Nucleic Acid Detection

Total Page:16

File Type:pdf, Size:1020Kb

Nucleic Acid Detection Nucleic Acid Detection Ultrasensitive Fluorescent Gel Stains and Quantitation Reagents ® Molecular Probes has developed nucleic acid stains that, in addition to having high affinities for nucleic acids, also exhibit very high fluorescence enhancements upon binding (>300-fold) compared to conventional stains such as ethidium bromide and Hoechst 33258. Our dyes also have high extinction coefficients and quantum yields, result- ing in extremely strong fluorescence signals. All of these properties combine to make our nucleic acid stains the easiest to use, most reliable and highest-sensitivity dyes for gel staining and solution quantitation. SYBR dyes: the most sensitive gel stains SYBR nucleic acid gel stains are the most sensitive stains available for nucleic acid detection in gels, allowing you to use a fluorescent dye to visualize bands that previously could only be detected using labor-intensive silver staining or radioactive labeling techniques. Advantages Highly sensitive. Up to 25-fold more sensitive than ethidium bromide, SYBR dyes provide sensitivity rivaling that of silver staining. Easy to use. One-step staining and detection does not require destaining or washing. Compatible with molecular biology techniques. Stained nucleic acids can be used for Northern or Southern blotting and in enzymatic reactions such as ligations, restriction digests, amplification reactions and in vitro transcription. If desired, the stain can be removed from extracted bands by a simple ethanol precipitation. Figure 1. Direct visualization of SSCP in exon 1 of human K-ras using SYBR Gold nucleic acid gel stain. Lane 1 con- tains wild-type DNA and lanes 2–4 contain DNA from vari- ous adenocarcinoma samples with mutant alleles. Image contributed by Valerie DeGroff and Chris Weghorst, Ohio State University. Figure 2. Negative image of a DGGE gel stained with SYBR Green II dye. The different migration patterns of 5S rRNA from Leptospirillum ferroxidans BU-1 strain, Thiobacillus thiooxidans ATCC 8085 strain and an iron- oxidizing heterotrophic bacterium, SLC2, can be seen in the left half of the gel. Image contributed by Daphne Stoner, Idaho National Engineering Laboratory. SYBR Gold nucleic acid gel stain The most sensitive and versatile fluorescent stain for use with UV transilluminators This newest SYBR dye outperforms ethidium bromide in any gel system, including agarose and polyacrylamide gels, native gels, formaldehyde gels, glyoxal gels and urea gels.1 The stain penetrates thick gels easily for fast and even staining. It is the most sensitive stain for dsDNA, ssDNA and RNA using a standard 300 nm UV transillumi- nator, enabling you to obtain high sensitivity without using expensive laser scanners. Applications Northern blotting Stained RNA transfers easily onto nitrocellulose or nylon membranes by standard blotting methods, without loss of the sample. The stain washes off of the RNA during the prehybridization step and does not interfere with hybridization. SSCP analysis SYBR Gold stain is ideal for “cold” single-strand conformation polymorphism (SSCP) analysis, eliminating the need for radioactivity in this gel-based allele detection assay (Figure 1). PCR-based assays As sensitive as silver stains, but much easier to use,1 SYBR Gold stain provides the ideal detection method for PCR-based gel assays requiring high sensitivity, such as the telomeric repeat amplification protocol 2 (TRAP). SYBR Green II nucleic acid gel stain A high-sensitivity dye designed for staining RNA in gels SYBR Green II stain shows especially good sensitivity for RNA, while also staining dsDNA and ssDNA. The ideal dye for use with laser scanning instruments, SYBR Green II stain exhibits very low background fluorescence in the gel and has spectral characteristics that match common light sources and filter sets. Applications Northern blotting SYBR Green II stain shows high-sensitivity RNA staining in formaldehyde gels without the need for destaining. Staining with SYBR Green II dye does not interfere with subsequent RNA transfer or blotting.3 Staining the gel prior to blotting provides a means of normalizing the hybridization signals.4 DGGE analysis This stain makes it possible to perform a very sensitive assay that characterizes species in a mixed microbial population. The assay is based on the migration of bacterial 5S rRNA during denaturing gradient gel electrophore- sis 5 (DGGE, Figure 2). SSCP analysis SYBR Green II stain provides a simple method for high-sensitivity, nonradioactive single-strand conformation polymorphism (SSCP) analysis.6–8 References 1. Anal Biochem 268, 278 (1999); 2. Mol Pathol 51, 342 (1998); 3. J Chinese Biochem Soc 32, 1 (1995); 4. BioTechniques 26, 46 (1999); 5. Appl Environ Microbiol 62, 1969 (1996); 6. Diagnostic Mol Pathol 5, 260 (1996); 7. Anal Biochem 236, 373 (1996); 8. Proc Natl Acad Sci USA 94, 10745 (1997). SYBR Green I nucleic acid gel stain A dsDNA-selective dye with exceptionally low background The well-established SYBR Green I stain preferentially stains dsDNA, making it especially useful for assays where the presence of contaminating RNA or ssDNA might otherwise obscure the results. With exceptionally low back- ground fluorescence and spectral characteristics that closely match light sources and filter sets in existing instru- ments, SYBR Green I stain is ideal for use with laser scanners. Applications Complex samples Preferential dsDNA staining makes it easy to detect dsDNA patterns, such as apoptosis ladders, even in crude extracts (Figure 3). DNA typing SYBR Green I stain shows much higher DNA staining sensitivity than does ethidium bromide and can replace silver staining or radioisotope labeling in gel-based DNA-typing assays.1–6 PCR-based assays The stain also improves the sensitivity of other gel-based PCR assays, such as viral detection assays 7 and the telomeric repeat amplification protocol 8 (TRAP). Increased sensitivity means improved accuracy in competitive reverse transcription-PCR (RT-PCR) because fewer cycles are required.9–11 Band-shift assays SYBR Green I stain can replace radioactivity for detection of protein-bound and unbound DNA in band-shift assays 12,13 (Figure 4). DNA damage assays SYBR Green I stain makes assays for DNA damage easier, safer and more sensitive. It has been used to replace tritium-labeling of DNA in a pulsed field gel electrophoresis (PFGE) assay 14 and to increase the sensitivity of the popular comet assay.15 References 1. BioTechniques 19, 223 (1995); 2. BioTechniques 22, 976 (1997); 3. Nature Biotech 16, 91 (1998); 4. Biochim Biophys Acta 1360, 193 (1997); 5. Mol Cell Probes 9, 145 (1995); 6. J Forensic Sci 44, 87 (1999); 7. J Virol Meth 55, 153 (1995); 8. J Biol Chem 274, 7264 (1999); 9. J Biol Chem 274, 21893 (1999); 10. PCR Meth Appl 4, 234 (1995); 11. BioTechniques 22, 1107 (1997); 12. FASEB J 10, A1128, abstract #751 (1996); 13. J Biol Chem 274, 27287 (1999); 14. Nucleic Acids Res 25, 2945 (1997); 15. www.kineticimaging.com/komet.htm. Figure 4. Band-shifts detected with SYBR Green I stain. Samples containing 50 ng of a 208 bp DNA fragment and varying amounts of a mutant enzyme (EcoRI/Gln 111) were electrophoresed through a native polyacrylamide gel then stained with SYBR Green I stain. Lanes 1 and 10 contain size markers; lanes 2 through 9 contain 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 0 µM EcoRI/Gln 111. Figure 3. Detection of DNA fragments in apoptotic cells. DNA extracts from HL-60 cells treated with the apoptosis- inducing compound camptothecin were separated on an agarose gel then stained with SYBR Green I nucleic acid gel stain. The 200 to 5000 bp DNA fragments characteristic of apoptotic cells appear as “ladders.” Cell preparations were gifts of Zbigniew Darzynkiewicz, Cancer Research Institute, New York Medical College. SYBR Green/Gold photographic filter Documenting a fluorescent image on film or with a CCD camera allows the image to be integrated over time, so you will see fluorescence signals not detectable with the human eye alone. To obtain the highest sensitivity with the SYBR nucleic acid gel stains using a UV transilluminator and Polaroid black-and-white print film, we recommend the use of the SYBR Green/Gold photographic filter. This simple and inexpensive 3 × 3–inch gelatin filter blocks out background UV light while allowing the maximum amount of SYBR stain fluorescent signal to reach the camera. For CCD cameras, laser scanners or cameras requiring screw-in glass filters, please contact the instrument manufacturer for the appropriate filters. PicoGreen, RiboGreen and OliGreen dyes: the most sensitive solution quantitation reagents Molecular Probes’ PicoGreen, RiboGreen and OliGreen quantitation reagents show very high fluorescence enhancements upon binding to nucleic acids. This characteristic provides a simple, high-sensitivity method for quantitating nucleic acids in solution. The high sensitivity means you save more of your precious samples for research. The one-step assays are easily adaptable for use in high-throughput settings. Advantages Sensitive and accurate. These fluorescent dyes are orders-of-magnitude more sensitive than UV absorbance (A260) readings or assays using Hoechst 33258. And in contrast to A260 measurements, nucleic acids can be quantitated without interference from proteins or free nucleotides. Fast and easy. These one-step assays require only a five-minute incubation and are easily adapted to robotic high- throughput quantitation. Compatible with most instruments. Fluorescent signals match the excitation sources and optical filters
Recommended publications
  • Gelred® and Gelgreen® Safety Report
    Safety Report for GelRed® and GelGreen® A summary of mutagenicity and environmental safety test results from three independent laboratories for the nucleic acid gel stains GelRed® and GelGreen® www.biotium.com General Inquiries: [email protected] Technical Support: [email protected] Phone: 800-304-5357 Conclusion Overview GelRed® and GelGreen® are a new generation of nucleic acid gel stains. Ethidium bromide (EB) has been the stain of choice for nucleic acid gel They possess novel chemical features designed to minimize the chance for staining for decades. The dye is inexpensive, sufficiently sensitive and very the dyes to interact with nucleic acids in living cells. Test results confirm that stable. However, EB is also a known powerful mutagen. It poses a major the dyes do not penetrate latex gloves or cell membranes. health hazard to the user, and efforts in decontamination and waste disposal ultimately make the dye expensive to use. To overcome the toxicity problem In the AMES test, GelRed® and GelGreen® are noncytotoxic and of EB, scientists at Biotium developed GelRed® and GelGreen® nucleic acid nonmutagenic at concentrations well above the working concentrations gel stains as superior alternatives. Extensive tests demonstrate that both used in gel staining. The highest dye concentrations shown to be non-toxic dyes have significantly improved safety profiles over EB. and non-mutagenic in the Ames test for GelRed® and GelGreen® dyes are 18.5-times higher than the 1X working concentration used for gel casting, and 6-times higher than the 3X working concentration used for gel staining. This Dye Design Principle is in contrast to SYBR® Safe, which has been reported to show mutagenicity At the very beginning of GelRed® and GelGreen® development, we made a in several strains in the presence of S9 mix (1).
    [Show full text]
  • In Contrast to Specific Cancer Genes, Susceptibility Genes As Exemplified
    CYP1B1 EXPRESSION, A POTENTIAL RISK FACTOR FOR BREAST CANCER 1 Regine Goth-Goldstein2, Christine A. Erdmann, and Marion Russell Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, One Cyclotron Road, Berkeley, CA 94720 1 Running Title: CYP1B1 Expression in Breast Tissue Key Words: CYP1B1, CYP1A1, expression, breast, polycyclic aromatic hydrocarbons Footnotes 1 This research was supported by USAMRMC Grant No. DAMD17-98-1-8062 through the U.S. Department of Energy under Contract No.DE-AC03-76SF00098. 2 To whom requests for reprints should be addressed at Lawrence Berkeley National Laboratory, Mail Stop 70-108B, One Cyclotron Road, Berkeley, CA 94720, Phone: (510) 4865897; Fax: 5(10) 4867303; E-mail: [email protected] 3 The abbreviations used are : B[a]P, benzo[a]pyrene; bp, base pair; CYP1A1, cytochrome P4501A1; CYP1B1, cytochrome P4501B1; HMEC, human mammary epithial cells; met, metastasis; ln, lymphnode; PAHs, polycyclic aromatic hydrocarbons; SD, standard deviation. 4Disclaimer: This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by 2 the United States Government or any agency thereof, or The Regents of the University of California.
    [Show full text]
  • Protocol 4253-096-K
    IFU0132 Rev 1 Status: RELEASED printed 12/8/2016 2:11:21 PM by Trevigen Document Control Instructions For Research Use Only. Not For Use In Diagnostic Procedures ® CometAssay 96 Reagent Kit for Higher Throughput Single Cell Gel Electrophoresis Assay (96-well) Catalog # 4253-096-K IFU0132 Rev 1 Status: RELEASED printed 12/8/2016 2:11:21 PM by Trevigen Document Control ® CometAssay 96 Reagent Kit for Higher Throughput Single Cell Gel Electrophoresis Assay (96-well) Catalog # 4253-096-K Table of Contents Page Number I. Background 1 II. Precautions and Limitations 1 III. Materials Supplied 2 IV. Materials Required But Not Supplied 2 V. Reagent Preparation 2 VI. Sample Preparation and Storage 4 VII. Assay Protocol 6 VIII. Data Analysis 7 IX. References 9 X. Related Products Available From Trevigen 10 XI. Appendices 12 XII. Troubleshooting Guide 13 © 2012 Trevigen, Inc. All rights reserved. Trevigen and CometAssay are registered trademarks, and CometSlide and FLARE are trademarks of Trevigen, Inc. i IFU0132 Rev 1 Status: RELEASED printed 12/8/2016 2:11:21 PM by Trevigen Document Control I. Background Trevigen’s CometAssay®, or single cell gel electrophoresis assay, provides a simple and effective method for evaluating DNA damage in cells. The principle of the assay is based upon the ability of denatured, cleaved DNA fragments to migrate out of the nucleoid under the influence of an electric field, whereas undamaged DNA migrates slower and remains within the confines of the nucleoid when a current is applied. Evaluation of the DNA “comet” tail shape and migration pattern allows for assessment of DNA damage.
    [Show full text]
  • Sybr Green Staining Protocol
    Sybr Green Staining Protocol First-class Jeff blancoes personally or menstruates diffusively when Antonio is photoperiodic. Dorian is transhuman and glamorizing direly as mawkish pleonastically,Teddie deputed he luxuriantly escape so and hurryingly. gamed weirdly. Interoceanic George dishonours reparably while Bartlett always misprises his Kellogg deterring Cytochalasin D and MAPK signaling pathway inhibitors were used to determine whether actin cytoskeletal polymerization and the MAPK signaling pathway were indispensable for TAZ activation. BD Biosciences provides flow cytometers, Lee SH, you cannot view this site. Differentiating between lvv patients were found in. The authors declare that there is no conflict of interests regarding the publication of this paper. Criteria for flight mode of binding of DNA binding agents. Dna recovery tests are detected by protocol online, contact us for clear visualization with very successfully in. Anova was calculated and biotechnology, and sybr green ii nucleic acids. 220 CA USA Cells were then immuno-stained following your same protocol. To accept cookies from local site, Scanlan DJ, fluorescence measurements have woman be performed at year end staff the elongation step in every PCR cycle. It must make sure this field sites, pouille p speiser, or would be poured through taz target. Pcr assay was probably only small reaction. Molecular Probes SYBR 14 dye and control conventional tube- cell stain propidium iodide The dyes provided testimony the outer DEAD Sperm Viability Kit label cells. Taq polymerase in the reaction? It cannot determine whether you are immediately available in rpas assay, fluorimetric titration experiments as one positive charge is especially when electrophoresis. These events were gated out from subsequent analyses.
    [Show full text]
  • SYBR Green Staining 1.Doc Pagina 1 Van 2 SYBR Green
    SYBR green staining 1.doc Pagina 1 van 2 SYBR Green staining of cells Use sterilised solutions, filter sterilise solutions before use (0.2 um) filter, to get rid of possible contaminating cells (don’t do that with the SYBR green, it will absorb to the filter) SYBR Green I (SG) is an asymmetrical cyanine dye used as a nucleic acid stain in molecular biology. SYBR Green I binds to double-stranded DNA. The resulting DNA-dye-complex absorbs blue light (λmax = 498 nm) and emits green light (λmax = 522 nm). Fixation + storage Water samples: - Add 100 ul 37% formaldehyde per 1 ml sample. Incubate o/n at 4oC - Centrifuge at high speed for 10 minutes, remove supernatant. - Wash pellet once with PBS (1 ml), centrifuge and then dissolve pellet in 1 ml PBS, continue directly with staining. - For long term storage: use 0.5 ml 2xPBS + 0.5 ml ethanol instead of 1 ml PBS Sediment samples - Mix 2 g of sample with 6 ml PBS and 0.6 ml 37% formaldehyde. Incubate o/n 4oC - Continue as for water samples. Extraction of cells from sediment samples - centrifuge samples, at low speed 2’ 1000 rpm - remove supernatant and add 6 ml of 0.1% sodium pyrophosphate (NaPP) - vortex 4 x 30 sec - centrifuge at low speed 2’ 1000 rpm, collect supernatant and add fresh 0.1% NaPP - repeat previous 3 steps, 3 times. - Combine all the supernatants, centrifuge at high speed (15’ 20000 rpm) and dissolve in 6 ml PBS or PBS-50% ethanol. SYBR green staining 1.doc Pagina 2 van 2 Staining - Add 50 ul of 1/100 diluted SYBR Green I in PBS to 1 ml of (appropriately diluted) sample - Incubate for 30 minutes in the dark - Attach filter (isopore membrane filters, 0.2 um GTBP (polycarbonate) from Millipore) to filtration funnel, don’t use too high pressure - Wash filter once with 2 ml PBS - When the filter is dry, add the sample to the filter - Wash with 2 x 2 ml PBS - Remove filter and put on microscope slide, immobilise the filter by putting the filter on top of a part of the slide which has been smeared with immersion oil - Add a drop of non-fluorescent immersion oil on top of the filter.
    [Show full text]
  • SYBR® Green Staining Reagent, DNA Free
    SYBR® Green staining reagent, DNA free 10x concentrated SYBR® Green I staining solution, DNA-free Product No. A8511 Description SYBR® Green is an asymmetrical cyanine dye. It is used as intercalating dye for the general detection of double-stranded DNA (dsDNA). Our 10-fold concentrated DNA-free SYBR® Green I dye solution is particularly suitable for qPCR using general primers such as 16S rDNA or 18S rDNA primers. An additional application is the staining of DNA in gel electrophoresis. SYBR® Green shows lower mutagenic potential in comparison to ethidium bromide [1]. Thus, SYBR® Green is often used as a substitute to the classical Ethidium bromide dye. Nevertheless, follow the usual safety precautions dealing with DNA dyes. Synergistic effects have been shown to increase mutagenicity of the dye [2]. The complex of DNA and SYBR® Green absorbs blue light of wavelength 494 nm (absorption maximum) and emits green light at 521 nm (emission maximum). The stained DNA can be detected on a blue light transilluminator. Other absorption maxima in the UV range are at 284 nm and 382 nm. Hence, SYBR Green- stained DNA can also be detected on the UV transilluminator. Available pack sizes: Article No. A8511,10625 1 vial of 0.625 ml Article No. A8511,50625 5 vials of 0.625 ml Article No. A8511,100625 10 vials of 0.625 ml Literature: [1] Singer VL, Lawlor TE, Yue S. (1999) Comparison of SYBR Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutation Research 439: 37-47.
    [Show full text]
  • Fluorophore Referenceguide
    Fluorophore Reference Guide Fluorophore Excitation and Emission Data Laser Lines Broad UV Excitation Excitation Maxima Emission Maxima Emission Filters 290-365 nm LP = Long pass filter DF = Band pass filter Excel. ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ DAPI: 359 nm ____ SP = Short pass filter Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ GFP (Green Fluorescent Protein): 395 nm ____ 400 nm Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Coumarin: 402 nm ____ 425 nm Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ AttoPhos: 440 nm ____ ____ 443 nm: Coumarin 450 nm Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Acridine Orange: 460/500 nm ____ ____ 461 nm: DAPI Good __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ R-phycoerythrin: 480/565 nm ____ Excel.
    [Show full text]
  • Comparison of SYBR Green I and SYBR Gold Stains for Enumerating Bacteria and Viruses by Epifluorescence Microscopy
    AQUATIC MICROBIAL ECOLOGY Vol. 43: 223–231, 2006 Published July 19 Aquat Microb Ecol Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy Akira Shibata1, 4,*, Yoichi Goto1, Hiroaki Saito2, Tomohiko Kikuchi3, Tatuki Toda1, Satoru Taguchi1 1Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan 2 Tohoku National Fisheries Research Institute, Shinhama-cho 3-27-5, Shiogama 985-0001, Japan 3Faculty of Education and Human Sciences, Yokohama National University, 792 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan 4Present address: Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan ABSTRACT: SYBR Gold staining is used for enumerating bacteria and viruses in aquatic samples. However, its suitability for epifluorescence microscopy has not been sufficiently investigated. Thus we compared bacterial and viral counts using SYBR Gold and SYBR Green I stains. Variables for both bacterial and viral counts included season and ocean depths of sample collection and the period of sustained excitation under epifluorescence microscopy. We also examined the storage period and procedures for preservation of samples with formaldehyde for bacterial counts. Natural seawater samples were used for all experiments. Ratios of counts obtained with SYBR Gold to those with SYBR Green I staining were 0.99 ± 0.09 (mean ± SD, n = 58) for bacteria and 1.0 ± 0.1 (n = 38) for viruses, which indicated no significant differences between stains. In samples fixed with 0.74% formalde- hyde that were stored at 4°C, bacterial counts obtained with SYBR Gold staining decreased over time in parallel with those obtained with SYBR Green I staining.
    [Show full text]
  • Label-Free Horizontal EMSA for Analysis of Protein-RNA Interactions
    bioRxiv preprint doi: https://doi.org/10.1101/825679; this version posted October 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Label-free horizontal EMSA for analysis of protein-RNA interactions William Perea1, and Nancy L. Greenbaum1, 2, 3* 1 Department of Chemistry, Hunter College of the City University of New York, New York, NY 2 PhD Program in Chemistry, Graduate Center of the City University of New York, New York, NY 3 PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY *Corresponding author; email [email protected] bioRxiv preprint doi: https://doi.org/10.1101/825679; this version posted October 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract We describe a method to analyze the affinity and specificity of interactions between proteins and RNA using horizontal PAGE under non-denaturing conditions. The method permits tracking of migration of anionic and cationic biomolecules and complexes toward anode and cathode, respectively, therefore enabling quantification of bound and free biomolecules of different charges and affinity of their intermolecular interactions. The gel is stained with a fluorescent intercalating dye (SYBR®Gold or ethidium bromide) for visualization of nucleic acids followed by Coomassie® Brilliant Blue R-250 for visualizations of proteins; the dissociation constant is determined separately from the intensity of unshifted and shifted bands visualized by each dye.
    [Show full text]
  • SYBR Gold Nucleic Acid Gel Stain
    SYBR® Gold Nucleic Acid Gel Stain Table 1. Contents and storage information. Material Amount Concentration Storage Stability • ≤–20°C When stored as directed, Solution in high-quality, SYBR® Gold nucleic acid gel stain 500 µL • Desiccate stain stock solution is stable anhydrous DMSO * • Protect from light for 6 months to 1 year. * DMSO stock solution is a 10,000X concentrate. Number of labelings: Sufficient dye is provided to stain at least 100 agarose or polyacrylamide minigels. Approximate fluorescence excitation/emission maxima: 300, 495/537 nm, bound to nucleic acid Introduction Molecular Probes SYBR® Gold nucleic acid gel stain is the most sensitive fluorescent stain available for detecting double- or single-stranded DNA or RNA in electrophoretic gels, using standard ultraviolet transilluminators—surpassing even the sensitivity of our SYBR® Green gel stains in this application.1 SYBR® Gold stain is a proprietary unsymmetrical cyanine dye that ex­hibits >1000-fold fluorescence enhancement upon binding to nucleic acids and has a high quantum yield (~0.6) upon binding to double- or single-stranded DNA or to RNA.1 Ex­citation max­ima for dye–nucleic acid complex­es are at ~495 nm in the visible and ~300 nm, in the ultraviolet (Figure 1). The emission max­imum is ~537 nm. SYBR® Gold stain is >10-fold more sensitive than ethidium bromide for detecting DNA and RNA in denaturing urea, glyox­al, and formaldehyde gels, even with 300 nm transillumination.1 For detecting glyox­alated RNA, SYBR® Gold stain is 25–100 times more sensitive than ethidium bromide (Figure 2) and is by far the most sensitive stain available for this application.1 SYBR® Gold stain has also been shown to be much more sensitive than SYBR® Green II stain for detecting single strand con- formation polymorphism (SSCP) products.2 SYBR® Gold stain penetrates thick and high per- centage agarose gels rapidly, and even formaldehyde agarose gels do not require destaining, due to the low intrinsic fluorescence of the unbound dye.
    [Show full text]
  • Iq™ SYBR® Green Supermix Instruction Manual
    iQ™ SYBR® Green Supermix Instruction Manual Catalog # 170-8880 # 170-8882 # 170-8884 # 170-8885 iQ™ SYBR® Green Supermix Manual Table of Contents 1. General Information. 1 Shipping, Storage, and Stability . 1 Components of iQ™ SYBR® Green Supermix . 1 Kit Contents . 1 Quality Control. 1 Warranty . 1 Certificate of Analysis . 1 MSDS. 1 2. Introduction . 2 Product Information. 2 SYBR® Green I Dye . 2 iTaq DNA Polymerase . 3 Fluorescein Passive Reference Dye . 3 3. Guidelines for Optimizing qPCR Reactions . 3 Overview . 3 Target Identification . 3 Designing Primers . 4 Optimizing the Annealing Temperature . 4 Assay Validation. 5 4. Protocols . 5 Compatible Instruments . 5 Additional Materials Required . 5 Reaction Set Up. 6 Optimized Cycling Protocols . 7 5. Data Analysis . 7 qPCR Analysis Methods . 7 Assay Specificity Verification with a Melt Curve Analysis . 8 Well Factor Collection . 9 6. Useful References . 9 References for Data Analysis. 9 References for Designing Primers . 10 7. Troubleshooting. 10 Poor Signal or No Yield . 10 Signal in Negative Control . 11 CT Values Differing Across Replicate Samples . 12 i 8. Ordering Information. 13 Reagents for Real-Time PCR. 13 Microplates, Tubes, and Sealing Options . 13 Real-Time PCR Systems . 15 ii iQ™ SYBR® Green Supermix Manual 1. General Information Shipping, Storage, and Stability Shipping iQ™ SYBR® Green supermix is shipped on dry ice. Storage and iQ™ SYBR® Green supermix is stable for 12 months when stored in a Stability constant temperature freezer at –20°C (frost-free freezers are not recommended), protected from light. For convenience, it may be stored at 4°C for up to 6 months.
    [Show full text]
  • Fluorescent Probe for Ag+ Detection Using SYBR GREEN I and C-C Mismatch
    biosensors Article Fluorescent Probe for Ag+ Detection Using SYBR GREEN I and C-C Mismatch Xiaohong Zhou 1,*, Abdul Ghaffar Memon 2 , Weiming Sun 1, Fang Fang 3 and Jinsong Guo 3,* 1 Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China; [email protected] 2 Department of Environmental Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan; [email protected] 3 Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400030, China; [email protected] * Correspondence: [email protected] (X.Z.); [email protected] (J.G.) Abstract: Among heavy metals silver ions (Ag+) severely impact water, the environment and have serious side effects on human health. This article proposes a facile and ultrasensitive fluorescent probe for the detection of Ag+ ions using SYBR Green I (SGI) and cytosine-rich (C-rich) silver-specific oligonucleotide (SSO). Maximum fluorescent intensities with the highest sensitivity were obtained using a 0.61 dye/SSO base ratio (DBR). The established sensing principle using the optimized param- eters for bath temperature, SSO concentration, DBR, ionic strength, pH, reaction time, incubation duration and temperature effect achieved a sensitive limit of detection of 59.9 nM for silver ions (calculated through 3σ, n = 11) with a linear working range of 100–1000 nM and 0.997 R2. The total time for one assay is below 10 min; The relative standard derivation for ten repeated measurements is 8.6%. No blatant interferences were observed in the selectivity test when fluorescent probe is evaluated by investigating the effects of 11 common interference factors in the aqueous matrix.
    [Show full text]