Cell Stemness Is Maintained Upon Concurrent Expression of RB and the Mitochondrial Ribosomal Protein S18-2

Total Page:16

File Type:pdf, Size:1020Kb

Cell Stemness Is Maintained Upon Concurrent Expression of RB and the Mitochondrial Ribosomal Protein S18-2 Cell stemness is maintained upon concurrent expression of RB and the mitochondrial ribosomal protein S18-2 Muhammad Mushtaqa,b, Larysa Kovalevska (Ковалевська)c, Suhas Darekara, Alexandra Abramssond, Henrik Zetterbergd, Vladimir Kashubaa,e, George Kleina, Marie Arsenian-Henrikssona, and Elena Kashubaa,c,1 aDepartment of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden; bDepartment of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, 87300 Quetta, Pakistan; cLaboratory of Molecular Mechanisms of Cell Transformation, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, UA-03022 Kyiv, Ukraine; dInstitute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden; and eDepartment of Molecular Oncogenetics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, UA-03143 Kyiv, Ukraine Edited by Tak W. Mak, University of Toronto, Toronto, Canada, and approved May 8, 2020 (received for review December 28, 2019) Stemness encompasses the capability of a cell for self-renewal and S18-2–overexpressing cells included high telomerase activity, differentiation. The stem cell maintains a balance between pro- anchorage-independent growth, and the ability to form aggressive liferation, quiescence, and regeneration via interactions with the tumors in severe combined immunodeficiency mice (SCID) mice. microenvironment. Previously, we showed that ectopic expression However, the mechanism via which S18 immortalizes and trans- of the mitochondrial ribosomal protein S18-2 (MRPS18-2) led to forms cells remains unexplored. Recently, other researchers have immortalization of primary fibroblasts, accompanied by induction used S18-2 as a tool to immortalize chicken embryonic liver cells (6). of an embryonic stem cell (ESC) phenotype. Moreover, we demon- The use of a model system of cell immortalization, i.e., in- strated interaction between S18-2 and the retinoblastoma- fection of primary B cells by the Epstein–Barr virus, led to the associated protein (RB) and hypothesized that the simultaneous targeting of the normally cytoplasmic S18-2 to the nucleus by expression of RB and S18-2 is essential for maintaining cell stem- interacting with the transforming viral protein EBNA-6 in the ness. Here, we experimentally investigated the role of S18-2 in cell CELL BIOLOGY immortalized cells. Furthermore, we showed that S18-2 forms a stemness and differentiation. Concurrent expression of RB and S18- 2 resulted in immortalization of Rb1−/− primary mouse embryonic bridge between the EBNA-6 and RB proteins (7). fibroblasts and in aggressive tumor growth in severe combined The retinoblastoma-associated protein (RB) exerts its function immunodeficiency mice. These cells, which express both RB and primarily by inhibiting the E2F family of transcription factors S18-2 at high levels, exhibited the potential to differentiate into (TFs) through direct binding, thus regulating cell-cycle progres- various lineages in vitro, including osteogenic, chondrogenic, and sion (8). The RB-E2F1 interaction relies on the phosphorylation adipogenic lineages. Mechanistically, S18-2 formed a multimeric status of RB, which is mediated by cyclin-dependent kinases protein complex with prohibitin and the ring finger protein 2 (CDKs) (9). Importantly, S18-2 can bind RB directly, regardless (RNF2). This molecular complex increased the monoubiquitination of the phosphorylation status of this protein (10). Consequently, of histone H2ALys119, a characteristic trait of ESCs, by enhanced E3- E2F1 is released from a complex with RB, thereby promoting ligase activity of RNF2. Furthermore, we found enrichment of KLF4 cell-cycle progression (7). at the S18-2 promoter region and that the S18-2 expression is pos- itively correlated with KLF4 levels. Importantly, knockdown of S18-2 Significance in zebrafish larvae led to embryonic lethality. Collectively, our find- ings suggest an important role for S18-2 in cell stemness and differ- We here describe the essential roles of RB and MRPS18-2 (S18- entiation and potentially also in cancerogenesis. 2) in homeostasis of cell stemness. Mouse primary cells expressing both S18-2 and RB (designated as RH18RB) exhibited stemness and differentiation | cell immortalization | embryogenesis | a stem cell phenotype. As a proof of principle, we demonstrated tumorigenesis decreased expression of stem-cell–related genes in human mes- enchymal stem cells upon down-regulation of S18-2 and RB. No- temness refers to the molecular processes underlying the tably, loss of the S18-2 protein resulted in embryonic lethality in Sfundamental stem cell (SC) properties of self-renewal and zebrafish. To reveal putative molecular mechanisms, we demon- generation of differentiated daughter cells. Highly organized and strated that S18-2, in a multimeric complex with RB, enhanced the strictly controlled signaling systems regulate these two charac- E3-ubiquitin ligase activity of RNF2 toward histone H2A. Finally, teristics of SCs. The self-renewal of these cells is controlled through based on our observation that RH18RB cells generated tumors in the activation of a defined set of genes that sustain a balance be- severe combined immunodeficiency mice, S18-2 could be a tween self-renewal and differentiation (1). Under normal physio- promising target in the development of cancer therapies. logical conditions, controlled shifts in the balance of such signaling pathways induce differentiation. Abnormalities in signaling cascades Author contributions: M.M., S.D., V.K., and E.K. designed research; M.M., L.K., S.D., A.A., and E.K. performed research; H.Z., G.K., and E.K. contributed new reagents/analytic tools; can initiate and promote cellular transformation (2). M.M., V.K., M.A.-H., and E.K. analyzed data; and M.M., M.A.-H., and E.K. wrote the paper. We showed previously that the ectopic expression of the mi- The authors declare no competing interest. tochondrial ribosomal protein S18-2 (MRPS18-2, herein re- This article is a PNAS Direct Submission. ferred to as S18-2) (see SI Appendix, Table S1, for gene names) This open access article is distributed under Creative Commons Attribution-NonCommercial- led to the immortalization of primary rat fibroblasts. Surpris- NoDerivatives License 4.0 (CC BY-NC-ND). ingly, and importantly, these cells exhibited an embryonic stem 1To whom correspondence may be addressed. Email: [email protected]. cell (ESC) phenotype (3, 4). Furthermore, terminally differen- This article contains supporting information online at https://www.pnas.org/lookup/suppl/ tiated skin fibroblasts were transformed into malignant cells doi:10.1073/pnas.1922535117/-/DCSupplemental. upon S18-2 overexpression (5). The common features of these First published June 22, 2020. www.pnas.org/cgi/doi/10.1073/pnas.1922535117 PNAS | July 7, 2020 | vol. 117 | no. 27 | 15673–15683 Downloaded by guest on September 28, 2021 Because of the constitutive activity of CDKs in ESCs, RB is dishes (Fig. 1 A, Middle). RH18 cells did not show this phenotype hyperphosphorylated, and only a very small fraction of RB binds (Fig. 1 A, Lower). to E2F1, suggesting a different mode of action of RB in SCs and The sublines generated were injected subcutaneously (s.c.) their differentiated counterparts (11). Conversely, deletion of into SCID mice in order to analyze their in vivo growth ability. RB1 led to the loss of SC self-renewal characteristics (11). As expected, only the RH18 and RH18RB cells gave rise to Generally, ESCs proliferate rapidly and have a distinct cell cycle tumors. The RH18RB cells generated tumors that were growing with truncated gap phases (12). They may remain in a quiescent faster and that produced a larger tumor mass compared to the state but reenter the cell cycle upon induction of proliferation via RH18 cells (Fig. 1 B, Left). Staining of tissue sections showed that extrinsic signals (13). The quiescent state must be finely regulated; the tumors produced by RH18RB cells could be described as otherwise, ESCs can be directed toward differentiation or senes- aggressive fibrosarcomas (Fig. 1 B, Right). In contrast, RH18 cells cence (14). However, the molecular mechanisms underlying the formed tumors with large necrotic areas (indicated with black function of RB in SCs are largely unknown (15). To study the role arrows, Fig. 1 B, Right). These tumor cells showed epithelial cell- of RB in cell stemness, we developed a model of mouse embryonic like features (indicated with red arrows, Fig. 1 B, Right). fibroblasts (MEFs) derived from homozygous knockout Rb1 em- We next picked four clones each from the RH18 and RH18RB − − bryos. The Rb1 / MEFs exhibited rapid proliferation with an cultures for further studies. To confirm cell immortalization, one of the clones of both RH18 and RH18RB cells were passaged for anchorage-dependent growth pattern. After passage 11, the pro- more than 350 population doublings; thus, these two clones were liferative rate of the cells diminished, and they became senescent − − cultured in vitro for more than 2 y. The remaining three clones of (16). The rationale of the present work was to use the Rb1 / each cell type were kept in culture for 2 mo (SI Appendix, Fig. MEF model to analyze the manner in which high expression levels S1 E and F). In contrast, control RH and RHRB cells became of RB and S18-2 cooperate to control cell fate. We hypothesized senescent quite rapidly and died after 4 to 6 wk, and no cultures that the simultaneous expression of these two proteins at a high could be passaged beyond this time point. The RHRB cells level supports stemness (17). showed contact inhibition and a significantly higher percentage of senescent cells (up to 12% β-galactosidase–positive cells) Results β – −/− compared with RH cultures (with 2% -galactosidase positive Overexpression of S18-2 Leads to Immortalization of Rb1 MEFs. To cells). In contrast, very few senescent cells were detected in the analyze whether expression of RB is needed for S18-2-induced RH18 and RH18RB cultures (Fig.
Recommended publications
  • Microglia Emerge from Erythromyeloid Precursors Via Pu.1- and Irf8-Dependent Pathways
    ART ic LE S Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways Katrin Kierdorf1,2, Daniel Erny1, Tobias Goldmann1, Victor Sander1, Christian Schulz3,4, Elisa Gomez Perdiguero3,4, Peter Wieghofer1,2, Annette Heinrich5, Pia Riemke6, Christoph Hölscher7,8, Dominik N Müller9, Bruno Luckow10, Thomas Brocker11, Katharina Debowski12, Günter Fritz1, Ghislain Opdenakker13, Andreas Diefenbach14, Knut Biber5,15, Mathias Heikenwalder16, Frederic Geissmann3,4, Frank Rosenbauer6 & Marco Prinz1,17 Microglia are crucial for immune responses in the brain. Although their origin from the yolk sac has been recognized for some time, their precise precursors and the transcription program that is used are not known. We found that mouse microglia were derived from primitive c-kit+ erythromyeloid precursors that were detected in the yolk sac as early as 8 d post conception. + lo − + − + These precursors developed into CD45 c-kit CX3CR1 immature (A1) cells and matured into CD45 c-kit CX3CR1 (A2) cells, as evidenced by the downregulation of CD31 and concomitant upregulation of F4/80 and macrophage colony stimulating factor receptor (MCSF-R). Proliferating A2 cells became microglia and invaded the developing brain using specific matrix metalloproteinases. Notably, microgliogenesis was not only dependent on the transcription factor Pu.1 (also known as Sfpi), but also required Irf8, which was vital for the development of the A2 population, whereas Myb, Id2, Batf3 and Klf4 were not required. Our data provide cellular and molecular insights into the origin and development of microglia. Microglia are the tissue macrophages of the brain and scavenge dying have the ability to give rise to microglia and macrophages in vitro cells, pathogens and molecules using pattern recognition receptors and in vivo under defined conditions.
    [Show full text]
  • Retinoblastoma Protein Positively Regulates Terminal Adipocyte Differentiation Through Direct Interaction with C/Ebps
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs Phang-Lang Chen, Daniel J. Riley, Yumay Chen, and Wen-Hwa Lee l Center for Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245 USA To define a mechanism by which retinoblastoma protein (Rb) functions in cellular differentiation, we studied primary fibroblasts from the lung buds of wild-type (RB + / +) and null-mutant (RB-/-) mouse embryos. In culture, the RB +/+ fibroblasts differentiated into fat-storing cells, either spontaneously or in response to hormonal induction; otherwise syngenic RB -/- fibroblasts cultured in identical conditions did not. Ectopic expression of normal Rb, but not Rb with a single point mutation, enabled RB-/- fibroblasts to differentiate into adipocytes. Rb appears in murine fibroblasts to activate CCAAT/enhancer-binding proteins (C/EBPs), a family of transcription factors crucial for adipocyte differentiation. Physical interaction between Rb and C/EBPs was demonstrated by reciprocal coimmunoprecipitation, but occurred only in differentiating cells. Wild-type Rb also enhanced the binding of C/EBP to cognate DNA sequences in vitro and the transact[vat[on of a C/EBPl$-responsive promoter in cells. Taken together, these observations establish a direct and positive role for Rb in terminal differentiation. Such a role contrasts with the function of Rb in arresting cell cycle progression in G1 by negative regulation of other transcription factors like E2F-1. [Key Words: C/EBP; transcription factors; cell cycle; adipocyte differentiation; tumor suppressor protein] Received July 18, 1996; revised version accepted September 5, 1996.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • RING1 Antibody (N-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP14560A
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 RING1 Antibody (N-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP14560A Specification RING1 Antibody (N-term) - Product Information Application WB,E Primary Accession Q06587 Other Accession Q6MGB6, O35730, NP_002922.2 Reactivity Human Predicted Mouse, Rat Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Antigen Region 95-123 RING1 Antibody (N-term) - Additional Information RING1 Antibody (N-term) (Cat. #AP14560a) Gene ID 6015 western blot analysis in MDA-MB453 cell line lysates (35ug/lane).This demonstrates the Other Names RING1 antibody detected the RING1 protein E3 ubiquitin-protein ligase RING1, 632-, (arrow). Polycomb complex protein RING1, RING finger protein 1, Really interesting new gene 1 protein, RING1, RNF1 RING1 Antibody (N-term) - Background Target/Specificity This gene belongs to the RING finger family, This RING1 antibody is generated from members of rabbits immunized with a KLH conjugated synthetic peptide between 95-123 amino which encode proteins characterized by a RING acids from the N-terminal region of human domain, a RING1. zinc-binding motif related to the zinc finger domain. The gene Dilution product can bind DNA and can act as a WB~~1:1000 transcriptional repressor. It is associated with the multimeric polycomb Format group protein complex. Purified polyclonal antibody supplied in PBS The gene product interacts with the polycomb with 0.09% (W/V) sodium azide. This group proteins BMI1, antibody is purified through a protein A EDR1, and CBX4, and colocalizes with these column, followed by peptide affinity proteins in large purification.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • RING1 Proteins Contribute to Early Proximal-Distal Specification of The
    © 2016. Published by The Company of Biologists Ltd | Development (2016) 143, 276-285 doi:10.1242/dev.127506 RESEARCH ARTICLE RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression Nayuta Yakushiji-Kaminatsui1,*,‡, Takashi Kondo1,2,3, Takaho A. Endo4, Yoko Koseki1,2, Kaori Kondo1,2,3, Osamu Ohara4, Miguel Vidal5 and Haruhiko Koseki1,2,‡ ABSTRACT subunits to catalyze histone H2A monoubiquitylation at lysine 119 Polycomb group (PcG) proteins play a pivotal role in silencing (H2AK119ub1). PRC1 also targets chromatin compaction by SAM developmental genes and help to maintain various stem and domain polymerization of PHC1 and PHC2, a mammalian PH precursor cells and regulate their differentiation. PcG factors also ortholog, via H3K27me3 recognition by chromodomain proteins regulate dynamic and complex regional specification, particularly in such as CBX7 and CBX2 (Cao et al., 2002; Endoh et al., 2012; mammals, but this activity is mechanistically not well understood. In Isono et al., 2013; Kuzmichev et al., 2002). Recent studies identified this study, we focused on proximal-distal (PD) patterning of the a variant PRC1 complex containing RYBP (Ring1 and YY1 mouse forelimb bud to elucidate how PcG factors contribute to a binding protein)/YAF (YY1-associated factor), RING1A/B and a regional specification process that depends on developmental distinct PCGF subunit (Gao et al., 2012; Tavares et al., 2012), and signals. Depletion of the RING1 proteins RING1A (RING1) and demonstrated that H2AK119ub1 mediated by this variant PRC1 RING1B (RNF2), which are essential components of Polycomb leads to the recruitment of PRC2 and placement of H3K27me3 to repressive complex 1 (PRC1), led to severe defects in forelimb initiate Polycomb repression (Blackledge et al., 2014).
    [Show full text]
  • Nuclear Localization of DP and E2F Transcription Factors by Heterodimeric Partners and Retinoblastoma Protein Family Members
    Journal of Cell Science 109, 1717-1726 (1996) 1717 Printed in Great Britain © The Company of Biologists Limited 1996 JCS7086 Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblastoma protein family members Junji Magae1, Chin-Lee Wu2, Sharon Illenye1, Ed Harlow2 and Nicholas H. Heintz1,* 1Department of Pathology, University of Vermont, Burlington VT 05405, USA 2Massachusetts General Hospital Cancer Center, Charlestown MA 02129, USA *Author for correspondence SUMMARY E2F is a family of transcription factors implicated in the showed that regions of E2F-1 and DP-1 that are required regulation of genes required for progression through G1 for stable association of the two proteins were also required and entry into the S phase. The transcriptionally active for nuclear localization of DP-1. Unlike E2F-1, -2, and -3, forms of E2F are heterodimers composed of one polypep- E2F-4 did not accumulate in the nucleus unless it was coex- tide encoded by the E2F gene family and one polypeptide pressed with DP-2. p107 and p130, but not pRb, stimulated encoded by the DP gene family. The transcriptional activity nuclear localization of E2F-4, either alone or in combina- of E2F/DP heterodimers is influenced by association with tion with DP-2. These results indicate that DP proteins the members of the retinoblastoma tumor suppressor preferentially associate with specific E2F partners, and protein family (pRb, p107, and p130). Here the intracellu- suggest that the ability of specific E2F/DP heterodimers to lar distribution of E2F and DP proteins was investigated in localize in the nucleus contributes to the regulation of E2F transiently transfected Chinese hamster and human cells.
    [Show full text]
  • Vitamin D Genes & Exposure in Relation to Kidney Cancer by Sara
    Vitamin D Genes & Exposure in Relation to Kidney Cancer by Sara Karami B.S., Biology, James Madison University, 2002 M.P.H, Epidemiology, The George Washington University, 2004 A Dissertation submitted to The Faculty of The Columbian College of Arts and Science of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2009 Dissertation directed by Katherine L. Hunting Professor of Environmental and Occupational Health and of Epidemiology and Biostatistics and Lee E. Moore Epidemiological Investigator, NIH, NCI The Columbian College of Arts and Science of The George Washington University certifies that Sara Karami has passed the Final Examination for the degree of Doctor of Philosophy as of August 12, 2009. This is the final and approved form of the dissertation. Vitamin D Genes & Exposure in Relation to Kidney Cancer Sara Karami Dissertation Research Committee: Katherine L. Hunting, Professor of Environmental and Occupational Health and of Epidemiology and Biostatistics, Dissertation Director Lee E. Moore, Epidemiological Investigator, NIH, NCI, Co-Director Paul H. Levine, Professor of Epidemiology and Biostatistics, Committee Member Yinglei Lai, Assistant Professor of Statistics, Committee Member ii © Copyright 2009 by Sara Karami All rights reserved iii Dedication The author wishes to thank everyone involved in the dissertation process for their guidance and support. Special thanks to Dr. Lee Moore, Dr. Katherine Hunting, Dr. Paul Levine, Dr. Yinglei Lai, Dr. Sean Cleary, and Dr. Donte Verme. iv Acknowledgement The author wishes to acknowledge the National Cancer Institute, the International Agency for Research on Cancer, and the School of Public Health and Health Services of The George Washington University for their assistance.
    [Show full text]
  • A Dual Cis-Regulatory Code Links IRF8 to Constitutive and Inducible Gene Expression in Macrophages
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages Alessandra Mancino,1,3 Alberto Termanini,1,3 Iros Barozzi,1 Serena Ghisletti,1 Renato Ostuni,1 Elena Prosperini,1 Keiko Ozato,2 and Gioacchino Natoli1 1Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy; 2Laboratory of Molecular Growth Regulation, Genomics of Differentiation Program, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA The transcription factor (TF) interferon regulatory factor 8 (IRF8) controls both developmental and inflammatory stimulus-inducible genes in macrophages, but the mechanisms underlying these two different functions are largely unknown. One possibility is that these different roles are linked to the ability of IRF8 to bind alternative DNA sequences. We found that IRF8 is recruited to distinct sets of DNA consensus sequences before and after lipopolysaccharide (LPS) stimulation. In resting cells, IRF8 was mainly bound to composite sites together with the master regulator of myeloid development PU.1. Basal IRF8–PU.1 binding maintained the expression of a broad panel of genes essential for macrophage functions (such as microbial recognition and response to purines) and contributed to basal expression of many LPS-inducible genes. After LPS stimulation, increased expression of IRF8, other IRFs, and AP-1 family TFs enabled IRF8 binding to thousands of additional regions containing low-affinity multimerized IRF sites and composite IRF–AP-1 sites, which were not premarked by PU.1 and did not contribute to the basal IRF8 cistrome.
    [Show full text]
  • RB1 and P53 at the Crossroad of EMT and Triple Negative Breast Cancer
    PERSPECTIVE PERSPECTIVE Cell Cycle 10:10, 1-8; May 15, 2011; © 2011 Landes Bioscience RB1 and p53 at the crossroad of EMT and triple negative breast cancer Zhe Jiang,1 Robert Jones,1 Jeff C. Liu,1 Tao Deng,1 Tyler Robinson,1 Philip E.D. Chung,1 Sharon Wang,1 Jason I. Herschkowitz,2 Sean E. Egan,3 Charles M. Perou4 and Eldad Zacksenhaus1,* 1Division of Cell and Molecular Biology; Toronto General Research Institute; University Health Network; Toronto, Ontario, Canada; 2Department of Molecular and Cellular Biology; Baylor College of Medicine; Houston, TX USA; 3Program in Developmental and Stem Cell Biology; The Hospital for Sick Children; Department of Molecular Genetics; University of Toronto; Toronto, Ontario, Canada; 4Lineberger Comprehensive Cancer Center; Department of Genetics and Pathology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA riple negative breast cancer (TNBC) NEU-positive and Triple Negative (TN) Tis a heterogeneous disease that tumors, the latter of which do not express includes Basal-like and Claudin-low hormone receptors or HER2.1-7 TNBC tumors. The Claudin-low tumors are affects 15–30% of patients. By IHC it can enriched for features associated with be further divided into Basal-like breast epithelial-to-mesenchymal transition cancer and non-basal tumors, some of (EMT) and possibly for tumor initiating which exhibit features of EMT.8 Basal-like cells. Primary TNBCs respond relatively BCs express the basal cytokeratins (CK) well to conventional chemotherapy; CK5/6, CK14, CK17, and/or epidermal © 2011 Landes Bioscience. Landes ©2011 however, metastatic disease is virtually growth factor receptor (EGFR), whereas incurable.
    [Show full text]
  • A Thyroid Hormone Receptor Coactivator Negatively Regulated by the Retinoblastoma Protein
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 9040–9045, August 1997 Biochemistry A thyroid hormone receptor coactivator negatively regulated by the retinoblastoma protein KAI-HSUAN CHANG*†,YUMAY CHEN*†,TUNG-TI CHEN*†,WEN-HAI CHOU*†,PHANG-LANG CHEN*, YEN-YING MA‡,TERESA L. YANG-FENG‡,XIAOHUA LENG§,MING-JER TSAI§,BERT W. O’MALLEY§, AND WEN-HWA LEE*¶ *Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245; ‡Department of Genetics, Obstetrics, and Gynecology, Yale University School of Medicine, New Haven, CT 06510; and §Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030 Contributed by Bert W. O’Malley, June 9, 1997 ABSTRACT The retinoblastoma protein (Rb) plays a E2F-1, a transcription factor important for the expression of critical role in cell proliferation, differentiation, and devel- several genes involved in cell cycle progression from G1 to S opment. To decipher the mechanism of Rb function at the (18). Rb inhibits E2F-1 activity by blocking its transactivation molecular level, we have systematically characterized a num- region (19–21). In contrast, Rb has been shown to have the ber of Rb-interacting proteins, among which is the clone C5 ability to increase the transactivating activity of the members described here, which encodes a protein of 1,978 amino acids of the CCAATyenhancer binding protein (CyEBP) family, and with an estimated molecular mass of 230 kDa. The corre- to be required for CyEBPs-dependent adipocyte and mono- sponding gene was assigned to chromosome 14q31, the same cytes differentiation (16–17).
    [Show full text]
  • Genequery™ Human Stem Cell Transcription Factors Qpcr Array
    GeneQuery™ Human Stem Cell Transcription Factors qPCR Array Kit (GQH-SCT) Catalog #GK125 Product Description ScienCell's GeneQuery™ Human Stem Cell Transcription Factors qPCR Array Kit (GQH-SCT) surveys a panel of 88 transcription factors related to stem cell maintenance and differentiation. Transcription factors are proteins that can regulate target gene transcription level by binding to specific regions of the genome known as enhancers or silencers. Brief examples of how genes may be grouped according to their functions are shown below: • Pluripotency transcription factors: NANOG, POU5F1, SOX2 • Embryonic development: EOMES, FOXC2/D3/O1, HOXA9/A10, KLF2/5, LIN28B, MAX, PITX2, SMAD1, TBX5, ZIC1 • Germ layer formation and differentiation: FOXA2, GATA6, HAND1, ISL1, KLF4, SMAD2, SOX9 • Organ morphogenesis: EZH2, HOXA11/B3/B5/C9, MSX2, MYC, PAX5/8, VDR • Angiogenesis: CDX2, JUN, NR2F2, RUNX1, WT1 • Hematopoiesis and osteogenesis: EGR3, ESR1, GATA1/2/3, GLI2, NFATC1, PAX9, RB1, SOX6, SP1, STAT1 • Neural stem cell maintenance and differentiation: ATF2, CREB1, FOSB, FOXO3, HES1, HOXD10, MCM2/7, MEF2C, NEUROD1/G1, OLIG1/2, PAX3/6, POU4F1, PPARG, SMAD3/4, SNAI1, STAT3 Note : all gene names follow their official symbols by the Human Genome Organization Gene Nomenclature Committee (HGNC). GeneQuery™ qPCR array kits are qPCR ready in a 96-well plate format, with each well containing one primer set that can specifically recognize and efficiently amplify a target gene's cDNA. The carefully designed primers ensure that: (i) the optimal annealing temperature in qPCR analysis is 65°C (with 2 mM Mg 2+ , and no DMSO); (ii) the primer set recognizes all known transcript variants of target gene, unless otherwise indicated; and (iii) only one gene is amplified.
    [Show full text]