16 1.3.1 Overview of 2D TMDs……………………………………………………………………………………………………………16 1.3.2 Structure and Properties of 2D MoS2 ......................................................................................... 17 1.3.3 Fabrication of 2D MoS2 ............................................................................................................. 20 1.4 Research Objectives and Outline of this Thesis................................................................ 24 2 CURRENT RESEARCH ON CHEMICAL VAPOR DEPOSITION OF 2D MOLYBDENUM DISULFIDE .......................................................................................................................... 26 3 EXPERIMENTAL ASPECTS OF THIS STUDY ................................................................... 44 3.1 CVD Growth .................................................................................................................... 44 3.1.1 The CVD Setup………………………………………………………………………………...44 3.1.2 Growth Procedures……………………………………………………………………………..44 3.2 Growth Variables……………………….…………………………………………………..46 3.2.1 Position of Precursors………………..……..…………………………………………..………46 3.2.2 Growth Time…………………………..….….………………………………………………...47 3.2.3 Carrier Gas Flow Rate………………………………………………………………………….47 v 3.2.4 Quench Temperature………………………...………………………………………………...47 3.2.5 Substrate…………………...…………………………………………………………………..47 3.2.6 Substrate Surface Treatments…...……………………………………………………………..48 3.2.7 PTAS Promotors…………………...………………….……………………………………….49 3.3 Characterizations ............................................................................................................ 50 3.3.1 Optical Imaging and ImageJ Quantification Analysis ................................................................ 50 3.3.2 Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy ........................... 51 3.3.3 Atomic Force Microscopy .......................................................................................................... 52 3.3.4 Raman Spectroscopy .................................................................................................................. 53 4 RESULTS AND DISCUSSION ......................................................................................... 58 4.1 Preliminary Optimization ................................................................................................ 58 4.1.1 Processing Settings ..................................................................................................................... 58 4.1.2 Sulfur Position…………………………………………………………………………………60 4.1.3 MoO3 Position …………………………………………………………………………………61 4.1.4 Substrate………………………………………………………………………………………..62 4.2 Surface Treatments on Sapphire Substrate ..................................................................... 62 4.3 With PTAS Applied via Thermal Drying ............................................................................ 67 4.3.1 Drying Temperature ................................................................................................................... 67 4.3.2 Surface Treatment ...................................................................................................................... 68 4.4 With PTAS Applied via Spraying ...................................................................................... 69 4.4.1 Graphene Substrate with PTAS…...………………………………………………………………………………………71 4.5 PTAS Seeding Promoter on Separate Upstream Substrate ............................................... 73 4.5.1 Varying Amounts of PTAS.………………...………………………………………………...74 4.5.2 Varying Carrier Gas Flow Rate……………………………………………………………….80 vi 4.5.3 Varying Growth Time…………………………………………………………………………81 4.6 Quantitative Analysis……………………………………………………………………...84 5 CONCLUSION ............................................................................................................. 87 6 BIBLIOGRAPHY ........................................................................................................... 89 vii LIST OF FIGURES Figure 1: Graphene flake and atomic sketch [3] ............................................................................................................ 4 Figure 2: (a) α-, β-, and γ- graphyne, (b) graphdiyne, and (c) f extended graph-n-yne by acetylenic carbon chain length [8] ......................................................................................................................................................................
Recommended publications
  • The Characterisation of Electrodeposited Mos2 Thin Films on a Foam-Based Electrode for Hydrogen Evolution
    catalysts Article The Characterisation of Electrodeposited MoS2 Thin Films on a Foam-Based Electrode for Hydrogen Evolution Ramunas Levinas 1,* , Natalia Tsyntsaru 1,2 and Henrikas Cesiulis 1 1 Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; [email protected] (N.T.); [email protected] (H.C.) 2 Institute of Applied Physics of ASM, 5 Academiei str., 2028 Chisinau, Moldova * Correspondence: [email protected]; Tel.: +370-64875762 Received: 21 September 2020; Accepted: 6 October 2020; Published: 14 October 2020 Abstract: Molybdenum sulphide is an emerging precious-metal-free catalyst for cathodic water splitting. As its active sites catalyse the Volmer hydrogen adsorption step, it is particularly active in acidic media. This study focused on the electrochemical deposition of MoS2 on copper foam electrodes and the characterisation of their electrocatalytic properties. In addition, the electrodeposition was modified by adding a reducing agent—sodium hypophosphite—to the electrolyte. To reveal the role of hypophosphite, X-ray photoelectron spectroscopy (XPS) analysis was carried out in addition to scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). MoS2 films, electrodeposited at various charges passed through the cell (catalyst loadings), were tested for their catalytic activity towards hydrogen evolution in 0.5 M H2SO4. Polarisation curves and Tafel slope analysis revealed that the electrodeposited MoS2 films are highly active. Namely, Tafel slopes 1 fell within the 40–50 mV dec− range. The behaviour of as-deposited films was also evaluated by electrochemical impedance spectroscopy over a wide overpotential range (0 to 0.3 V), and two clear − time constants were distinguished.
    [Show full text]
  • And Multi-Layer Mos2 Field Effect Transistor
    electronics Article Efficient and Versatile Modeling of Mono- and Multi-Layer MoS2 Field Effect Transistor Nicola Pelagalli 1,* , Emiliano Laudadio 2 , Pierluigi Stipa 2 , Davide Mencarelli 1 and Luca Pierantoni 1 1 Departement of Information Engineering, Marche Polytechnic University, 60131 Ancona, Italy; [email protected] (D.M.); [email protected] (L.P.) 2 Department of Materials, Environmental Sciences and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy; [email protected] (E.L.); [email protected] (P.S.) * Correspondence: [email protected] Received: 1 August 2020; Accepted: 24 August 2020; Published: 27 August 2020 Abstract: Two-dimensional (2D) materials with intrinsic atomic-level thicknesses are strong candidates for the development of deeply scaled field-effect transistors (FETs) and novel device architectures. In particular, transition-metal dichalcogenides (TMDCs), of which molybdenum disulfide (MoS2) is the most widely studied, are especially attractive because of their non-zero bandgap, mechanical flexibility, and optical transparency. In this contribution, we present an efficient full-wave model of MoS2-FETs that is based on (1) defining the constitutive relations of the MoS2 active channel, and (2) simulating the 3D geometry. The former is achieved by using atomistic simulations of the material crystal structure, the latter is obtained by using the solver COMSOL Multiphysics. We show examples of FET simulations and compare, when possible, the theoretical results to the experimental from the literature. The comparison highlights a very good agreement. Keywords: field-effect transistor; molybdenum disulfide; 2D materials; ferroelectric; hafnium zirconium oxide; atomistic simulations 1. Introduction Mono-layer transition metal dicalchogenides are chemical compounds in which molecules are formed by one transition metal atom (Mo, W, Pt, etc.) and two atoms belonging to group 16 of the periodic table of elements (S, O, Pt).
    [Show full text]
  • Two-Dimensional Material-Based Colorimetric Biosensors: a Review
    biosensors Review Two-Dimensional Material-Based Colorimetric Biosensors: A Review Danzhu Zhu, Bin Liu and Gang Wei * College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; [email protected] (D.Z.); [email protected] (B.L.) * Correspondence: [email protected]; Tel.: +86-150-6624-2101 Abstract: Two-dimensional (2D) materials such as graphene, graphene oxide, transition metal oxide, MXene and others have shown high potential for the design and fabrication of various sensors and biosensors due to their 2D layered structure and unique properties. Compared to traditional fluorescent, electrochemical, and electrical biosensors, colorimetric biosensors exhibit several ad- vantages including naked-eye determination, low cost, quick response, and easy fabrication. In this review, we present recent advances in the design, fabrication, and applications of 2D material-based high-performance colorimetric biosensors. Potential colorimetric sensing mechanisms and optimal material selection as well as sensor fabrication are introduced in brief. In addition, colorimetric biosensors based on different 2D materials such as graphene, transition metal dichalcogenide/oxide, MXenes, metal–organic frameworks, and metal nanoplates for the sensitive detection of DNA, proteins, viruses, small molecules, metallic ions, and others are presented and discussed in detail. This work will be helpful for readers to understand the knowledge of 2D material modification, nanozymes, and the synthesis of hybrid materials; meanwhile, it could be valuable to promote the design, fabrication, and applications of 2D material-based sensors and biosensors in quick bioanalysis and disease diagnostics. Keywords: 2D materials; nanoparticles; nanozymes; hybrid materials; colorimetric biosensors Citation: Zhu, D.; Liu, B.; Wei, G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review.
    [Show full text]
  • Functionalization of Molybdenum Disulfide Via Plasma Treatment And
    nanomaterials Article Functionalization of Molybdenum Disulfide via Plasma Treatment and 3-Mercaptopropionic Acid for Gas Sensors Won Seok Seo 1, Dae Ki Kim 1, Ji-Hoon Han 2, Kang-Bak Park 1, Su Chak Ryu 2, Nam Ki Min 1,* and Joon Hyub Kim 2,* 1 Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-ro, Sejong-si 30019, Korea; [email protected] (W.S.S.); [email protected] (D.K.K.); [email protected] (K.-B.P.) 2 Department of Nanomechatronics Engineering, Pusan University, Busan, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea; [email protected] (J.-H.H.); [email protected] (S.C.R.) * Correspondence: [email protected] (N.K.M.); [email protected] (J.H.K.) Received: 24 August 2020; Accepted: 15 September 2020; Published: 17 September 2020 Abstract: Monolayer and multilayer molybdenum disulfide (MoS2) materials are semiconductors with direct/indirect bandgaps of 1.2–1.8 eV and are attractive due to their changes in response to electrical, physicochemical, biological, and mechanical factors. Since the desired electrical properties of MoS2 are known, research on its electrical properties has increased, with focus on the deposition and growth of large-area MoS2 and its functionalization. While research on the large-scale production of MoS2 is actively underway, there is a lack of studies on functionalization approaches, which are essential since functional groups can help to dissolve particles or provide adequate reactivity. Strategies for producing films of functionalized MoS2 are rare, and what methods do exist are either complex or inefficient.
    [Show full text]
  • Comparisons Between Naturally-Occurring and Chemically- Produced (Synthetic) Molybdenum Disulfide Dr. Philip Mitchell, March 2012
    Comparisons between naturally-occurring and chemically- produced (synthetic) molybdenum disulfide Dr. Philip Mitchell, March 2012 Naturally-occurring molybdenum disulfide is extracted from molybdenite ore. In its lubricant-grade fine powder form, as a dark grey or black solid, it is the molybdenum disulfide supplied and distributed by chemical suppliers for use as a lubricant either dry or in suspension in an oil or grease. In its coarser powder form molybdenum disulfide is the feedstock for roasting into technical grade molybdenum trioxide. Naturally-occurring molybdenum disulfide For natural molybdenum disulfide as used as a lubricant, the particle size depends on the grade (the extent of grinding). For example the Climax Molybdenum Technical Fine has particles of ca. 6 μm (finely ground) and the Technical grade (natural) ca. 30 μm (Yakov Epshteyn and Thomas J. Risdon, Molybdenum Disulfide In Lubricant Applications – A Review, Climax Molybdenum, presented at the 12th Lubricating Grease Conference, January 2010, Goa, India). The surface area of natural molybdenum disulfide of particle size 35 µm was 1 m2 g−1 (www.specialchem4polymers.com/urw/lubricants-surface.aspx). Supported chemically-produced (synthetic) molybdenum disulfide catalysts Chemically-produced (synthetic) molybdenum disulfide as encountered in the catalyst industry is prepared by sulfiding molybdenum trioxide, i.e. heating the oxide in hydrogen sulfide or with an organic sulfur compound. Molybdenum disulfide-based catalysts are used in the hydrodesulfurisation of organic sulfur compounds in petroleum crudes. The molybdenum disulfide is supported on alumina. Cobalt or nickel is added as a catalyst promoter. The sulfided catalyst may be prepared in situ, i.e. by sulfiding a supported molybdenum trioxide precursor in the reactor or ex situ, i.e.
    [Show full text]
  • Growth and Characterization of Molybdenum Disulfide Thin Films
    Growth and Characterization of Molybdenum Disulfide Thin Films A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering by Carl M. Gross III B.S.E.E., Wright State University, 2015 2016 Wright State University Wright State University Graduate School May 25 2016 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY Carl M. Gross III ENTITLED Growth and Characterization of Molybdenum Disulfide Thin Films BE ACCEPTED IN PARTIAL FULFILLMENT OF THE RE- QUIREMENTS FOR THE DEGREE OF Master of Science in Electrical Engineering. ____________________________________ Yan Zhuang, Ph.D. Thesis Director ____________________________________ Brian D. Rigling, Ph.D. Chair, Department of Electrical Engineering College of Engineering and Computer Science Committee on Final Examination ____________________________________ Yan Zhuang, Ph.D. Associate Professor of Electrical Engineering ____________________________________ Shin Mou, Ph.D. ____________________________________ Michael A. Saville, PhD, PE Assistant Professor of Electrical Engineering ____________________________________ Robert E. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School ABSTRACT Gross, Carl. M.S.E.E. Department of Electrical Engineering, Wright State University, 2016. Growth and Characterization of Molybdenum Disulfide Thin Films. Two-dimensional materials, or materials that are only one atomic layer thick, have seen much research in recent years because of their interesting electrical properties. The first of these materials, graphene, was found to have incredible electrical properties but lacked a bandgap in intrinsic films. Without a bandgap, graphene cannot create transistors that can be shut off. Molybdenum disulfide, however, is a two-dimensional semiconductor with a large bandgap. The main issue of molybdenum disulfide is that synthesized films are a much lower quality than their exfoliated counterparts.
    [Show full text]
  • Production and Properties of Molybdenum Disulfide/Graphene
    nanomaterials Article Production and Properties of Molybdenum Disulfide/Graphene Oxide Hybrid Nanostructures for Catalytic Applications Zuzanna Bojarska 1 , Marta Mazurkiewicz-Pawlicka 1 , Stanisław Gierlotka 2 and Łukasz Makowski 1,* 1 Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; [email protected] (Z.B.); [email protected] (M.M.-P.) 2 Polish Academy of Sciences, Institute of High Pressure Physics UNIPRESS, 01-424 Warsaw, Poland; [email protected] * Correspondence: [email protected] Received: 22 August 2020; Accepted: 14 September 2020; Published: 17 September 2020 Abstract: Molybdenum disulfide (MoS2) can be an excellent candidate for being combined with carbon nanomaterials to obtain new hybrid nanostructures with outstanding properties, including higher catalytic activity. The aim of the conducted research was to develop the novel production method of hybrid nanostructures formed from MoS2 and graphene oxide (GO). The nanostructures were synthesized in different weight ratios and in two types of reactors (i.e., impinging jet and semi-batch reactors). Physicochemical analysis of the obtained materials was carried out, using various analytical techniques: particle size distribution (PSD), thermogravimetric analysis (TGA), FT-IR spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Due to the potential application of materials based on MoS2 as the catalyst for hydrogen evolution reaction, linear sweep voltammetry (LSV) of the commercial MoS2, synthesized MoS2 and the obtained hybrid nanostructures was performed using a three-electrode system. The results show that the developed synthesis of hybrid MoS2/GO nanostructures in continuous reactors is a novel and facile method for obtaining products with desired properties.
    [Show full text]
  • Evaluating the Effect of Varying the Metal Precursor in the Colloidal Synthesis of Mose2 Nanomaterials and Their Application As
    nanomaterials Article Evaluating the Effect of Varying the Metal Precursor in the Colloidal Synthesis of MoSe2 Nanomaterials and Their Application as Electrodes in the Hydrogen Evolution Reaction Zakhele Ndala 1, Ndivhuwo Shumbula 1 , Siyabonga Nkabinde 1, Tshwarela Kolokoto 1, Obakeng Nchoe 1, Poslet Shumbula 2, Zikhona N. Tetana 1,3,4, Ella C. Linganiso 1,3,4, Siziwe S. Gqoba 1,* and Nosipho Moloto 1,* 1 Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa; [email protected] (Z.N.); [email protected] (N.S.); [email protected] (S.N.); [email protected] (T.K.); [email protected] (O.N.); [email protected] (Z.N.T.); [email protected] (E.C.L.) 2 Department of Chemistry, University of Limpopo Private Bag x1106, Sovenga 0727, South Africa; [email protected] 3 DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa 4 Microscopy and Microanalysis Unit, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050, South Africa * Correspondence: [email protected] (S.S.G.); [email protected] (N.M.); Tel.: +27-11-7176-774 or +27-11-7176-756 (S.S.G.); Fax: +27-11-7176-749 (N.M.) Received: 7 July 2020; Accepted: 24 July 2020; Published: 9 September 2020 Abstract: Herein we report on the use of different metal precursors in the synthesis of MoSe2 nanomaterials in order to control their morphology.
    [Show full text]
  • Chemical Vapor Deposition Growth of Monolayer Mose2 Nanosheets Jonathan C
    Nano Research 1 DOINano 10.1007/s12274Res ‐014‐0147‐z Chemical vapor deposition growth of monolayer MoSe2 nanosheets Jonathan C. Shaw1, Hailong Zhou1, Yu Chen2, Nathan O. Weiss2, Yuan Liu2, Yu Huang2,3, Xiangfeng 1,3 Duan () Nano Res., Just Accepted Manuscript • DOI: 10.1007/s12274-014-0147-z http://www.thenanoresearch.com on January 15, 2014 © Tsinghua University Press 2014 Just Accepted This is a “Just Accepted” manuscript, which has been examined by the peer‐review process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Tsinghua University Press (TUP) provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event shall TUP be held responsible for errors or consequences arising from the use of any information contained in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital Object Identifier (DOI®), which is identical for all formats of publication. Chemical vapor deposition growth of monolayer MoSe2 nanosheets ,§ ,§ Jonathan C. Shaw1 , Hailong Zhou1 , Yu Chen2, Nathan O. Weiss2, Yuan Liu2, Yu Huang2,3, Xiangfeng Duan1,3,* 1.
    [Show full text]
  • MOLY-LIT™, Molybdenum Disulfide Based Anti-Seize Compound
    Technical Data Sheet P/N 12000 Series Page 1 of 1 ™ March 2016 June 20 TM MOLY-LIT Molybdenum Disulfide Based Anti-Seize Compound www.antiseize.com Product Description Typical Properties Moly-Lit™ is an extra heavy-duty, extreme- Property Value pressure, and low-friction Anti-Seize Compound and Specific Gravity 1.38 lubricant. It offers a high concentration of molybdenum Weight per gallon 11.5 LB disulfide, graphite, and other anti-wear solids in a high- Penetration, D217-60T, 290 - 320 performance carrier. Moly-Lit™ is designed for highly 100-3000 Strokes loaded parts in difficult installations. It features larger Oil Separation, 1% particle size fillers for maximum performance on larger 30 hr. at 158˚F parts. Use it to protect valuable parts and equipment to Flash point, 450˚F temperatures up to 2,400ºF (1,315ºC). ASTM D-92-85 (IP 36/65) Moly-Lit™ Anti-seize compound delivers maximum Black performance for highly loaded fasteners subjected to Color high shock loads. Recommended for threads, pipes, Friction Coefficient 0.085 valves, and equipment carrying ethylene, acetylene, and Torque Coefficient K Values 0.15 ± 0.02. other services where copper contamination must be "nut factor" Testing is required to avoided. determine Meets Performance Requirements of MIL-PRF-907E. the exact K values & specific performance on any Features & Benefits individual fastener using the desired Designed for Heavily Loaded threaded assemblies anti-seize compound. Works where other compounds fail Homogeneity Will not settle, harden or Protects against seizing
    [Show full text]
  • 4D7ecc4538da2dbc87dd10f
    international journal of hydrogen energy xxx (2016) 1e13 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/he Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction ** * QingFa Wang a, , RuoPing Yanzhang a, XiaoNa Ren a, Han Zhu b, , Ming Zhang b, MingLiang Du b a Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, PR China b Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China article info abstract Article history: Finding cost-effective, active and durable catalyst materials for energy applications, such Received 14 June 2016 as electrocatalytic hydrogen production, is an intriguing challenge. Here, a facile and Received in revised form effective approach to the design and construction of two-dimensional MoS2 and WS2 23 July 2016 interleaved nanowalls with maximum exposures of active edges on silk-derived N-doped Accepted 28 July 2016 carbon fibers (SNCF) was demonstrated. The morphological evolutions of the MoS2 and Available online xxx WS2 nanocrystals on the SNCF from crescent-like nanosheets to an interleaved nanowall network can be obtained by adjusting the concentrations of the Mo and W precursors. Keywords: These robust MoS2/SNCF and WS2/SNCF electrocatalysts exhibit prominent hydrogen Silk derived N-doped carbon evolution reaction (HER) activities with onset potentials of À40 and À96 mV and Tafel À À Molybdenum sulfides slopes of 60 and 66 mV dec 1, respectively.
    [Show full text]
  • Commercialization of Cobalt Promoted Molybdenum Disulfide
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2016-01-01 Commercialization Of Cobalt Promoted Molybdenum Disulfide yH drodesulfurization Unsupported Catalyst Juan Hilario Leal University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Petroleum Engineering Commons Recommended Citation Leal, Juan Hilario, "Commercialization Of Cobalt Promoted Molybdenum Disulfide yH drodesulfurization Unsupported Catalyst" (2016). Open Access Theses & Dissertations. 878. https://digitalcommons.utep.edu/open_etd/878 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. COMMERCIALIZATION OF COBALT PROMOTED MOLYBDENUM DISULFIDE HYDRODESULFURIZATION UNSUPPORTED CATALYST JUAN HILARIO LEAL Doctoral Program in Materials Science and Engineering APPROVED: Russell R. Chianelli, Ph.D., Chair Devesh Misra, Ph.D. Felicia Manciu, Ph.D. Binata Joddar, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Juan Hilario Leal 2016 Dedication I dedicate this to my family and especially my daughter, Caroline. The people of El Paso, including UTEP faculty and friends have made this a memorable experience. Thank you to all my friends, which I will not name, but you know who you are. I would not have made it without your support. COMMERCIALIZATION OF COBALT PROMOTED MOLYBDENUM DISULFIDE HYDRODESULFURIZATION UNSUPPORTED CATALYST by JUAN HILARIO LEAL, M.S., B.S. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Material Science and Engineering THE UNIVERSITY OF TEXAS AT EL PASO May 2016 ACKNOWLEDGEMENTS I would like to take this opportunity to thank everyone who has helped me.
    [Show full text]