A Systematic Review

Total Page:16

File Type:pdf, Size:1020Kb

A Systematic Review Portland State University PDXScholar OHSU-PSU School of Public Health Faculty Publications and Presentations OHSU-PSU School of Public Health 2020 Sildenafil for the rT eatment of Alzheimer’s Disease: A Systematic Review Owen Sanders Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/sph_facpub Part of the Medicine and Health Sciences Commons Let us know how access to this document benefits ou.y Citation Details Sanders, O. (2020). Sildenafil for the rT eatment of Alzheimer’s Disease: A Systematic Review. Journal of Alzheimer's Disease Reports, 4(1), 91-106 This Article is brought to you for free and open access. It has been accepted for inclusion in OHSU-PSU School of Public Health Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Journal of Alzheimer’s Disease Reports 4 (2020) 91–106 91 DOI 10.3233/ADR-200166 IOS Press Review Sildenafil for the Treatment of Alzheimer’s Disease: A Systematic Review Owen Sanders∗ Portland State University, Portland, OR, USA Accepted 31 March 2020 Abstract. Nitric oxide/cyclic guanosine monophosphate (cGMP) signaling is compromised in Alzheimer’s disease (AD), and phosphodiesterase 5 (PDE5), which degrades cGMP, is upregulated. Sildenafil inhibits PDE5 and increases cGMP levels. Integrating previous findings, we determine that most doses of sildenafil (especially low doses) likely activate peroxisome proliferator-activated receptor-␥ coactivator 1␣ (PGC1␣) via protein kinase G-mediated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) phosphorylation and/or Sirtuin-1 activation and PGC1␣ deacetylation. Via PGC1␣ signaling, low-dose sildenafil likely suppresses ␤-secretase 1 expression and amyloid-␤ (A␤) generation, upregulates antioxidant enzymes, and induces mitochondrial biogenesis. Plus, sildenafil should increase brain perfusion, insulin sensitivity, long-term potentiation, and neurogenesis while suppressing neural apoptosis and inflammation. A systematic review of sildenafil in AD was undertaken. In vitro, sildenafil protected neural mitochondria from A␤ and advanced glycation end products. In transgenic AD mice, sildenafil was found to rescue deficits in CREB phosphorylation and memory, upregulate brain-derived neurotrophic factor, reduce reactive astrocytes and microglia, decrease interleukin-1␤, interleukin-6, and tumor necrosis factor-␣, decrease neural apoptosis, increase neurogenesis, and reduce tau hyperphosphorylation. All studies that tested A␤ levels reported significant improvements except the two that used the highest dosage, consistent with the dose- limiting effect of cGMP-induced phosphodiesterase 2 (PDE2) activation and cAMP depletion on PGC1␣ signaling. In AD patients, a single dose of sildenafil decreased spontaneous neural activity, increased cerebral blood flow, and increased the cerebral metabolic rate of oxygen. A randomized control trial of sildenafil (ideally with a PDE2 inhibitor) in AD patients is warranted. Keywords: Alzheimer’s disease, cyclic GMP, mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, sildenafil citrate INTRODUCTION tau protein hyperphosphorylation and neurofibrillary tangle formation, metal ion dyshomeostasis [1–9], Alzheimer’s disease (AD) is the leading cause of oxidative stress and lipid, nucleic acid, and protein dementia worldwide, and AD patients and their fam- damage [10–13], abortive cell cycle reentry [14–26], ilies urgently require novel therapeutics to prevent neuroinflammation and microbial dysbiosis [27–33], and slow the progression of this devastating disorder. insulin resistance [34, 35], cerebrovascular dysfunc- Hallmarks of AD include amyloid-␤ (A␤) pep- tion [36–38], synaptic dysfunction [39, 40], neuronal tide secretion and deposition into neuritic plaques, loss, endoplasmic reticulum stress [41–44], and mito- chondrial dysfunction [45–48]. ∗ Sildenafil (Viagra) is a drug used to treat erectile Correspondence to: Owen Sanders, 1777 NW 173rd Ave, #610, Beaverton, OR 97006, USA. Tel.: +1 503 809 1333; E-mail: dysfunction and pulmonary arterial hypertension that [email protected]. inhibits phosphodiesterase 5 (PDE5) (Fig. 1). PDE5 ISSN 2542-4823/20/$35.00 © 2020 – IOS Press and the authors. All rights reserved This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0). 92 O. Sanders / Sildenafil for Alzheimer’s Disease or particulate guanylyl cyclase) activity was found to be decreased by 50% in AD patients’ superior temporal cortices compared to controls [54]. cGMP levels were found to be significantly lower in AD patients’ cerebrospinal fluid (CSF) compared to con- trols, and decreases in levels of cGMP correlated with CSF A␤42 levels [55], comorbid depression [56], and cognitive decline as measured by Mini-Mental State Examination (MMSE) [55, 57]. Fig. 1. Sildenafil mechanism of action. Potentially contributing to this cGMP depletion, PDE5 protein levels have been found to be sig- degrades cyclic guanosine monophosphate (cGMP). nificantly upregulated in AD patients’ temporal Upstream of cGMP, normally, the amino acid L- cortices [55], and PDE5 mRNA levels are signifi- arginine is converted by three varieties of the enzyme cantly elevated in AD patients’ entorhinal cortices nitric oxide synthase (NOS) into nitric oxide (NO). compared to controls according to a meta-analysis NO is a small cell-permeable gas molecule that dif- of mRNA datasets (p = 0.001, FDR = 0.018; Fig. 2) fuses across the plasma membrane and activates [58]. Granted, low PDE5 mRNA expression in the soluble guanylyl cyclase (sGC). sGC converts guano- human CNS has been reported relative to periph- sine triphosphate (GTP) into cGMP [49]. However, eral tissue [59–61], and no specific hybridization in AD, the activity of the NOS/NO/cGMP pathway signal was observed for PDE5 mRNA in the brains is severely impaired. NOS activity is significantly of aged and AD patients using radioactive in situ decreased in AD patients’ superior frontal gyri and hybridization histochemistry in one study, drawing hippocampi compared to age-matched controls [50], skepticism as to whether PDE5 inhibition has rele- even though aberrant neuronal NOS (nNOS) protein vance to AD [62–64]. Regardless though, the weight expression has been observed in a subpopulation of of the evidence suggests that PDE5 is expressed isocortical pyramidal neurons in AD patients’ brains (albeit relatively less than in peripheral tissues) in [51, 52] and the intensity of astrocyte endothelial the normal human brain [58–61] and that, moreover, NOS (eNOS) and inducible NOS (iNOS) expression it is upregulated in the AD entorhinal and temporal had increased in AD patients’ deep cortical layers cortices [55, 58], supporting the notion that PDE5 [52, 53]. NO-induced soluble sGC (but not basal sGC may be an important therapeutic target in AD. Fig. 2. PDE5A mRNA levels upregulated in the AD entorhinal cortex. O. Sanders / Sildenafil for Alzheimer’s Disease 93 cGMP/PGC1α signaling on cGMP concentration, duration, and crosstalk with cAMP signaling mediated by phosphodiesterase This multi-mechanism NOS/NO/cGMP signaling 3 (PDE3) and phosphodiesterase 2 (PDE2) activ- dysfunction is an important therapeutic target in AD ity. Low concentrations of cGMP compete for for multiple reasons. One reason is that cGMP is the active site of PDE3 [76], thereby imped- responsible for increasing the expression and activ- ing PDE3 from degrading cAMP and increasing ity of peroxisome proliferator-activated receptor-␥ cAMP levels. By contrast, high cGMP concentra- coactivator 1␣ (PGC1␣). PGC1␣ overexpression tions allosterically activate PDE2, thereby promoting (or low-dose NO) suppresses the expression of ␤- cAMP degradation [76, 77]. Mirroring this, low- secretase 1 (BACE1) [65], the rate-limiting enzyme dose sildenafil (up to 1 ␮M) inhibits PDE3, resulting in A␤ generation, suggesting that PGC1␣ activ- in cAMP accumulation [76], whereas high-dose ity suppresses A␤ generation. In addition, PGC1␣ sildenafil (10 and 100 ␮M) activates PDE2, result- is a master transcriptional regulator of mitochon- ing in cAMP degradation [76] and suppression drial biogenesis, oxidative respiration [66, 67], of the cAMP/EPAC/adenosine monophosphate- fatty acid ␤-oxidation [68], and antioxidant defense activated protein kinase (AMPK) pathway [76, 78, [69]. PGC1␣ upregulates multiple antioxidant genes, 79]. For this reason, excessively high doses of including mitochondrial manganese superoxide dis- sildenafil resulted in inferior therapeutic responses mutase (MnSOD), when bound to Forkhead box O3a compared to low doses in preclinical models of non- (Foxo3a) and deacetylated by Sirtuin-1 (SIRT1) [69]. alcoholic hepatic steatosis and obesity [76]. This However, PGC1␣ protein levels are significantly caveat may be relevant to AD as well. The dose- lower in AD patients’ hippocampi compared to con- dependent effect of sildenafil and cGMP signaling trols [48], and mitochondrial biogenesis and MnSOD on cAMP levels should affect PGC1␣ regula- expression are impaired there [45, 48]. Sildenafil has tion since cAMP is required for robust PGC1␣ the potential to reverse the hippocampal PGC1␣ sup- expression and mitochondrial biogenesis in AD pression in AD. 10 ␮M sildenafil treatment for 24 [48, 67]. On top of this, although NO/sGC/cGMP hours in vitro and
Recommended publications
  • Deoxyguanosine Cytotoxicity by a Novel Inhibitor of Furine Nucleoside Phosphorylase, 8-Amino-9-Benzylguanine1
    [CANCER RESEARCH 46, 519-523, February 1986] Potentiation of 2'-Deoxyguanosine Cytotoxicity by a Novel Inhibitor of Furine Nucleoside Phosphorylase, 8-Amino-9-benzylguanine1 Donna S. Shewach,2 Ji-Wang Chern, Katherine E. Pillóte,Leroy B. Townsend, and Peter E. Daddona3 Departments of Internal Medicine [D.S.S., P.E.D.], Biological Chemistry [P.E.D.], and Medicinal Chemistry [J-W.C., K.E.P., L.B.T.], University ol Michigan, Ann Arbor, Michigan 48109 ABSTRACT to the ADA-deficient disease state (2). PNP is an essential enzyme of the purine salvage pathway, We have synthesized and evaluated a series of 9-substituted catalyzing the phosphorolysis of guanosine, inosine, and their analogues of 8-aminoguanine, a known inhibitor of human purine 2'-deoxyribonucleoside derivatives to the respective purine nucleoside phosphorylase (PNP) activity. The ability of these bases. To date, several inhibitors of PNP have been identified, agents to inhibit PNP has been investigated. All compounds were and most of these compounds resemble purine bases or nucleo found to act as competitive (with inosine) inhibitors of PNP, with sides. The most potent inhibitors exhibit apparent K¡values in K¡values ranging from 0.2 to 290 /¿M.Themost potent of these the range of 10~6to 10~7 M (9-12). Using partially purified human analogues, 8-amino-9-benzylguanine, exhibited a K, value that erythrocyte PNP, the diphosphate derivative of acyclovir dis was 4-fold lower than that determined for the parent base, 8- played K¡values of 5.1 x 10~7 to 8.7 x 10~9 M, depending on aminoguanine.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations 1,3BPGA 1,3-Bisphospho-D-glycerate 10-formyl THF 10-Formyltetrahydrofolate 2PG 2-phospho-D-glycerate 3PG 3-phospho-D-glycerate 3PPyr 3-phosphonooxypyruvate 3PSer 3-phosphoserine 6PDG 6-phospho-D-gluconate 6Pgl glucono-1,5-lactone-6-phosphate AcAcACP acetoacetyl-ACP AcAcCoA acetoacetyl-CoA AcACP acetyl-ACP AcCoA acetyl-CoA ACP acyl carrier protein ADP adenosine 5'-diphosphate AKG alpha-ketoglutarate Ala alanine AMP adenosine 5'-monophosphate Arg arginine ArgSuc argininosuccinate Asn asparagine Asp aspartate ATP adenosine 5'-triphosphate CDP cytidine 5'-diphosphate Chol cholesterol Ci citrulline Cit citrate CMP cytidine 5'-monophosphate CO2 carbon dioxide CoA coenzyme A CP carbamoyl-phosphate CTP cytidine 5'-triphosphate Cytc-ox ferricytochrome c Cytc-red ferrocytochrome c dADP 2'-deoxyadenosine 5'-diphosphate dAMP 2'-deoxyadenosine 5'-monophosphate dCDP 2'-deoxycytosine 5'-diphosphate dCMP 2'-deoxycytosine 5'-monophosphate dGDP 2'-deoxyguanosine 5'-diphosphate dGMP 2'-deoxyguanosine 5'-monophosphate DHAP dihydroxyacetone phosphate DHF 7,8-Dihydrofolate dTMP 2'-Deoxythymidine-5'-monophosphate dUDP 2'-Deoxyuridine-5'-diphosphate dUMP 2'-Deoxyuridine-5'-monophosphate Ery4P erythrose-4-phosphate F16BP fructose 1,6-bisphosphate F6P fructose 6-phosphate FAD flavin adenine dinucleotide FADH2 flavin adenine dinucleotide reduced for formate fPP farnesyl diphosphate Fum fumarate G6P glucose 6-phosphate GA guanidinoacetate GA3P glyceraldehyde 3-phosphate GDP guanosine 5'-diphosphate Glc glucose Gln glutamine Glu glutamate GluSA
    [Show full text]
  • 2'-Deoxyguanosine Toxicity for B and Mature T Lymphoid Cell Lines Is Mediated by Guanine Ribonucleotide Accumulation
    2'-deoxyguanosine toxicity for B and mature T lymphoid cell lines is mediated by guanine ribonucleotide accumulation. Y Sidi, B S Mitchell J Clin Invest. 1984;74(5):1640-1648. https://doi.org/10.1172/JCI111580. Research Article Inherited deficiency of the enzyme purine nucleoside phosphorylase (PNP) results in selective and severe T lymphocyte depletion which is mediated by its substrate, 2'-deoxyguanosine. This observation provides a rationale for the use of PNP inhibitors as selective T cell immunosuppressive agents. We have studied the relative effects of the PNP inhibitor 8- aminoguanosine on the metabolism and growth of lymphoid cell lines of T and B cell origin. We have found that 2'- deoxyguanosine toxicity for T lymphoblasts is markedly potentiated by 8-aminoguanosine and is mediated by the accumulation of deoxyguanosine triphosphate. In contrast, the growth of T4+ mature T cell lines and B lymphoblast cell lines is inhibited by somewhat higher concentrations of 2'-deoxyguanosine (ID50 20 and 18 microM, respectively) in the presence of 8-aminoguanosine without an increase in deoxyguanosine triphosphate levels. Cytotoxicity correlates instead with a three- to fivefold increase in guanosine triphosphate (GTP) levels after 24 h. Accumulation of GTP and growth inhibition also result from exposure to guanosine, but not to guanine at equimolar concentrations. B lymphoblasts which are deficient in the purine salvage enzyme hypoxanthine guanine phosphoribosyltransferase are completely resistant to 2'-deoxyguanosine or guanosine concentrations up to 800 microM and do not demonstrate an increase in GTP levels. Growth inhibition and GTP accumulation are prevented by hypoxanthine or adenine, but not by 2'-deoxycytidine.
    [Show full text]
  • Triphosphate Accumulation, DNA Damage, and Growth Inhibition Following Exposure to CB3717 and Dipyridamole Nicola J
    (CANCER RESEARCH 51. 2346-2352, May I. 1991) Mechanism of Cell Death following Thymidylate Synthase Inhibition: 2'-Deoxyuridine-5'-triphosphate Accumulation, DNA Damage, and Growth Inhibition following Exposure to CB3717 and Dipyridamole Nicola J. Curtin,1 Adrian L. Harris, and G. Wynne Aherne Cancer Research L'nil, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne [N. J. C.J; Imperial Cancer Research Fund Clinical Oncology Unit, Churchill Hospital, Headington, Oxon ¡A.L. H.]; Department of Biochemistry, University of Surrey, Guildford, Surrey [G. W. A.], England ABSTRACT but one hypothesis, based on the study of bacterial mutants (3- The thymidylate synthasc inhibitor /V'°-propargyl-5,8-dideazafolic 5), is that TS inhibition leads not only to a reduction in dTTP levels but also, as dUMP accumulates behind the block, to the acid (CB3717) inhibits the growth of human lung carcinoma A549 cells. formation of dUTP. The levels of dUTP eventually overwhelm The cytotoxicity of CB3717 is potentiated by the nucleoside transport inhibitor dipyridamole (DP), which not only inhibits the uptake and dUTPase (the enzyme which breaks down dUTP to dUMP) therefore salvage of thymidine but also inhibits the efflux of deoxyuridine, and the levels of dUTP increase. DNA polymerase can utilize thereby enhancing the intracellular accumulation of deoxyuridine nucleo- dUTP and dTTP with equal efficiency (6), such that uracil is tides. Measurement of intracellular deoxyuridine triphosphate (dUTP) misincorporated into DNA. Uracil in DNA is excised rapidly pools, by sensitive radioimmunoassay, demonstrated a large increase in by uracil glycosylase, leaving an apyrimidinic site. During repair response to CB3717, in a dose- and time-related manner, and this of apyrimidinic sites, in the presence of unbalanced dUTP/ accumulation was enhanced by coincubation with DP.
    [Show full text]
  • Central Nervous System Dysfunction and Erythrocyte Guanosine Triphosphate Depletion in Purine Nucleoside Phosphorylase Deficiency
    Arch Dis Child: first published as 10.1136/adc.62.4.385 on 1 April 1987. Downloaded from Archives of Disease in Childhood, 1987, 62, 385-391 Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency H A SIMMONDS, L D FAIRBANKS, G S MORRIS, G MORGAN, A R WATSON, P TIMMS, AND B SINGH Purine Laboratory, Guy's Hospital, London, Department of Immunology, Institute of Child Health, London, Department of Paediatrics, City Hospital, Nottingham, Department of Paediatrics and Chemical Pathology, National Guard King Khalid Hospital, Jeddah, Saudi Arabia SUMMARY Developmental retardation was a prominent clinical feature in six infants from three kindreds deficient in the enzyme purine nucleoside phosphorylase (PNP) and was present before development of T cell immunodeficiency. Guanosine triphosphate (GTP) depletion was noted in the erythrocytes of all surviving homozygotes and was of equivalent magnitude to that found in the Lesch-Nyhan syndrome (complete hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency). The similarity between the neurological complications in both disorders that the two major clinical consequences of complete PNP deficiency have differing indicates copyright. aetiologies: (1) neurological effects resulting from deficiency of the PNP enzyme products, which are the substrates for HGPRT, leading to functional deficiency of this enzyme. (2) immunodeficiency caused by accumulation of the PNP enzyme substrates, one of which, deoxyguanosine, is toxic to T cells. These studies show the need to consider PNP deficiency (suggested by the finding of hypouricaemia) in patients with neurological dysfunction, as well as in T cell immunodeficiency. http://adc.bmj.com/ They suggest an important role for GTP in normal central nervous system function.
    [Show full text]
  • Cancer Science Standard Abbreviations List
    Cancer Science Standard Abbreviations List Common abbreviations, acronyms and short names are listed below. These shortened forms can be used without definition in articles published in Cancer Science. The same form is used in the plural. 7-AAD 7-amino-actinomycin D (stain) ES cell embryonic stem cell Ab antibody EST expressed sequence tag ADP adenosine 5′-diphosphate FACS fluorescence-activated cell sorter dADP 2′-deoxyadenosine 5′-diphosphate FBS fetal bovine serum AIDS acquired immunodeficiency syndrome FCS fetal calf serum Akt protein kinase B FDA Food and Drug Administration AML acute myelogenous leukemia FISH fluorescence in situ hybridization AMP adenosine 5′-monophosphate FITC fluorescein isothiocyanate dAMP 2′-deoxyadenosine 5′-monophosphate FPLC fast protein liquid chromatography ANOVA analysis of variance FRET fluorescence resonance energy transfer ATCC American Type Culture Collection GAPDH glyceraldehyde-3-phosphate dehydrogenase ATP adenosine 5′-triphosphate GDP guanosine 5′-diphosphate dATP 2′-deoxyadenosine 5′-triphosphate dGDP 2′-deoxyguanosine 5′-diphosphate beta-Gal, β-Gal beta-galactosidase GFP green fluorescent protein bp base pair(s) GMP guanosine 5′-monophosphate BrdU 5-bromodeoxyuridine dGMP 2′-deoxyguanosine 5′-monophosphate BSA bovine serum albumin GST glutathione S-transferase CCK-8 Cell Counting Kit-8 (tradename) GTP guanosine 5′-triphosphate CDP cytidine 5′-diphosphate dGTP 2′-deoxyguanosine 5′-triphosphate cCDP 2′-deoxycytidine 5′-diphosphate HA hemagglutinin CHAPS 3-[(3-cholamidopropyl)dimethylamino]-1-
    [Show full text]
  • Cyclic Adenosine 3':5'-Monophc;Phate and Cyclic Guanosine 3':5'
    1 CYCLIC ADENOSINE 3':5'-MONOPHC;PHATE AND CYCLIC GUANOSINE 3':5'- MONOPHOSPHATE METABOLISM DURING THE MITOTIC CYCLE OF THE ACELLULAR SLIME MOULD PHYSABUM POLYCEPHALUM ( SCHWEINITZ ) by James Richard Lovely B.Sc. A.R.C.S. Submitted in part fulfilment for the degree of Doctor of Philosophy of the University of London. September 1977 Department of Botany, Imperial College, London SW7 2AZ. ABSTRACT. Several methods have been assessed and the most effective used for the extraction, purification, separation and assay of cyclic AMP and cyclic GMP from the acellular slime mould Physarum polycephalum. Both cyclic nucleotides have been measured at half hourly intervals in synchronous macroplasmodia. Cyclic AMP was maximal in the last quarter of G2 while cyclic GMP showed two maxima, one occurring during S phase and the other late in G2. Enzymes synthesising and degrading these cyclic nucleotides and their sensitivity to certain inhibitors and cations have been assayed by new radiometric methods in which the tritium labelled substrate and product are separated by thin layer chromatography on cellulose. Synchronous surface plasmodia have been homogenised and sepa- rated into three fractions by differential centrifugation. Phosphodiesterase activity of each fraction has been measured using tritium labelled cyclic AMP and cyclic GMP as substrate. During the 8 hour mitotic cycle, no significant change of either enzyme in any fraction was detected. Adenylate and guanylate cyclase activity has been measured using the tritium labelled imidophosphate analogues as substrate. Adenylate cyclase activity in a low speed particulate fraction increased by about 50% in late G2. No significant changes were detected at any time in the high speed particulate or soluble fractions.
    [Show full text]
  • Oxidative Stress and the Guanosine Nucleotide Triphosphate Pool: Implications for a Biomarker and Mechanism of Impaired Cell Function
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2008 OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION Celeste Maree Bolin The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bolin, Celeste Maree, "OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION" (2008). Graduate Student Theses, Dissertations, & Professional Papers. 728. https://scholarworks.umt.edu/etd/728 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION By Celeste Maree Bolin B.A. Chemistry, Whitman College, Walla Walla, WA 2001 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Toxicology The University of Montana Missoula, Montana Spring 2008 Approved by: Dr. David A. Strobel, Dean Graduate School Dr. Fernando Cardozo-Pelaez,
    [Show full text]
  • Distribution of Nucleosides in Populations of Cordyceps Cicadae
    Molecules 2014, 19, 6123-6141; doi:10.3390/molecules19056123 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Distribution of Nucleosides in Populations of Cordyceps cicadae Wen-Bo Zeng 1, Hong Yu 1,*, Feng Ge 2, Jun-Yuan Yang 1, Zi-Hong Chen 1, Yuan-Bing Wang 1, Yong-Dong Dai 1 and Alison Adams 3 1 Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, Yunnan, China; E-Mails: [email protected] (W.-B.Z.); [email protected] (J.-Y.Y.); [email protected] (Z.-H.C.); [email protected] (Y.-B.W.); [email protected] (Y.-D.D.) 2 Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; E-Mail: [email protected] 3 Department of Biological Sciences, College of Engineering, Forestry and Natural Science, Northern Arizona University, Flagstaff, AZ 86011-5640, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +86-137-006-766-33; Fax: +86-871-650-346-55. Received: 15 January 2014; in revised form: 25 April 2014 / Accepted: 5 May 2014 / Published: 14 May 2014 Abstract: A rapid HPLC method had been developed and used for the simultaneous determination of 10 nucleosides (uracil, uridine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenine, adenosine, 2'-deoxyadenosine and cordycepin) in 10 populations of Cordyceps cicadae, in order to compare four populations of Ophicordyceps sinensis and one population of Cordyceps militaris. Statistical analysis system (SAS) 8.1 was used to analyze the nucleoside data.
    [Show full text]
  • Deoxyadenosine Triphosphate As a Mediator of Deoxyguanosine Toxicity in Cultured T Lymphoblasts
    Deoxyadenosine triphosphate as a mediator of deoxyguanosine toxicity in cultured T lymphoblasts. G J Mann, R M Fox J Clin Invest. 1986;78(5):1261-1269. https://doi.org/10.1172/JCI112710. Research Article The mechanism by which 2'-deoxyguanosine is toxic for lymphoid cells is relevant both to the severe cellular immune defect of inherited purine nucleoside phosphorylase (PNP) deficiency and to attempts to exploit PNP inhibitors therapeutically. We have studied the cell cycle and biochemical effects of 2'-deoxyguanosine in human lymphoblasts using the PNP inhibitor 8-aminoguanosine. We show that cytostatic 2'-deoxyguanosine concentrations cause G1-phase arrest in PNP-inhibited T lymphoblasts, regardless of their hypoxanthine guanine phosphoribosyltransferase status. This effect is identical to that produced by 2'-deoxyadenosine in adenosine deaminase-inhibited T cells. 2'-Deoxyguanosine elevates both the 2'-deoxyguanosine-5'-triphosphate (dGTP) and 2'-deoxyadenosine-5'-triphosphate (dATP) pools; subsequently pyrimidine deoxyribonucleotide pools are depleted. The time course of these biochemical changes indicates that the onset of G1-phase arrest is related to increase of the dATP rather than the dGTP pool. When dGTP elevation is dissociated from dATP elevation by coincubation with 2'-deoxycytidine, dGTP does not by itself interrupt transit from the G1 to the S phase. It is proposed that dATP can mediate both 2'-deoxyguanosine and 2'-deoxyadenosine toxicity in T lymphoblasts. Find the latest version: https://jci.me/112710/pdf Deoxyadenosine Triphosphate as a Mediator of Deoxyguanosine Toxicity in Cultured T Lymphoblasts G. J. Mann and R. M. Fox Ludwig Institute for Cancer Research (Sydney Branch), University ofSydney, Sydney, New South Wales 2006, Australia Abstract urine of PNP-deficient individuals, with elevation of plasma inosine and guanosine and mild hypouricemia (3).
    [Show full text]
  • CFA As a Clinically Translatable Probe for PET Imaging of Deoxycytidine Kinase Activity
    [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity Woosuk Kima,b,1, Thuc M. Lea,b,1, Liu Weia,b, Soumya Poddara,b, Jimmy Bazzya,b, Xuemeng Wanga,b, Nhu T. Uonga,b, Evan R. Abta,b, Joseph R. Capria,b, Wayne R. Austinc, Juno S. Van Valkenburghb,d, Dalton Steeleb,d, Raymond M. Gipsond, Roger Slavika,b, Anthony E. Cabebea,b, Thotsophon Taechariyakula,b, Shahriar S. Yaghoubie, Jason T. Leea,f, Saman Sadeghia,b, Arnon Lavieg, Kym F. Faulla,b,h,i, Owen N. Wittea,j,k,l, Timothy R. Donahuea,b,m, Michael E. Phelpsa,f,2, Harvey R. Herschmana,b,n, Ken Herrmanna,b, Johannes Czernina,b, and Caius G. Radua,b,2 aDepartment of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095; bAhmanson Translational Imaging Division, University of California, Los Angeles, CA 90095; cAbcam, Cambridge, MA 02139-1517; dDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; eCellSight Technologies, Inc., San Francisco, CA 94107; fCrump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095; gDepartment of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607; hThe Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095; iDepartment of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095; jDepartment of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095; kHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095; lEli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095; mDepartment of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; and nDepartment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 Contributed by Michael E.
    [Show full text]
  • Developmental Disorder Associated with Increased Cellular Nucleotidase Activity (Purine-Pyrimidine Metabolism͞uridine͞brain Diseases)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11601–11606, October 1997 Medical Sciences Developmental disorder associated with increased cellular nucleotidase activity (purine-pyrimidine metabolismyuridineybrain diseases) THEODORE PAGE*†,ALICE YU‡,JOHN FONTANESI‡, AND WILLIAM L. NYHAN‡ Departments of *Neurosciences and ‡Pediatrics, University of California at San Diego, La Jolla, CA 92093 Communicated by J. Edwin Seegmiller, University of California at San Diego, La Jolla, CA, August 7, 1997 (received for review June 26, 1997) ABSTRACT Four unrelated patients are described with a represent defects of purine metabolism, although no specific syndrome that included developmental delay, seizures, ataxia, enzyme abnormality has been identified in these cases (6). In recurrent infections, severe language deficit, and an unusual none of these disorders has it been possible to delineate the behavioral phenotype characterized by hyperactivity, short mechanism through which the enzyme deficiency produces the attention span, and poor social interaction. These manifesta- neurological or behavioral abnormalities. Therapeutic strate- tions appeared within the first few years of life. Each patient gies designed to treat the behavioral and neurological abnor- displayed abnormalities on EEG. No unusual metabolites were malities of these disorders by replacing the supposed deficient found in plasma or urine, and metabolic testing was normal metabolites have not been successful in any case. except for persistent hypouricosuria. Investigation of purine This report describes four unrelated patients in whom and pyrimidine metabolism in cultured fibroblasts derived developmental delay, seizures, ataxia, recurrent infections, from these patients showed normal incorporation of purine speech deficit, and an unusual behavioral phenotype were bases into nucleotides but decreased incorporation of uridine.
    [Show full text]