Single-Celled Organisms Shed Light on Neurobiology

Total Page:16

File Type:pdf, Size:1020Kb

Single-Celled Organisms Shed Light on Neurobiology Halobacteria belong to the archaebacteria. They have a particular preference for extremely saline environments. FOCUS_Optogenetics Single-Celled Organisms Shed Light on Neurobiology The discovery of a visual pigment in the cell membrane of an archaebacterium in the early 1970s is owed solely to a researcher’s curiosity: For three years, the scientific community wouldn’t believe Dieter Oesterhelt. Forty years after his pioneering work at the Max Planck Institute of Biochemistry in Martinsried, bacteriorhodopsin and channelrhodopsin, which stems from a single-celled green alga, are gaining ground as new tools in neurobiology. TEXT CHRISTINA BECK t was an illustrious group that the to revolutionize the neurosciences, per- It was more or less a coincidence that Royal Swedish Academy of Sciences mitting, as it does, the first ever non-in- brought biochemist Dieter Oesterhelt invited to the Lilla Frescativägen in vasive manipulation of neural networks into contact with Halobacterium salina- Stockholm on December 12, 2013. in an organism – from the small nem- rum. But this archaebacterium would Optogenetics was the topic on which atode Caenorhabditis elegans to the eventually become the central research I the Nobel Prize Committee was seeking mouse. Someday, perhaps, even in hu- object of his scientific life for the next information. Among the eleven scien- mans. In other words, a method that 40 years. Oesterhelt had done his doc- tists were two from Max Planck insti- has the potential to win a Nobel Prize. torate in Feodor Lynen’s lab at the Max tutes, as well as two other researchers Planck Institute for Cell Chemistry (lat- who had taken their first steps in this THE DISCOVERY OF THE FIRST er the Max Planck Institute of Biochem- field as young group leaders at Max MICROBIAL RHODOPSIN istry) on a metabolic enzyme, fatty acid Planck. synthase. “A giant particle,” as he says, As early as 1979, the discoverer of But what has since become a popular “whose structure could be decoded only the DNA code, Francis A. Crick, called tool of neuroscientists had its begin- through electron microscopy.” it the greatest challenge in the neuro- nings somewhere else entirely: in a small, This explains why the researcher sciences: to selectively influence a spe- halophilic archaebacterium, Halobacte- went on a sabbatical in 1969, to San cific cell type in the brain and leave rium salinarum. Archaebacteria are the Francisco and Walther Stoeckenius, a the others unchanged. In his lectures, “old-timers” of life. Since the early days renowned expert in the field of elec- he speculated that light could serve as of evolution, these single-celled organ- tron microscopy. Oesterhelt wanted to a control tool – in the form of locally isms have persevered in extreme habi- learn to use this technology in the lab and temporally restricted impulses of tats – in salt lakes, for instance, or hot with him. different colors. volcanic springs – while bacteria and Stoeckenius was interested in the Thirty years later, this vision is be- the eukaryotes were able to develop membrane of the halobacterium be- Photo: POWER AND SYRED/SPL/Agentur Focus coming a reality: optogenetics is poised much more freely. cause, at that time, the molecular struc- 4 | 14 MaxPlanckResearch 19 FOCUS_Optogenetics 1969 After completing his doctorate under Feodor Lynen (right) at the Ludwig-Maximilians-Universität Institute of Biochemistry, and a two-year postdoc phase at the Max Planck Institute for Cell Chemistry, young biochemist Dieter Oesterhelt (left) went on a sabbatical to work with Walther Stoeckenius at the University of California, San Francisco in 1969. There he surprisingly succeeded in detecting a rhodopsin-like protein (bacteriorhodopsin) in the membrane of Halobacterium salinarum. ture of cell membranes was still a sub- membrane using mass spectroscopy. equipment. The Max Planck Institute ject of controversy. “That was the so- No doubt about it: it was retinal. Wal- for Cell Chemistry moved out to Mar- called purple membrane, which is how ther Stoeckenius’ initial reaction, how- tinsried, while Oesterhelt remained in it was known even then. But it was ever, was less than euphoric – he said, the originally shared labs at the Lud- completely unclear what it was,” says quite simply: “That can’t be. That wig-Maximilians-Universität Institute Dieter Oesterhelt. doesn’t exist in prokaryotes.” of Biochemistry. “All I had left was a pH Allen Blaurock, who was likewise in The reviewer for the journal NATURE meter, a water bath and a projector,” he Stoeckenius’ lab at the time, requested likely had a similar view. The submit- says. But this situation proved to be a Oesterhelt’s assistance in preparing his ted publication was rejected with a blessing for the key experiment that samples. Oesterhelt experimented with note saying that the experiments were followed, “because I simply couldn’t do different organic solvents to elute the fine, but the analogy with rhodopsin much more.” lipids from the membrane: “So I ex- was pretty far-fetched. “It was simply Oesterhelt was firmly convinced that tracted the purple membrane with unacceptable to find retinal some- the color change is associated with a chloroform/methanol – and suddenly I where other than in an eye,” con- function, so he worked on reversing it: had a yellow extract,” he recalls. cludes Oesterhelt. So the first publica- “Quite simply, I tried every solvent in Such a change in absorption across tion on bacteriorhodopsin, as the the world.” And then here, too, coinci- an area of nearly 200 nanometers authors had christened their molecule, dence again played a role. Specifically, if seemed quite unusual to the young appeared in 1971 in the journal NATURE I took ether, added salt, and then went biochemist. But Allen Blaurock dis- NEW BIOLOGY. to the window when the Sun was shin- missed it – he had worked on frog ret- ing, the extract suddenly turned bright inas with Maurice Wilkins in London. PHOTOSYNTHESIS INVENTED yellow; in the dark, the color changed Their X-ray experiments required NOT ONCE, BUT TWICE back. That was the desired color change, them to irradiate the frog retina at a but what was behind it? very specific angle. “But if we weren’t Dieter Oesterhelt returned to Munich “I simply placed a pH electrode in careful,” Blaurock told Oesterhelt, “the and – despite serious doubts on the part it,” says Oesterhelt. When the color beam went into the frog’s lovely red of his colleagues there – continued to changed from purple to yellow, protons eye, and suddenly it turned yellow.” work with the bacteriorhodopsin: “It were released, and when the color That was the decisive clue for Diet- seems to me to be quite an unusual changed from yellow to purple, protons er Oesterhelt. He went to the library to thing, and it isn’t there without rea- were taken up. Accordingly, the extract retrieve the data on retinal, the light- son,” he explained to the skeptics. And became acidic in the one case, and al- absorbing pigment in the retina of ver- then the shortage of collaborators was kaline in the other. However, when tebrates, and then analyzed the purple also accompanied by a shortage of such a release and uptake of protons Photo: MPG/Krella 20 MaxPlanckResearch 4 | 14 1973 Environment A few short years later, Oesterhelt was able to show that bacteriorhodopsin is a Cell membrane light-driven proton pump. The uptake of photons – that is, light – causes the membrane extracts to change color from purple to yellow (left). In the Bacterio- membrane, the ion pump, rhodopsin activated by light, transports Intracellular protons out of the interior of ATP fluid synthase the bacteria cell, creating a pro- ton concentration gradient between inside and outside. The energy of the protons flow- ing back in is used for enzymat- ic synthesis of ATP (adenosine triphosphate), the energy currency of the cell (right). » It was simply unacceptable to find retinal somewhere other than in an eye.« takes place in a dense layer, such as a concentration gradient is created be- In the years that followed, bacterio- membrane, it would have to create a tween inside and outside, and an elec- rhodopsin rose to become a model pumping effect. trical potential is built up across the subject in bioenergetics, membrane bi- The young biochemist imagined a membrane. “The process is just like ology and structural biology. Since the proton pump – that is, a molecule that charging a battery,” explains the Max start of the second half of the 1970s, takes up protons from one direction Planck researcher. The energy of the there have been more than a hundred and releases them in the other. Oester- protons flowing back in is used for en- publications on this topic each year. In helt presented this idea to his disserta- zymatic synthesis of ATP (adenosine 1977, Japanese researchers Matsuno- tion supervisor Feodor Lynen. He said triphosphate), the energy currency of Yagi and Mukohata discovered a fur- simply: “I don’t believe it, but I certain- the cell. ther pigment in the purple membrane ly hope that you’re right.” If the mole- of Halobacterium salinarum, but it dif- cule pumps protons, then it should be EVEN MORE LIGHT-SWITCHED fered from bacteriorhodopsin. It was possible to measure a pH change in a MEMBRANE PROTEINS long speculated that this was a light- suspension of bacteria cells. activatable sodium pump. Dieter Oesterhelt set up his pH me- This was in line with the chemiosmot- Oesterhelt had since become Direc- ter in the darkroom to see what would ic hypothesis proposed by Peter D. tor at the Max Planck Institute of Bio- happen when he exposed intact cells. Mitchell back in 1961 – which earned chemistry in Martinsried, and one of He set the pH meter to the highest sen- him the Nobel Prize in Chemistry in his first doctoral students there was sitivity and then turned the light on: 1978 – for which bacteriorhodopsin chemist Peter Hegemann.
Recommended publications
  • Determinants of Channelrhodopsin Ion Selectivity
    Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity Andre Berndta,1, Soo Yeun Leea,1, Jonas Wietekb,1, Charu Ramakrishnana, Elizabeth E. Steinbergc,d, Asim J. Rashide, Hoseok Kimf, Sungmo Parke, Adam Santoroe, Paul W. Franklande, Shrivats M. Iyera, Sally Paka, Sofie Ährlund-Richterf, Scott L. Delpa, Robert C. Malenkac,d, Sheena A. Josselyne, Marie Carlénf, Peter Hegemannb, and Karl Deisserotha,c,g,2 aDepartment of Bioengineering, Stanford University, Stanford, CA 94305; bInstitute for Biology, Experimental Biophysics, Humboldt Universität zu Berlin, D-10115 Berlin, Germany; cDepartment of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305; dNancy Pritzker Laboratory, Stanford University, Stanford, CA 94305; eProgram in Neurosciences and Mental Health, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada M5G 1X8; fDepartment of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden; and gHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2012. Contributed by Karl Deisseroth, November 30, 2015 (sent for review November 16, 2015; reviewed by Lily Yeh Jan and Anatol Kreitzer) The structure-guided design of chloride-conducting channelrhodop- Converging lines of work recently achieved the latter goal; resolving sins has illuminated mechanisms underlying ion selectivity of this the high-resolution structure of channelrhodopsin (7) allowed a remarkable family of light-activated ion channels. The first gener- principled structure-guided approach to engineering for chloride ation of chloride-conducting channelrhodopsins, guided in part by selectivity by testing an electrostatic model for pore function (8, 9).
    [Show full text]
  • Engineering and Production of the Light-Driven Proton Pump Bacteriorhodopsin in 2D Crystals for Basic Research and Applied Technologies
    Protocol Engineering and Production of the Light-Driven Proton Pump Bacteriorhodopsin in 2D Crystals for Basic Research and Applied Technologies Mirko Stauffer 1 , Stephan Hirschi 1 , Zöhre Ucurum 1, Daniel Harder 1 , Ramona Schlesinger 2,* and Dimitrios Fotiadis 1,* 1 Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; mirko.stauff[email protected] (M.S.); [email protected] (S.H.); [email protected] (Z.U.); [email protected] (D.H.) 2 Department of Physics, Genetic Biophysics, Freie Universität Berlin, 14195 Berlin, Germany * Correspondence: [email protected] (R.S.); [email protected] (D.F.) Received: 6 July 2020; Accepted: 19 July 2020; Published: 22 July 2020 Abstract: The light-driven proton pump bacteriorhodopsin (BR) from the extreme halophilic archaeon Halobacterium salinarum is a retinal-binding protein, which forms highly ordered and thermally stable 2D crystals in native membranes (termed purple membranes). BR and purple membranes (PMs) have been and are still being intensively studied by numerous researchers from different scientific disciplines. Furthermore, PMs are being successfully used in new, emerging technologies such as bioelectronics and bionanotechnology. Most published studies used the wild-type form of BR, because of the intrinsic difficulty to produce genetically modified versions in purple membranes homologously. However, modification and engineering is crucial for studies in basic research and, in particular, to tailor BR for specific applications in applied sciences. We present an extensive and detailed protocol ranging from the genetic modification and cultivation of H.
    [Show full text]
  • Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2*
    J. Microbiol. Biotechnol. (2013), 23(12), 1645–1653 http://dx.doi.org/10.4014/jmb.1308.08015 Research Article Minireview jmb Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2* 1Department of Bio-Food Materials, College of Medical and Life Sciences, Silla University, Busan 617-736, Republic of Korea 2Research Center for Extremophiles, Silla University, Busan 617-736, Republic of Korea Received: August 8, 2013 Revised: September 6, 2013 Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular Accepted: September 9, 2013 biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are First published online being isolated and identified from high salt-fermented foods consumed by humans, and it has September 10, 2013 been found that various types of halophilic archaea exist in food products by culture- *Corresponding author independent molecular biological methods. In addition, even if the numbers are not quite Phone: +82-51-999-6308; high, DNAs of various halophilic archaea are being detected in human intestines and much Fax: +82-51-999-5458; interest is given to their possible roles. This review aims to summarize the types and E-mail: [email protected] characteristics of halophilic archaea reported to be present in foods and human intestines and pISSN 1017-7825, eISSN 1738-8872 to discuss their application as well. Copyright© 2013 by The Korean Society for Microbiology Keywords: Halophilic archaea, fermented foods, microbiome, human intestine, Halorubrum and Biotechnology Introduction Depending on the optimal salt concentration needed for the growth of strains, halophilic microorganisms can be Archaea refer to prokaryotes that used to be categorized classified as halotolerant (~0.3 M), halophilic (0.2~2.0 M), as archaeabacteria, a type of bacteria, in the past.
    [Show full text]
  • Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus Dombrowskii and Other Extremely Halophilic Archaebacteria
    ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2007.0234 Special Paper Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria Sergiu Fendrihan,1 Attila Bérces,2 Helmut Lammer,3 Maurizio Musso,4 György Rontó,2 Tatjana K. Polacsek,1 Anita Holzinger,1 Christoph Kolb,3,5 and Helga Stan-Lotter1 Abstract The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibil- ity of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloar- chaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522T was ex- posed to UV doses over a wavelength range of 200–400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m2, and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m2. The estimated Ն 2 D37 (dose of 37 % survival) for Hcc. dombrowskii was 400 kJ/m . However, exposure of cells to UV flux while 2 in liquid culture reduced D37 by 2 orders of magnitude (to about 1 kJ/m ); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica.
    [Show full text]
  • Optogenetic Investigation of Neural Circuits in Vivo
    Review Optogenetic investigation of neural circuits in vivo Matthew E. Carter and Luis de Lecea Neurosciences Program and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA The recent development of light-activated optogenetic probes are activated by light (‘opto-’) and are genetically- probes allows for the identification and manipulation of encoded (‘-genetics’), allowing for the direct control specific neural populations and their connections in of specific populations of cells in vitro and in vivo awake animals with unprecedented spatial and temporal (Figure 1) [19–23]. The unprecedented spatial and tempo- precision. This review describes the use of optogenetic ral precision of these tools has allowed substantial progress tools to investigate neurons and neural circuits in vivo. in elucidating the structure and function of previously We describe the current panel of optogenetic probes, intractable neural circuits. methods of targeting these probes to specific cell types This review highlights the use of optogenetic probes to in the nervous system, and strategies of photostimulat- investigate neural circuits in vivo. We survey the diversity of ing cells in awake, behaving animals. Finally, we survey optogenetic tools in behavioral neuroscience, discussing the application of optogenetic tools to studying func- common strategies of cell-type specific targeting and in vivo tional neuroanatomy, behavior and the etiology and light delivery. We also describe common and theoretical treatment of various neurological disorders. methods for investigating neural circuits in awake, behav- ing animals and review some of the optogenetic studies that Optogenetics represent important progress in our understanding of neu- The mammalian brain is composed of billions of neurons ral circuits in normal behavior and disease.
    [Show full text]
  • Han-Optogenetic-Review-ACS-2012.Pdf
    Review pubs.acs.org/chemneuro In Vivo Application of Optogenetics for Neural Circuit Analysis Xue Han Biomedical Engineering Department, Boston University, Boston, Massachusetts, United States ABSTRACT: Optogenetics combines optical and genetic methods to rapidly and reversibly control neural activities or other cellular functions. Using genetic methods, specific cells or anatomical pathways can be sensitized to light through exogenous expression of microbial light activated opsin proteins. Using optical methods, opsin expressing cells can be rapidly and reversibly controlled by pulses of light of specific wavelength. With the high spatial temporal precision, optogenetic tools have enabled new ways to probe the causal role of specific cells in neural computation and behavior. Here, we overview the current state of the technology, and provide a brief introduction to the practical considerations in applying optogenetics in vivo to analyze neural circuit functions. KEYWORDS: Channelrhodopsin, archaerhodopsin, halorhodopsin, cell type specificity ptogenetics is a new field being rapidly established upon algae), and others that mediate a variety of cellular functions O the first demonstration of precise activation of neurons (for reviews on opsin structure and function, see refs 9 and 10). expressing a light-activated microbial opsin, channelrhodopsin- Most sensory rhodopsins function through recruiting intra- 2, with pulses of blue light in 2005.1 Microbial (type I) opsins cellular signaling molecules without direct ion transport are classes of monolithic light activated proteins, encoded by function. However, channelrhodopsins can mediate phototaxis small genes of under a kilobase long. Three major classes of as a light-gated cation channel at high light intensity and as a microbial opsins have been adapted to optogenetically control calcium channel at low light intensity.11 cellular functions, channelrhodopsins, halorhodopsins, and Microbial opsins share sequence homology and are archaerhodopsins (Figure 1).
    [Show full text]
  • Perfecting Chr2
    RESEARCH HIGHLIGHTS NEUROSCIENCE Perfecting ChR2 Two new reports describe variants of chan- but in a typical neurobiology experiment nelrhodopsin 2 with improved properties. the channel is thought to transport mostly Channelrhodopsin 2 (ChR2) has been a sodium ions. If one were to slightly increase godsend tool to study brain function. This the number of calcium ions transported, protein—originally found in tiny algae— the group reasoned, this could result in is a membrane-ion channel that opens up improvements in the channel’s performance in response to pulses of light, producing a for neuronal activation. change in the membrane potential of charged By modifying one residue in wild-type cells. Algae use ChR2 to signal the presence ChR2, the group generated a mutant with of light and trigger their swimming away or higher calcium permeability, called ‘CatCh’ toward it in the pond; neuroscientists, after (Kleinlogel et al., 2011). In nonneuronal ‘transplanting’ ChR2 into neurons, use it to Image of a neuron expressing the TC mutant, and cells, CatCh’s modest preference for cal- provoke light-triggered action potentials in its spiking trace. Image courtesy of T. Oertner. cium ions elicits approximately three times cells embedded deep in brain tissue. Not sur- higher currents and a slight slowdown of its prisingly, some of ChR2’s natural properties As with previous higher-current ChR2 kinetics compared to wild-type ChR2. But are not exactly ideal for this purpose. mutants, however, the closure of the TC surprisingly, when expressed in neurons, In particular, the channel’s small cur- mutant’s ion channel after a light stimulus is the group saw a nearly 70-fold increase in rents and slow kinetics still limit the poten- slightly slowed down.
    [Show full text]
  • Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity
    New Research Sensory and Motor Systems Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity Na Young Jun1 and Jessica A. Cardin2,3 https://doi.org/10.1523/ENEURO.0222-18.2019 1Department of Ophthalmology, Yale University, New Haven, CT 06520, 2Department of Neuroscience, Yale University, New Haven, CT 06520, and 3Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520 Abstract Several recently developed Channelrhodopsin (ChR) variants are characterized by rapid kinetics and reduced desensitization in comparison to the widely used ChR2. However, little is known about how varying opsin properties may regulate their interaction with local network dynamics. We compared evoked cortical activity in mice expressing three ChR variants with distinct temporal profiles under the CamKII promoter: Chronos, Chrimson, and ChR2. We assessed overall neural activation by measuring the amplitude and temporal progres- sion of evoked spiking. Using ␥-range (30–80 Hz) local field potential (LFP) power as an assay for local network engagement, we examined the recruitment of cortical network activity by each tool. All variants caused light-evoked increases in firing in vivo, but each demonstrated different temporal patterning of evoked activity. In addition, the three ChRs had distinct effects on cortical ␥-band activity. Our findings suggest the properties of optogenetic tools can substantially affect their efficacy in vivo, as well their engagement of circuit resonance. Key words: Channelrhodopsin; Chrimson; Chronos; cortex; ␥ oscillations; optogenetics Significance Statement Genetically modified opsins are some of the most widely used experimental tools in modern neuroscience. However, although these tools are well characterized at the single-cell level, little is known about how the varying properties of the opsins affect their interactions with active neural networks in vivo.
    [Show full text]
  • The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts
    biomolecules Review The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts Laura Matarredona ,Mónica Camacho, Basilio Zafrilla , María-José Bonete and Julia Esclapez * Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; [email protected] (L.M.); [email protected] (M.C.); [email protected] (B.Z.); [email protected] (M.-J.B.) * Correspondence: [email protected]; Tel.: +34-965-903-880 Received: 31 July 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations.
    [Show full text]
  • In Vivo Multi-Dimensional Information-Keeping in Halobacterium Salinarum
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.14.949925; this version posted February 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. In vivo multi-dimensional information-keeping in Halobacterium salinarum Davis, J.1,2‡, Bisson-Filho, A.3, Kadyrov, D.4, De Kort, T. M.5,1, Biamonte, M. T.6, Thattai, M.7, Thutupalli, S.7,8, Church, G. M. 1‡ 1 Department of Genetics, Blavatnik Institute, Harvard Medical School, 2 Department of Biology, Massachusetts Institute of Technology 3 Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454. 4 SkBiolab, Technopark Skolkovo, Skolkovo Innovation center, Moscow 143026, Russia 5 Biosciences Master’s programme Molecular & Cellular Life Sciences, Faculty of Science, Utrecht University, Utrecht, the Neth- erlands 6 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 7 Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India 8 International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India ‡ Corresponding authors. [email protected] (J.D.); [email protected] (G.M.C.) Shortage of raw materials needed to manufacture components for silicon-based digital memory storage has led to a search for alternatives, including systems for storing texts, images, movies and other forms of information in DNA.
    [Show full text]
  • An Overview of Saltpan Halophilic Bacterium
    ntimicrob A ia f l o A l g a e Manikandan and Senthilkumar, J Antimicrob n n r t u s o Agents 2017, 3:4 J Journal of Antimicrobial Agents DOI: 10.4172/2472-1212.1000151 ISSN: 2472-1212 Review Article Open Access An Overview of Saltpan Halophilic Bacterium Manikandan P* and Senthilkumar PK Department of Microbiology, Faculty of Science, Annamalai University, Tamilnadu, India *Corresponding author: Perumal Manikandan, Asst. Professor, Department of Microbiology, Annamalai, University, Annamalainagar, Tamilnadu, India, Tel: +04144-238248; E-mail: [email protected] Received date: August 18, 2017; Accepted date: October 17, 2017; Published date: October 18, 2017 Copyright: © 2017 Manikandan P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Hypersaline environments provide an excellent medium for natural microbial communities which serve as a potential source of pharmaceutical substances. Salt is widely present in the earth. Almost 73% of earth was covered with marine water which contains 2.5% of common salt. Protease enzyme activity widespread in microorganisms, plant and animals. Proteolytic enzymes used in the industrial application and bioremediation process. In recent years’ new mutant’s microbe resistant to commonly used antibiotics. Protease inhibitors used as potential antibiotics for controlling microbial infections. A Hypersaline environment such as salt pans and salt lakes has high salt concentration and pH. The saltpan provides a diversity of different environmental conditions of alkalinity, salinity, temperature, pH and nutrition. Halophilic organisms growing between 0.5 and 3.0 M salt concentration.
    [Show full text]
  • Study of the Archaeal Motility System of H. Salinarum by Cryo-Electron Tomography
    Technische Universität München Max Planck-Institut für Biochemie Abteilung für Molekulare Strukturbiologie “Study of the archaeal motility system of Halobacterium salinarum by cryo-electron tomography” Daniel Bollschweiler Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. B. Reif Prüfer der Dissertation: 1. Hon.-Prof. Dr. W. Baumeister 2. Univ.-Prof. Dr. S. Weinkauf Die Dissertation wurde am 05.11.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 08.12.2015 angenommen. “REM AD TRIARIOS REDISSE” - Roman proverb - Table of contents 1. Summary.......................................................................................................................................... 1 2. Introduction ..................................................................................................................................... 3 2.1. Halobacterium salinarum: An archaeal model organism ............................................................ 3 2.1.1. Archaeal flagella ...................................................................................................................... 5 2.1.2. Gas vesicles .............................................................................................................................. 8 2.2. The challenges of high salt media and low dose tolerance in TEM .........................................
    [Show full text]