Doris Whithorn Curator Collection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Porphyry and Other Molybdenum Deposits of Idaho and Montana
Porphyry and Other Molybdenum Deposits of Idaho and Montana Joseph E. Worthington Idaho Geological Survey University of Idaho Technical Report 07-3 Moscow, Idaho ISBN 1-55765-515-4 CONTENTS Introduction ................................................................................................ 1 Molybdenum Vein Deposits ...................................................................... 2 Tertiary Molybdenum Deposits ................................................................. 2 Little Falls—1 ............................................................................. 3 CUMO—2 .................................................................................. 3 Red Mountain Prospect—45 ...................................................... 3 Rocky Bar District—43 .............................................................. 3 West Eight Mile—37 .................................................................. 3 Devil’s Creek Prospect—46 ....................................................... 3 Walton—8 .................................................................................. 4 Ima—3 ........................................................................................ 4 Liver Peak (a.k.a. Goat Creek)—4 ............................................. 4 Bald Butte—5 ............................................................................. 5 Big Ben—6 ................................................................................. 6 Emigrant Gulch—7 ................................................................... -
Montana Bureau of Mines and Geology PRELIMINARY
Montana Bureau of Mines and Geology PRELIMINARY GEOLOGIC MAP OF PARADISE VALLEY SOUTH-CENTRAL MONTANA by David A. Lopez and Jon C. Reiten Montana Bureau of Mines and Geology Open File Report MBMG 480 2003 This report has been reviewed for conformity with Montana Bureau of Mines and Geology’s technical and editorial standards. Partial support has been provided by the STATEMAP component of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey under Contract Number: 02HQAG0038. Montana 15 90 Map area 90 15 111° Bozeman Livingston 90 Map area r e 89 v i 45°30' R e n o t s w o l l e Y Emigrant Park Co. Gallatin Co. Pray Chico Miner Corwin Springs Jardine Gardiner YELLOWSTONE NATIONAL PARK 45° MT 3 0 3 6 Miles WY Location of the Paradise Valley map area. 1 CORRELATION OF MAP UNITS Qal Qdf Qrs Qc Qaf Qta Qls Holocene Qat1 Qpg Qgtc Qgoc Qgt Qat2 Qgt8 Qgo8 ? Qat Qat3 Qtr Qat4 QUATERNARY Pleistocene Qat5 Unconformity Qba Unconformity Thr Unconformity Tba Pliocene Tgr Unconformity Ts Miocene Unconformity TERTIARY Thpa Thpb Thpv Td Tdf Tqla Tgcs Tgca Eocene Tslc Tse Unconformity Tft Paleocene Unconformity Kho Kbc Kmi Kcd Unconformity Kls Unconformity Kevt Upper Cretaceous Ke CRETACEOUS Ktc Kco Kcf Kf Km Kmfr Ktf Unconformity Lower Cretaceous Kk Jm Upper Jurassic JURASSIC Je Middle Jurassic JT s R Unconformity TRc Lower Triassic TRIASSIC Unconformity Permi an PERMIAN lPq PMpa PMqa Pennsylvani an PENNSYLVANIAN lPMa Upper Miss. Unconformity MISSISSIPPIAN Mm Lower Miss. Unconformity DOs Dev.—Ord. DEV. --ORD Unconformity U & Mid.Cambrian CAMBRIAN Cs Unconformity Early Proterozoic Xmy PRECAMBRIAN Unconformity Archean Ag Anc Aqa Asg Aga As 2 DESCRIPTIONS OF MAP UNITS Qal Alluvium of modern channels and flood plains (Holocene) – Younger alluvium generally confined to the present flood plain developed along active rivers and streams. -
Conservation in Yellowstone National Park Final Report on the COVER Wolverine Tracks in the Greater Yellowstone Ecosystem
Wolverine Conservation in Yellowstone National Park Final Report ON THE COVER Wolverine tracks in the Greater Yellowstone Ecosystem. Photo by Jason Wilmot. Wolverine Conservation in Yellowstone National Park Final Report Authors John Squires Kerry Murphy US Forest Service US Forest Service Rocky Mountain Research Station Jackson Ranger District 800 East Beckwith Avenue PO Box 25 Missoula, Montana 59801 Jackson, Wyoming 83001 [email protected] [email protected] (formerly Yellowstone Center for Resources, With contributions from Yellowstone National Park, Wyoming) Robert M. Inman Wildlife Conservation Society Jason Wilmot Wolverine Program Field Office Northern Rockies Conservation Cooperative 222 East Main Street PO Box 2705 Lone Elk 3B Jackson, Wyoming 83001 Ennis, Montana 59729 [email protected] [email protected] Jeff Copeland Mark L. Packila US Forest Service Wildlife Conservation Society Rocky Mountain Research Station Wolverine Program Field Office 800 East Beckwith Avenue 222 East Main Street Missoula, Montana 59801 Lone Elk 3B [email protected] Ennis, Montana 59729 [email protected] Dan Tyers US Forest Service Doug McWhirter Gardiner Ranger District Wyoming Game and Fish Regional Office PO Box 5 2820 State Highway 120 Gardiner, Montana 59030 Cody, Wyoming 82414 [email protected] National Park Service Yellowstone National Park Yellowstone Center for Resources Yellowstone National Park, Wyoming YCR-2011-02 March 2011 Suggested citation: Murphy, K., J. Wilmot, J. Copeland, D. Tyers, J. Squires, R. M. Inman, M. L. Packila, D. McWhirter. 2011. Wolverine conservation in Yellowstone National Park: Final report. YCR-2011-02. National Park Service, Yellowstone National Park, Yellowstone Center for Resources, Yellowstone National Park, Wyoming. -
Native Fish Conservation
Yellowstone SScience Native Fish Conservation @ JOSH UDESEN Native Trout on the Rise he waters of Yellowstone National Park are among the most pristine on Earth. Here at the headwaters of the Missouri and Snake rivers, the park’s incredibly productive streams and lakes support an abundance of fish. Following the last Tglacial period 8,000-10,000 years ago, 12 species/subspecies of fish recolonized the park. These fish, including the iconic cutthroat trout, adapted and evolved to become specialists in the Yellowstone environment, underpinning a natural food web that includes magnificent animals: ospreys, bald eagles, river otters, black bears, and grizzly bears all feed upon cutthroat trout. When the park was established in 1872, early naturalists noted that about half of the waters were fishless, mostly because of waterfalls which precluded upstream movement of recolonizing fishes. Later, during a period of increasing popularity of the Yellowstone sport fishery, the newly established U.S. Fish Commission began to extensively stock the park’s waters with non-natives, including brown, brook, rainbow, and lake trout. Done more than a century ago as an attempt to increase an- gling opportunities, these actions had unintended consequences. Non-native fish caused serious negative impacts on native fish populations in some watersheds, and altered the parks natural ecology, particularly at Yellowstone Lake. It took a great deal of effort over many decades to alter our native fisheries. It will take a great deal more work to restore them. As Aldo Leopold once said, “A thing is right when it tends to preserve the integrity, stability, and beauty of the biotic com- munity. -
Mountain Lakes Guide: Absaroka, Beartooth & Crazies
2021 MOUNTAIN LAKES GUIDE Silver Lake ABSAROKA - BEARTOOTH & CRAZY MOUNTAINS Fellow Angler: This booklet is intended to pass on information collected over many years about the fishery of the Absaroka-Beartooth high country lakes. Since Pat Marcuson began surveying these lakes in 1967, many individuals have hefted a heavy pack and worked the high country for Fish, Wildlife and Parks. They have brought back the raw data and personal observations necessary to formulate management schemes for the 300+ lakes in this area containing fish. While the information presented here is not intended as a guide for hiking/camping or fishing techniques, it should help wilderness users to better plan their trips according to individual preferences and abilities. Fish species present in the Absaroka-Beartooth lakes include Yellowstone cutthroat trout, brook trout, rainbow trout, golden trout, arctic grayling, and variations of cutthroat/rainbow/golden trout hybrids. These lake fisheries generally fall into two categories: self-sustaining and stocked. Self-sustaining lakes have enough spawning habitat to allow fish to restock themselves year after year. These often contain so many fish that while fishing can be fast, the average fish size will be small. The average size and number of fish present change very little from year to year in most of these lakes. Lakes without spawning potential must be planted regularly to sustain a fishery. Standard stocking in the Beartooths is 50-100 Yellowstone cutthroat trout fingerlings per acre every eight years. Special situations may call for different species, numbers, or frequency of plants. For instance, lakes with heavy fishing pressure tend to be stocked more often and at higher densities. -
Bedrock Geology of the Southern Part of Tom Miner Basin Park and Gallatin Counties Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1969 Bedrock geology of the southern part of Tom Miner Basin Park and Gallatin counties Montana Stanley Glenn Todd The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Todd, Stanley Glenn, "Bedrock geology of the southern part of Tom Miner Basin Park and Gallatin counties Montana" (1969). Graduate Student Theses, Dissertations, & Professional Papers. 6080. https://scholarworks.umt.edu/etd/6080 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. ss’i'S ' In presenting this thesis in partial fulfillment of the require^ ments for an advanced degree at Mont.' "a State University, I agree that the Library shall make it freely available for inspection. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by my major professor, or, in his absence, by the Director of Libraries, It is understood that any copying or publica tion of this thesis for financial gain shall not be allowed without mjr written permission. signature Date n ^ . S, ______________ -
Patterns of Terrestrial and Limnologic Development in the Northern Greater Yellowstone Ecosystem (USA) During the Late-Glacial/Early- Holocene Transition Teresa R
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in the Earth and Atmospheric Sciences Earth and Atmospheric Sciences, Department of 2015 Patterns of Terrestrial and Limnologic Development in the Northern Greater Yellowstone Ecosystem (USA) during the Late-Glacial/Early- Holocene Transition Teresa R. Krause Montana State University, [email protected] Yanbin Lu University of Nebraska-Lincoln Cathy Whitlock Montana State University, [email protected] Sherilyn C. Fritz University of Nebraska-Lincoln, [email protected] Kenneth L. Pierce US Geological Survey, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Krause, Teresa R.; Lu, Yanbin; Whitlock, Cathy; Fritz, Sherilyn C.; and Pierce, Kenneth L., "Patterns of Terrestrial and Limnologic Development in the Northern Greater Yellowstone Ecosystem (USA) during the Late-Glacial/Early-Holocene Transition" (2015). Papers in the Earth and Atmospheric Sciences. 453. http://digitalcommons.unl.edu/geosciencefacpub/453 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Palaeogeography, Palaeoclimatology, Palaeoecology 422 (2015), pp. 46–56; doi: 10.1016/ j.palaeo.2014.12.018 Copyright © 2015 Elsevier B.V. Used by permission. Submitted March 26, 2014; revised October 31, 2014; accepted December 5, 2014; published online January 22, 2015. -
Environmental Geochemistry in Yellowstone National Park—Natural and Anthropogenic Anomalies and Their Potential Impact on the Environment
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications of the US Geological Survey US Geological Survey 2007 Environmental Geochemistry in Yellowstone National Park—Natural and Anthropogenic Anomalies and Their Potential Impact on the Environment Maurice A. Chaffee U.S. Geological Survey Robert R. Carlson U.S. Geological Survey Harley D. King U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgspubs Part of the Earth Sciences Commons Chaffee, Maurice A.; Carlson, Robert R.; and King, Harley D., "Environmental Geochemistry in Yellowstone National Park—Natural and Anthropogenic Anomalies and Their Potential Impact on the Environment" (2007). Publications of the US Geological Survey. 68. https://digitalcommons.unl.edu/usgspubs/68 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications of the US Geological Survey by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Environmental Geochemistry in Yellowstone National Park—Natural K and Anthropogenic Anomalies and Their Potential Impact on the Environment By Maurice A. Chaffee, Robert R. Carlson, and Harley D. King Chapter K of Integrated Geoscience Studies in the Greater Yellowstone Area— Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem Edited by Lisa A. Morgan Professional Paper 1717 U.S. Department of the Interior U.S. Geological -
Fly Fishing the Yellowstone Area: Hatch Charts and Angling Quality Charts
Fly Fishing the Yellowstone Area: Hatch Charts and Angling Quality Charts This document compiles the general hatch charts, angling quality by timeframe charts, and fishery- specific hatch and fly suggestion charts provided on the how-to portion of the Parks’ Fly Shop website (www.parksflyshop.com) in an easy-to-print (and view) format. Please visit this website for much more information on fly fishing the Yellowstone area and southern Montana. I hope you find this information helpful. If you’re considering booking a fly fishing trip in Yellowstone or Montana, we would appreciate your business. Regards, Walter Wiese Head Guide, Parks’ Fly Shop (http://www.parksflyshop.com) www.flywalter.com [email protected] (406) 223-8204 This work is copyright Walter Wiese, 2018. You may distribute this document however you please, including for commercial purposes, in print or digital formats, with the following caveats: you may not alter it, you may not claim it as your own work, you must distribute the entire document if you choose to distribute any of it, and you must include this introduction and my contact information above. Table of Contents Here are some notes on how this document is organized… ................................................................... 3 General Hatch Charts .................................................................................................................................. 5 Where Should I Fish?............................................................................................................................... -
2003 Fish with Cover
Yellowstone Fisheries & Aquatic Sciences Annual Report 2003 Thorofare Creek, October 2003. ellowstone National Park’s Yellowstone Lake is whirling behavior, abnormal feeding, and increased home to the premier surviving inland cutthroat vulnerability to predation, was first detected in Yellowstone Y trout fishery in North America. Two significant Lake in 1998, and in the Firehole River in 2000. This threats to the native Yellowstone cutthroat trout, discovered devastating disease further threatens already declining over a five-year period during the 1990s, irreversibly Yellowstone cutthroat trout populations. Although whirling altered the future of this thriving and diverse ecosystem. disease is currently believed to be concentrated in the Without swift, continuing action, negative effects on this northern regions of the Yellowstone Lake watershed, several trout population—a keystone energy source for numerous other tributaries have already been identified as at high risk. mammal and bird species and a recreational focus for In addition to native trout preservation, aquatics visitors—have the potential to produce ecosystemwide program goals include restoration of isolated but genetically consequences. pure westslope cutthroat trout, monitoring to track aquatic Predatory, non-native lake trout were likely illegally ecosystem health and expedite early warnings for other introduced to the lake in 1988 and not discovered until invasive exotic species, and encouragement of public 1994. They can consume 50–90 Yellowstone cutthroat trout involvement in various fisheries programs. per capita annually. Without heightened and maintained The stakes are high, raising the bar for innovative management efforts, they have the potential to decimate management and fundraising. The increased magnitude the Yellowstone Lake fishery in our lifetime. -
Appendix E: Wild and Scenic Rivers Eligibility Study Process Table of Contents
Appendix E: Wild and Scenic Rivers Eligibility Study Process Table of Contents Introduction .................................................................................................................................................. 2 Relevant Laws, Regulations, and Policy ........................................................................................................ 2 Eligibility Process ........................................................................................................................................... 2 Overview ................................................................................................................................................... 2 Step 1: Identify all free-flowing named streams ....................................................................................... 3 Step 2: Identify the region of comparison for each resource ................................................................... 4 Step 3: Develop evaluation criteria to identify ORVs ............................................................................... 6 Step 4: Evaluate named streams and determine if they are free-flowing and possess ORVs .................. 9 Step 5: Classification of eligible streams ................................................................................................... 9 Step 6: Develop management direction to be included in the proposed action .................................... 12 Public Feedback on Wild and Scenic River Eligibility ............................................................................. -
The Life Cycle of Gold Deposits Near the Northeast Corner of Yellowstone National Park—Geology, Mining History, and Fate
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications of the US Geological Survey US Geological Survey 2007 The Life Cycle of Gold Deposits Near the Northeast Corner of Yellowstone National Park—Geology, Mining History, and Fate Bradley S. Van Gosen U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgspubs Part of the Earth Sciences Commons Van Gosen, Bradley S., "The Life Cycle of Gold Deposits Near the Northeast Corner of Yellowstone National Park—Geology, Mining History, and Fate" (2007). Publications of the US Geological Survey. 87. https://digitalcommons.unl.edu/usgspubs/87 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications of the US Geological Survey by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Life Cycle of Gold Deposits Near the Northeast Corner of Yellowstone National M Park—Geology, Mining History, and Fate By Bradley S. Van Gosen Chapter M of Integrated Geoscience Studies in the Greater Yellowstone Area— Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem Edited by Lisa A. Morgan U.S. Department of the Interior U.S. Geological Survey Professional Paper 1717 U.S. Department of the Interior U.S. Geological Survey Contents Abstract .......................................................................................................................................................431