Defects and Dualities

Total Page:16

File Type:pdf, Size:1020Kb

Defects and Dualities Defects and Dualities Hee-Cheol Kim Perimeter Institute Based on arXiv:1412.2781 with Davide Gaiotto (Perimeter) arXiv:1412.6081 with Mathew Bullimore (IAS), Peter Koroteev (Perimeter) Introduction What is a defect ? A singularity supporting a submanifold L k D ( D>k ) in ⇢ M spacetime manifold D . M Lk D M (Codimension D k defect) − Introduction What types of defects appear in physics ? Wilson (or ’t Hooft) line heavy vortex, cosmic string Domain wall z 1,3 2 1,3 R R R 1,2 = R R C … (many other defects) Introduction How are defects defined ? φ( )=v 1 + 1. Topological defect v v+ φ( )=v − 1 − 2. Singular behavior of fields m xi F dxµ dx⌫ ✏ dxj dxk µ⌫ ^ ⇠ 4 ijk x 3 ^ | | 3. Orbifold on spacetime D D /ZN M ! M 4. Coupling to defect theory SD[ D]+Sk[ k]+SD,k[ D, k] 5. RG flow in Higgs branch B(x, y) (x + iy)r h i⇠ Introduction Why are defects important ? • They serves as order parameters in phase transition. Symmetry breaking, confining phase, Higgs phase, … • They can observe symmetries or dualities. Global structure of symmetries, electric-magnetic duality, mirror duality, … • They can provide a zoo of theories in lower dimensions after compactification. Class S theories, Class R theories, AGT correspondence, … • so on …. Contents • Introduction • Line defects and surface defects in gauge theory • Defects and duality in 5d gauge theory • Conclusion Defects in gauge theory Line defects 1,3 R Wilson loop C W =Tr exp i A dxµ R : Rep. of gauge group R RP µ G ✓ IC ◆ - Heavy electrically charged particle - In confining phase, it exhibits area law : being an order parameter of confining phase ⌧V (L) W e− ,V(L) L ⌧ h i⇠ ⇠ C L Line defects ’t Hooft loop (in 4d) . - Disorder operator : defined by singularity m xi F dxµ dx⌫ ✏ dxj dxk µ⌫ ^ ⇠ 4 ijk x 3 ^ m : magetic charge | | - Heavy magnetic monopole - In Higgs phase, it exhibits area law. ⌧V (L) T e− ,V(L) L ⌧ h i⇠ ⇠ C L Duality on Line defects Electric-magnetic duality (E,~ B~ ) (B,~ E~ ) ,e g = 4⇡/e ! − ! − Wilson loop ’t Hooft loop - Duality in 4d gauge theories - Strong-Weak duality, so hard to check - Some checks have been done with supersymmetric partition functions Codimension 2 defects z r ( Surface defects in 4 dimensions ) 2 ✓ R 1. Singularity of fields as r 0 (Gukov-Witten defect) ! µ Aµdx diag(m1, ,m1,m2, ,m2, ,ms ,ms)d✓ mi : monodromy parameters ⇠ ··· ··· ··· ··· s n1 n2 ns ni = N i=1 | {z } | {z } | {z } X - Gauge symmetry (suppose SU ( N ) gauge group) is broken, near the defect, to Levi subgroup L = S ( U ( n 1 ) U ( n s )) . ⇥ ···⇥ - Classified by or ⇢ =[n1,n2, ,ns] L ··· Codimension 2 defects z r 2 2. Geometric singularity on R ✓ 2⇡ 2 - Orbifolding : ✓ ✓ + R /Zs ⇠ s - We can turn on discrete Z s holonomies. 2 2 s s H = diag(!, , !, ! , , ! , , ! , ! ) s ··· ··· ··· ··· (! = 1) n1 n2 ns - Gauge symmetry| {z }is| broken{z }to L |= S{z(U(n}1) U(ns)) ⇥ ···⇥ 3. Coupling to defect theory - Consider a D 2 dimensional theory (maybe gauge theory) with − global symmetry SU ( N ) and couple it to the bulk SU ( N ) gauge field. D D 2 D D 2 − − SU(N) SU(N) … SU(N) … Codimension 2 defects a Q↵ 4. Higgsing SU(N) SU(N) UV SU(N) SU(N) Q ⇠ detQ (x + iy)r h i⇠ !1 h i⇠ p SU(N) w/o defect IR SU(N) w/ defect - Consider a UV SU ( N ) SU ( N ) theory with a bifundamental matter Qa ⇥ ↵ and move far along Higgs branch. Q ⇠ - We give a large vacuum expectation value, h i⇠ !1 . - Renormalization group flow leads to SU ( N ) theoryp in low energy (IR). - If we instead give a large coordinate dependent vev, det Q ( x + iy ) r , h i⇠ the IR SU ( N ) theory accommodates codim. 2 defect at x = y =0 . Duality on Codimemsion 2 defects • Mirror symmetry in 3d : Wilson line Codimension 2 defect • S-duality in 4d : Codimension 2 defect Codimension 2 defect • What about 5d ? Defect and Duality in 5d gauge theory Duality in 5d gauge theory • 5d gauge theory is non-renormalizable. • Class of theories admit UV completion as 5d CFT (or 6d CFT), and we are interested in these theories. • Such theories (at least some of them) have string theory origin and their dualities inherit string theory duality. ex) Duality in 5-brane web diagram Duality in 5d gauge theory 5d pure SU (2) gauge theory w/o matter field preserving 8 supersymmetries. 6 2⇡2 g2 + a 5-brane realization 5 0123456789 a D5 ------ NS5 ----- - { 5d theory a : Coulomb branch parameter g2 : classical gauge coupling Duality in 5d gauge theory 5d pure SU (2) gauge theory w/o matter field preserving 8 supersymmetries. 6 2⇡2 g2 + a 5-brane realization 5 0123456789 a D5 ------ NS5 ----- - { 5d theory a : Coulomb branch parameter g2 : classical gauge coupling 2 2⇡2 2 Duality in 5d field theory : (˜a, g˜ ) ( 2 + a, g ) ! g − = 90 o rotation of 5-brane diagram (It corresponds to S SL (2 , Z ) action of Type IIB) ⇢ Codimension 2 defect of SU (2) gauge theory 1,2 R Simplest codimension 2 defect ( Type I ) r µ 1) Gukov-Witten type : Aµdx diag(m, m)d✓ ✓ ⇠ − 1,4 R 2 2 2) Z 2 orbifold : H = diag(!, ! ) , ! =1 3) Coupling to 3d U (1) gauge theory with 2 fundamental chiral multiplets 5d 3d SU(2) U(1) 4) Higgsing SU (2) SU (2) gauge theory by giving a vev det Q ( x + iy ) r =1 ⇥ h i⇠ All same defects !! Codimension 2 defect of SU (2) gauge theory Codimension 2 defect ( Type II ) 1) Higgsing SU (3) gauge theory with 2 fundamental matters q, q˜ by giving a position dependent vev to mesonic operator M = q q˜ =0 . h i h i6 q M =0 h i6 SU(3) U(2) SU(2) q˜ UV IR 2) Coupling to a couple of 3d free chiral multiplets. 5d 3d SU(2) U(1) Same defects !! Brane realization of codimension 2 defects Type I Type II 6 m 5 m 7 D3-branes (defects) 5d theory { 0123456789 D5 ------ NS5 ----- - D3 --- - { 3d theory Brane realization of codimension 2 defects Type I Type II 6 5 7 Duality in field theory = 90 o rotation of brane-diagram Defect partition function and Duality test 1 4 We have computed defect partition functions (on S R ) and tested duality. ⇥ Exact partition functions can be computed using supersymmetric localization. Supersymmetric localization : 1. Deform path integral in SUSY manner w.r.t supercharge Q . 3d/5d 3d/5d S [ ] tQV 2 Z Z (t)= e− E − (Q V = 0) ! D Z 2. The result is independent of the deformation d 3d/5d S [ ] tQV Z (t) Q e− E − V =0 dt ⇠ D Z ⇣ ⌘ 3. Send t and do gaussian integral around saddle point of QV =0 , !1 which gives rise to Exact Result since Z ( t = 0) = Z ( t = ) . 1 Defect partition function and Duality test a : Coulomb branch parameter 4⇡2 g2 : gauge coupling Type I (GW) Z(I) = Z(I)(a, g2 ; m) m : 3d monodromy parameter a˜ : Coulomb branch parameter 2 4⇡ g˜2 : gauge coupling Type II (free chirals) Z(II) = Z(II)(˜a, g˜2 ;˜m) m˜ : 3d mass parameter 2 2⇡2 2 Duality transforms (˜a, g˜ ) ( 2 + a, g ) ! g − We have checked that two partition functions completely agree. Z(I) = Z(II) 2 up to (˜a = 2⇡ + a, g˜2 = g2, m˜ = m) g2 − Duality in 3d/5d system New duality by 3d S SL (2 , Z ) transformation ⇢ • 3d S SL (2 , Z ) action (not duality in general) ⇢ 1. Gauging a U (1) global symmetry : U(1) U(1) 2. Adding a mixed Chern-Simons term : 3 d xAnewdAold Z 3d 3d In our example U(2) SU(2) U(1) S - transform • The same S action on 3d/5d system becomes duality ! 4⇡2 4⇡2 4⇡2 Z(II)(a, g2 ; m) Z(I)(a, g2 ; m)=Z(II)(˜a, g˜2 ;˜m) S - transform Conclusion Conclusions • There are various defects in physics and they play important roles. • We have studied interesting properties of defects under dualities. - Combination of different types of defects. - Dualities on defect theories and those of bulk theories. - Integrability : ˆ Z =0 becomes Baxter equations in integrable systems. O - Implications to realistic system..
Recommended publications
  • Compactifying M-Theory on a G2 Manifold to Describe/Explain Our World – Predictions for LHC (Gluinos, Winos, Squarks), and Dark Matter
    Compactifying M-theory on a G2 manifold to describe/explain our world – Predictions for LHC (gluinos, winos, squarks), and dark matter Gordy Kane CMS, Fermilab, April 2016 1 OUTLINE • Testing theories in physics – some generalities - Testing 10/11 dimensional string/M-theories as underlying theories of our world requires compactification to four space-time dimensions! • Compactifying M-theory on “G2 manifolds” to describe/ explain our vacuum – underlying theory - fluxless sector! • Moduli – 4D manifestations of extra dimensions – stabilization - supersymmetry breaking – changes cosmology first 16 slides • Technical stuff – 18-33 - quickly • From the Planck scale to EW scale – 34-39 • LHC predictions – gluino about 1.5 TeV – also winos at LHC – but not squarks - 40-47 • Dark matter – in progress – surprising – 48 • (Little hierarchy problem – 49-51) • Final remarks 1-5 2 String/M theory a powerful, very promising framework for constructing an underlying theory that incorporates the Standard Models of particle physics and cosmology and probably addresses all the questions we hope to understand about the physical universe – we hope for such a theory! – probably also a quantum theory of gravity Compactified M-theory generically has gravity; Yang- Mills forces like the SM; chiral fermions like quarks and leptons; softly broken supersymmetry; solutions to hierarchy problems; EWSB and Higgs physics; unification; small EDMs; no flavor changing problems; partially observable superpartner spectrum; hidden sector DM; etc Simultaneously – generically Argue compactified M-theory is by far the best motivated, and most comprehensive, extension of the SM – gets physics relevant to the LHC and Higgs and superpartners right – no ad hoc inputs or free parameters Take it very seriously 4 So have to spend some time explaining derivations, testability of string/M theory Don’t have to be somewhere to test theory there – E.g.
    [Show full text]
  • Deformations of G2-Structures, String Dualities and Flat Higgs Bundles Rodrigo De Menezes Barbosa University of Pennsylvania, [email protected]
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles Rodrigo De Menezes Barbosa University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Mathematics Commons, and the Quantum Physics Commons Recommended Citation Barbosa, Rodrigo De Menezes, "Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles" (2019). Publicly Accessible Penn Dissertations. 3279. https://repository.upenn.edu/edissertations/3279 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3279 For more information, please contact [email protected]. Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles Abstract We study M-theory compactifications on G2-orbifolds and their resolutions given by total spaces of coassociative ALE-fibrations over a compact flat Riemannian 3-manifold Q. The afl tness condition allows an explicit description of the deformation space of closed G2-structures, and hence also the moduli space of supersymmetric vacua: it is modeled by flat sections of a bundle of Brieskorn-Grothendieck resolutions over Q. Moreover, when instanton corrections are neglected, we obtain an explicit description of the moduli space for the dual type IIA string compactification. The two moduli spaces are shown to be isomorphic for an important example involving A1-singularities, and the result is conjectured to hold in generality. We also discuss an interpretation of the IIA moduli space in terms of "flat Higgs bundles" on Q and explain how it suggests a new approach to SYZ mirror symmetry, while also providing a description of G2-structures in terms of B-branes.
    [Show full text]
  • Some Mathematical Applications of Little String Theory
    Some mathematical applications of little string theory Mina Aganagic UC Berkeley Based on joint works with Edward Frenkel and Andrei Okounkov, to appear Andrei Okounkov, arXiv:1604.00423 [math.AG] , Nathan Haouzi, arXiv:1506.04183 [hep-th] , String theory predicts existence of a remarkable quantum field theory in six dimensions, the (2,0) superconformal field theory. The theory is labeled by a simply-laced Lie algebra, . It is remarkable, in part, because it is expected to play an important role in pure mathematics: Geometric Langlands Program Knot Categorification Program The fact that the theory has no classical limit, makes it hard to extract its predictions. AGT correspondence, after Alday, Gaiotto and Tachikawa, serves well to illustrate both the mathematical appeal of the theory and the difficulty of working with it. The AGT correspondence states that the partition function of the -type (2,0) SCFT, on a six manifold of the form is a conformal block on the Riemann surface of a vertex operator algebra which is also labeled by : -algebra The correspondence further relates defects of the 6d theory to vertex operators of the -algebra, inserted at points on . x x x x x x If one is to take the conjecture at its face value, it is hard to make progress on it. Since we do not know how to describe the (2,0) SCFT, we cannot formulate or evaluate its partition function in any generality. (Exceptions are g=A_1 , or special choices of defects.) I will argue in this talk that one can make progress by replacing the 6-dimensional conformal field theory, which is a point particle theory, by the 6-dimensional string theory which contains it, the (2,0) little string theory.
    [Show full text]
  • Modular Invariance of Characters of Vertex Operator Algebras
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 9, Number 1, January 1996 MODULAR INVARIANCE OF CHARACTERS OF VERTEX OPERATOR ALGEBRAS YONGCHANG ZHU Introduction In contrast with the finite dimensional case, one of the distinguished features in the theory of infinite dimensional Lie algebras is the modular invariance of the characters of certain representations. It is known [Fr], [KP] that for a given affine Lie algebra, the linear space spanned by the characters of the integrable highest weight modules with a fixed level is invariant under the usual action of the modular group SL2(Z). The similar result for the minimal series of the Virasoro algebra is observed in [Ca] and [IZ]. In both cases one uses the explicit character formulas to prove the modular invariance. The character formula for the affine Lie algebra is computed in [K], and the character formula for the Virasoro algebra is essentially contained in [FF]; see [R] for an explicit computation. This mysterious connection between the infinite dimensional Lie algebras and the modular group can be explained by the two dimensional conformal field theory. The highest weight modules of affine Lie algebras and the Virasoro algebra give rise to conformal field theories. In particular, the conformal field theories associated to the integrable highest modules and minimal series are rational. The characters of these modules are understood to be the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. From this point of view, the role of the modular group SL2(Z)ismanifest. In the study of conformal field theory, physicists arrived at the notion of chi- ral algebras (see e.g.
    [Show full text]
  • On Mirror Maps for Manifolds of Exceptional Holonomy JHEP10(2019)204 ]) 2 and 2 G ] (See Also [ 1 21 31 ]
    Published for SISSA by Springer Received: August 23, 2019 Accepted: October 2, 2019 Published: October 21, 2019 On mirror maps for manifolds of exceptional holonomy JHEP10(2019)204 Andreas P. Braun,a Suvajit Majumdera and Alexander Ottob;c aMathematical Institute, University of Oxford Woodstock Road, Oxford, OX2 6GG, U.K. bPerimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada cDepartment of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada E-mail: [email protected], [email protected], [email protected] Abstract: We study mirror symmetry of type II strings on manifolds with the exceptional holonomy groups G2 and Spin(7). Our central result is a construction of mirrors of Spin(7) manifolds realized as generalized connected sums. In parallel to twisted connected sum G2 manifolds, mirrors of such Spin(7) manifolds can be found by applying mirror symmetry to the pair of non-compact manifolds they are glued from. To provide non-trivial checks for such geometric mirror constructions, we give a CFT analysis of mirror maps for Joyce orbifolds in several new instances for both the Spin(7) and the G2 case. For all of these models we find possible assignments of discrete torsion phases, work out the action of mirror symmetry, and confirm the consistency with the geometrical construction. A novel feature appearing in the examples we analyse is the possibility of frozen singularities. Keywords: String Duality, Conformal Field Models in String Theory, Superstring Vacua ArXiv ePrint: 1905.01474 Open Access, c The Authors. https://doi.org/10.1007/JHEP10(2019)204 Article funded by SCOAP3.
    [Show full text]
  • From String Theory and Moonshine to Vertex Algebras
    Preample From string theory and Moonshine to vertex algebras Bong H. Lian Department of Mathematics Brandeis University [email protected] Harvard University, May 22, 2020 Dedicated to the memory of John Horton Conway December 26, 1937 – April 11, 2020. Preample Acknowledgements: Speaker’s collaborators on the theory of vertex algebras: Andy Linshaw (Denver University) Bailin Song (University of Science and Technology of China) Gregg Zuckerman (Yale University) For their helpful input to this lecture, special thanks to An Huang (Brandeis University) Tsung-Ju Lee (Harvard CMSA) Andy Linshaw (Denver University) Preample Disclaimers: This lecture includes a brief survey of the period prior to and soon after the creation of the theory of vertex algebras, and makes no claim of completeness – the survey is intended to highlight developments that reflect the speaker’s own views (and biases) about the subject. As a short survey of early history, it will inevitably miss many of the more recent important or even towering results. Egs. geometric Langlands, braided tensor categories, conformal nets, applications to mirror symmetry, deformations of VAs, .... Emphases are placed on the mutually beneficial cross-influences between physics and vertex algebras in their concurrent early developments, and the lecture is aimed for a general audience. Preample Outline 1 Early History 1970s – 90s: two parallel universes 2 A fruitful perspective: vertex algebras as higher commutative algebras 3 Classification: cousins of the Moonshine VOA 4 Speculations The String Theory Universe 1968: Veneziano proposed a model (using the Euler beta function) to explain the ‘st-channel crossing’ symmetry in 4-meson scattering, and the Regge trajectory (an angular momentum vs binding energy plot for the Coulumb potential).
    [Show full text]
  • Super-Higgs in Superspace
    Article Super-Higgs in Superspace Gianni Tallarita 1,* and Moritz McGarrie 2 1 Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago 7941169, Chile 2 Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, 22607 Hamburg, Germany; [email protected] * Correspondence: [email protected] or [email protected] Received: 1 April 2019; Accepted: 10 June 2019; Published: 14 June 2019 Abstract: We determine the effective gravitational couplings in superspace whose components reproduce the supergravity Higgs effect for the constrained Goldstino multiplet. It reproduces the known Gravitino sector while constraining the off-shell completion. We show that these couplings arise by computing them as quantum corrections. This may be useful for phenomenological studies and model-building. We give an example of its application to multiple Goldstini. Keywords: supersymmetry; Goldstino; superspace 1. Introduction The spontaneous breakdown of global supersymmetry generates a massless Goldstino [1,2], which is well described by the Akulov-Volkov (A-V) effective action [3]. When supersymmetry is made local, the Gravitino “eats” the Goldstino of the A-V action to become massive: The super-Higgs mechanism [4,5]. In terms of superfields, the constrained Goldstino multiplet FNL [6–12] is equivalent to the A-V formulation (see also [13–17]). It is, therefore, natural to extend the description of supergravity with this multiplet, in superspace, to one that can reproduce the super-Higgs mechanism. In this paper we address two issues—first we demonstrate how the Gravitino, Goldstino, and multiple Goldstini obtain a mass. Secondly, by using the Spurion analysis, we write down the most minimal set of new terms in superspace that incorporate both supergravity and the Goldstino multiplet in order to reproduce the super-Higgs mechanism of [5,18] at lowest order in M¯ Pl.
    [Show full text]
  • Higher AGT Correspondences, W-Algebras, and Higher Quantum
    Higher AGT Correspon- dences, W-algebras, and Higher Quantum Geometric Higher AGT Correspondences, W-algebras, Langlands Duality from M-Theory and Higher Quantum Geometric Langlands Meng-Chwan Duality from M-Theory Tan Introduction Review of 4d Meng-Chwan Tan AGT 5d/6d AGT National University of Singapore W-algebras + Higher QGL SUSY gauge August 3, 2016 theory + W-algebras + QGL Higher GL Conclusion Presentation Outline Higher AGT Correspon- dences, Introduction W-algebras, and Higher Quantum Lightning Review: A 4d AGT Correspondence for Compact Geometric Langlands Lie Groups Duality from M-Theory A 5d/6d AGT Correspondence for Compact Lie Groups Meng-Chwan Tan W-algebras and Higher Quantum Geometric Langlands Introduction Duality Review of 4d AGT Supersymmetric Gauge Theory, W-algebras and a 5d/6d AGT Quantum Geometric Langlands Correspondence W-algebras + Higher QGL SUSY gauge Higher Geometric Langlands Correspondences from theory + W-algebras + M-Theory QGL Higher GL Conclusion Conclusion 6d/5d/4d AGT Correspondence in Physics and Mathematics Higher AGT Correspon- Circa 2009, Alday-Gaiotto-Tachikawa [1] | showed that dences, W-algebras, the Nekrasov instanton partition function of a 4d N = 2 and Higher Quantum conformal SU(2) quiver theory is equivalent to a Geometric Langlands conformal block of a 2d CFT with W2-symmetry that is Duality from M-Theory Liouville theory. This was henceforth known as the Meng-Chwan celebrated 4d AGT correspondence. Tan Circa 2009, Wyllard [2] | the 4d AGT correspondence is Introduction Review of 4d proposed and checked (partially) to hold for a 4d N = 2 AGT conformal SU(N) quiver theory whereby the corresponding 5d/6d AGT 2d CFT is an AN−1 conformal Toda field theory which has W-algebras + Higher QGL WN -symmetry.
    [Show full text]
  • Modular Forms on G 2 and Their Standard L-Function
    MODULAR FORMS ON G2 AND THEIR STANDARD L-FUNCTION AARON POLLACK Abstract. The purpose of this partly expository paper is to give an introduction to modular forms on G2. We do this by focusing on two aspects of G2 modular forms. First, we discuss the Fourier expansion of modular forms, following work of Gan-Gross-Savin and the author. Then, following Gurevich-Segal and Segal, we discuss a Rankin-Selberg integral yielding the standard L-function of modular forms on G2. As a corollary of the analysis of this Rankin-Selberg integral, one obtains a Dirichlet series for the standard L-function of G2 modular forms; this involves the arithmetic invariant theory of cubic rings. We end by analyzing the archimedean zeta integral that arises from the Rankin-Selberg integral when the cusp form is an even weight modular form. 1. Introduction If a reductive group G over Q has a Hermitian symmetric space G(R)=K, then there is a notion of modular forms on G. Namely, one can consider the automorphic forms on G that give rise to holomorphic functions on G(R)=K. However, if G does not have a Hermitian symmetric space, then G has no obvious notion of modular forms, or very special automorphic forms. The split exceptional group G2 is an example: its symmetric space G2(R)= (SU(2) × SU(2)) has no complex structure. Nevertheless, Gan-Gross-Savin [GGS02] defined and studied modular forms on G2 by building off of work of Gross-Wallach [GW96] on quaternionic discrete series representations. The purpose of this paper is to give an introduction to modular forms on G2, with the hope that we might interest others in this barely-developed area of mathematics.
    [Show full text]
  • Oldandnewonthe Exceptionalgroupg2 Ilka Agricola
    OldandNewonthe ExceptionalGroupG2 Ilka Agricola n a talk delivered in Leipzig (Germany) on product, the Lie bracket [ , ]; as a purely algebraic June 11, 1900, Friedrich Engel gave the object it is more accessible than the original Lie first public account of his newly discovered group G. If G happens to be a group of matrices, its description of the smallest exceptional Lie Lie algebra g is easily realized by matrices too, and group G2, and he wrote in the corresponding the Lie bracket coincides with the usual commuta- Inote to the Royal Saxonian Academy of Sciences: tor of matrices. In Killing’s and Lie’s time, no clear Moreover, we hereby obtain a direct defi- distinction was made between the Lie group and nition of our 14-dimensional simple group its Lie algebra. For his classification, Killing chose [G2] which is as elegant as one can wish for. a maximal set h of linearly independent, pairwise 1 [En00, p. 73] commuting elements of g and constructed base Indeed, Engel’s definition of G2 as the isotropy vectors Xα of g (indexed over a finite subset R of group of a generic 3-form in 7 dimensions is at elements α ∈ h∗, the roots) on which all elements the basis of a rich geometry that exists only on of h act diagonally through [ , ]: 7-dimensional manifolds, whose full beauty has been unveiled in the last thirty years. [H,Xα] = α(H)Xα for all H ∈ h. This article is devoted to a detailed historical In order to avoid problems when doing so he chose and mathematical account of G ’s first years, in 2 the complex numbers C as the ground field.
    [Show full text]
  • “Generalized Complex and Holomorphic Poisson Geometry”
    “Generalized complex and holomorphic Poisson geometry” Marco Gualtieri (University of Toronto), Ruxandra Moraru (University of Waterloo), Nigel Hitchin (Oxford University), Jacques Hurtubise (McGill University), Henrique Bursztyn (IMPA), Gil Cavalcanti (Utrecht University) Sunday, 11-04-2010 to Friday, 16-04-2010 1 Overview of the Field Generalized complex geometry is a relatively new subject in differential geometry, originating in 2001 with the work of Hitchin on geometries defined by differential forms of mixed degree. It has the particularly inter- esting feature that it interpolates between two very classical areas in geometry: complex algebraic geometry on the one hand, and symplectic geometry on the other hand. As such, it has bearing on some of the most intriguing geometrical problems of the last few decades, namely the suggestion by physicists that a duality of quantum field theories leads to a ”mirror symmetry” between complex and symplectic geometry. Examples of generalized complex manifolds include complex and symplectic manifolds; these are at op- posite extremes of the spectrum of possibilities. Because of this fact, there are many connections between the subject and existing work on complex and symplectic geometry. More intriguing is the fact that complex and symplectic methods often apply, with subtle modifications, to the study of the intermediate cases. Un- like symplectic or complex geometry, the local behaviour of a generalized complex manifold is not uniform. Indeed, its local structure is characterized by a Poisson bracket, whose rank at any given point characterizes the local geometry. For this reason, the study of Poisson structures is central to the understanding of gen- eralized complex manifolds which are neither complex nor symplectic.
    [Show full text]
  • Intertwining Operator Superalgebras and Vertex Tensor Categories for Superconformal Algebras, Ii
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 354, Number 1, Pages 363{385 S 0002-9947(01)02869-0 Article electronically published on August 21, 2001 INTERTWINING OPERATOR SUPERALGEBRAS AND VERTEX TENSOR CATEGORIES FOR SUPERCONFORMAL ALGEBRAS, II YI-ZHI HUANG AND ANTUN MILAS Abstract. We construct the intertwining operator superalgebras and vertex tensor categories for the N = 2 superconformal unitary minimal models and other related models. 0. Introduction It has been known that the N = 2 Neveu-Schwarz superalgebra is one of the most important algebraic objects realized in superstring theory. The N =2su- perconformal field theories constructed from its discrete unitary representations of central charge c<3 are among the so-called \minimal models." In the physics liter- ature, there have been many conjectural connections among Calabi-Yau manifolds, Landau-Ginzburg models and these N = 2 unitary minimal models. In fact, the physical construction of mirror manifolds [GP] used the conjectured relations [Ge1] [Ge2] between certain particular Calabi-Yau manifolds and certain N =2super- conformal field theories (Gepner models) constructed from unitary minimal models (see [Gr] for a survey). To establish these conjectures as mathematical theorems, it is necessary to construct the N = 2 unitary minimal models mathematically and to study their structures in detail. In the present paper, we apply the theory of intertwining operator algebras developed by the first author in [H3], [H5] and [H6] and the tensor product theory for modules for a vertex operator algebra developed by Lepowsky and the first author in [HL1]{[HL6], [HL8] and [H1] to construct the intertwining operator algebras and vertex tensor categories for N = 2 superconformal unitary minimal models.
    [Show full text]