Material Safety Data Sheet (MSDS) ID NO. 0137SPE012: Speedway
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Assessment Report on Microplastics
An Assessment Report on Microplastics This document was prepared by B Stevens, North Carolina Coastal Federation Table of Contents What are Microplastics? 2 Where Do Microplastics Come From? 3 Primary Sources 3 Secondary Sources 5 What are the Consequences of Microplastics? 7 Marine Ecosystem Health 7 Water Quality 8 Human Health 8 What Policies/Practices are in Place to Regulate Microplastics? 10 Regional Level 10 Outer Banks, North Carolina 10 Other United States Regions 12 State Level 13 Country Level 14 United States 14 Other Countries 15 International Level 16 Conventions 16 Suggested World Ban 17 International Campaigns 18 What Solutions Already Exist? 22 Washing Machine Additives 22 Faucet Filters 23 Advanced Wastewater Treatment 24 Plastic Alternatives 26 What Should Be Done? 27 Policy Recommendations for North Carolina 27 Campaign Strategy for the North Carolina Coastal Federation 27 References 29 1 What are Microplastics? The category of ‘plastics’ is an umbrella term used to describe synthetic polymers made from either fossil fuels (petroleum) or biomass (cellulose) that come in a variety of compositions and with varying characteristics. These polymers are then mixed with different chemical compounds known as additives to achieve desired properties for the plastic’s intended use (OceanCare, 2015). Plastics as litter in the oceans was first reported in the early 1970s and thus has been accumulating for at least four decades, although when first reported the subject drew little attention and scientific studies focused on entanglements, ‘ghost fishing’, and ingestion (Andrady, 2011). Today, about 60-90% of all marine litter is plastic-based (McCarthy, 2017), with the total amount of plastic waste in the oceans expected to increase as plastic consumption also increases and there remains a lack of adequate reduce, reuse, recycle, and waste management tactics across the globe (GreenFacts, 2013). -
Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
SIGMA-ALDRICH Sigma-Aldrich.Com Material Safety Data Sheet Version 5.0 Revision Date 12/13/2012 Print Date 12/10/2013
SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 5.0 Revision Date 12/13/2012 Print Date 12/10/2013 1. PRODUCT AND COMPANY IDENTIFICATION Product name : PCB No 77 Product Number : 35496 Brand : Fluka Supplier : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +1 800-325-5832 Fax : +1 800-325-5052 Emergency Phone # (For : (314) 776-6555 both supplier and manufacturer) Preparation Information : Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards No known OSHA hazards GHS Classification Acute toxicity, Oral (Category 1) Specific target organ toxicity - repeated exposure (Category 2) Acute aquatic toxicity (Category 1) Chronic aquatic toxicity (Category 1) GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H300 Fatal if swallowed. H373 May cause damage to organs through prolonged or repeated exposure. H410 Very toxic to aquatic life with long lasting effects. Precautionary statement(s) P264 Wash hands thoroughly after handling. P273 Avoid release to the environment. P301 + P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/ physician. P501 Dispose of contents/ container to an approved waste disposal plant. HMIS Classification Health hazard: 4 Flammability: 1 Physical hazards: 0 NFPA Rating Health hazard: 4 Fire: 1 Fluka - 35496 Page 1 of 7 Reactivity Hazard: 0 Potential Health Effects Inhalation May be harmful if inhaled. May cause respiratory tract irritation. Skin May be harmful if absorbed through skin. May cause skin irritation. Eyes May cause eye irritation. Ingestion May be fatal if swallowed. 3. COMPOSITION/INFORMATION ON INGREDIENTS Synonyms : 3,3′,4,4′-PCB 3,3′,4,4′-Tetrachlorobiphenyl Formula : C12H6Cl4 Molecular Weight : 291.99 g/mol No ingredients are hazardous according to OHSA criteria. -
Safer Cocktail for an Ethanol/Water/Ammonia Solvent
L A S C P LSC in Practice C P O C L Safer Cocktail for an Ethanol/Water/ K T I A I C Ammonia Solvent Mixture L S A Problem T A laboratory had been under pressure to move towards Using this mixture, the sample uptake capacity of I the newer generation of safer liquid scintillation ULTIMA-Flo AP, ULTIMA-Flo M and ULTIMA Gold O cocktails. Unfortunately, the sample composition of LLT (PerkinElmer 6013599, 6013579 and 6013377, one of their targets kept giving the researchers problems. respectively) at 20 °C was determined and N Before the lead researcher contacted PerkinElmer, the results were: they had tried PerkinElmer’s Opti-Fluor®, ULTIMA ULTIMA-Flo AP 4.00 mL in 10 mL cocktail N Gold LLT, and ULTIMA Gold XR. All of the safer O ™ ULTIMA-Flo M 4.25 mL in 10 mL cocktail cocktails could incorporate each of the constituents T as indicated by their sample capacity graphs. ULTIMA Gold LLT 4.25 mL in 10 mL cocktail E The problematic sample was an extraction solvent From these results, we observed that it was possible consisting of 900 mL ethanol, 50 mL ammonium to get 4.0 mL of the sample into all of these cocktails. hydroxide, 500 mL water and an enzyme containing In addition, we determined that it was not possible to 14C. The mixture had a pH in the range of 10 to 11. get 4 mL sample into 7 mL of any of these cocktails. To complete this work, we also checked for lumines- Discussion cence using 4 mL of sample in 10 mL of each cocktail. -
Fuel Properties Comparison
Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb. -
Liquichek Ethanol/Ammonia Control SERUM CHEMISTRY CONTROLS Liquichek Ethanol/Ammonia Control
Bio-Rad Laboratories SERUM CHEMISTRY CONTROLS Liquichek Ethanol/Ammonia Control SERUM CHEMISTRY CONTROLS Liquichek Ethanol/Ammonia Control A liquid control used to monitor the precision of Ethanol and Ammonia test procedures in the clinical laboratory. • Liquid • Normal, elevated and toxic concentrations of Ammonia • 2 year shelf life at 2–8°C • 20 day open-vial stability at 2–8°C Analytes Ammonia Ethanol Refer to the package insert of currently available lots for specific analyte and stability claims Ordering Information Cat # Description 544 Level 1 ..................................................................................... 6 x 3 mL 545 Level 2 ..................................................................................... 6 x 3 mL 546 Level 3 ..................................................................................... 6 x 3 mL 545X Trilevel MiniPak (1 of each level) .................................................................. 3 x 3 mL EQAS Independent QC Unity An independent, external assessment of laboratory Ongoing, proactive, unbiased daily QC that QC Data Management tools that help you create performance in comparison to your peers. helps identify errors as they occur or begin to trend. a strategy to reduce risk and streamline QC workflow. QCNet.com/eqas QCNet.com/independentqc QCNet.com/datamanagement Bio-Rad For further information, please contact the Bio-Rad office nearest you Laboratories, Inc. or visit our website at www.bio-rad.com/qualitycontrol Clinical Website www.bio-rad.com/diagnostics Australia -
RESIDENTIAL ENVIRONMENTAL HAZARDS: a Guide for Homeowners, Homebuyers, Landlords and Tenants 2011
CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY RESIDENTIAL ENVIRONMENTAL HAZARDS: A Guide For Homeowners, Homebuyers, Landlords and Tenants 2011 This guide was originally developed by M. B. Gilbert Associates, under contract with the California Department of Real Estate in cooperation with the California Department of Health Services. The 2005 edition was prepared by the California Department of Toxic Substances Control, in cooperation with the California Air Resources Board and the California Department of Health Services, and meets all State and Federal guidelines and lead disclosure requirements pursuant to the Residential Lead-Based Paint Hazard Reduction Act of 1992. The 2005 edition incorporates the Federal “Protect Your Family from Lead” pamphlet. The 2011 update was developed California Department of Toxic Substances Control. This booklet is offered for information purposes only, not as a reflection of the position of the administration of the State of California. Residential Environmental Hazards Booklet Page 1 of 48 January 2011 Table of Contents INTRODUCTION 3 CHAPTER I ASBESTOS 3 CHAPTER II CARBON MONOXIDE 10 CHAPTER III FORMALDEHYDE 13 CHAPTER IV HAZARDOUS WASTE 17 CHAPTER V HOUSEHOLD HAZARDOUS WASTE 21 CHAPTER VI LEAD 24 CHAPTER VII MOLD 31 CHAPTER VIII RADON 36 APPENDIX A LIST OF FEDERAL AND STATE AGENCIES 42 APPENDIX B GLOSSARY 46 Residential Environmental Hazards Booklet Page 2 of 48 January 2011 Introduction The California Departments of Real Estate and Health Services originally prepared this booklet in response to the California legislative mandate (Chapter 969, Statutes of 1989, AB 983, Bane) to inform the homeowner and prospective homeowner about environmental hazards located on and affecting residential property. -
Cellulosic Ethanol Production Via Aqueous Ammonia Soaking Pretreatment and Simultaneous Saccharification and Fermentation Asli Isci Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 Cellulosic ethanol production via aqueous ammonia soaking pretreatment and simultaneous saccharification and fermentation Asli Isci Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons Recommended Citation Isci, Asli, "Cellulosic ethanol production via aqueous ammonia soaking pretreatment and simultaneous saccharification and fermentation" (2008). Retrospective Theses and Dissertations. 15695. https://lib.dr.iastate.edu/rtd/15695 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Cellulosic ethanol production via aqueous ammonia soaking pretreatment and simultaneous saccharification and fermentation by Asli Isci A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Agricultural and Biosystems Engineering; Biorenewable Resources and Technology Program of Study Committee: Robert P. Anex, Major Professor D. Raj Raman Anthony L. Pometto III. Kenneth J. Moore Robert C. Brown Iowa State University Ames, Iowa -
Endocrine Disruption: Where Are We with Hazard and Risk Assessment? 2
1 Title: Endocrine disruption: where are we with hazard and risk assessment? 2 3 Running head: Hazard and risk assessment of endocrine disrupters 4 Katherine Coady*†, Peter Matthiessen‡, Holly M. Zahner§1, Jane Staveleyǁ; Daniel J. Caldwell#; 5 Steven L. Levine††, Leon Earl Gray Jr‡‡, Christopher J. Borgert§§ 6 7 † The Dow Chemical Company, Midland, MI, USA; 8 Telephone: 989-636-7423; Fax: 989-638-2425; e-mail: [email protected]; ‡Independent 9 Consultant, Llanwrtyd Wells, UK; e-mail: [email protected] ; § United States 10 Food and Drug Administration, Center for Veterinary Medicine, Rockville, MD, USA; email: 11 [email protected] ; ǁExponent Inc., Cary, NC, USA; email: [email protected] ; 12 #Johnson & Johnson, New Brunswick, New Jersey, USA; email [email protected] ; 13 ††Monsanto Company, St. Louis, MO, USA;email [email protected]; ‡‡USEPA, 14 ORD, NHEERL, TAD, RTB. RTP, NC, USA; email: [email protected] ; §§Applied 15 Pharmacology and Toxicology, Inc., and, Center for Environmental and Human Toxicology, 16 University of Florida, Gainesville, FL, USA; e-mail: [email protected] 17 1The views presented in this article do not necessarily reflect those of the Food and Drug 18 Administration 19 * Corresponding Author: 20 Katherine Coady 21 The Dow Chemical Company, 1803 Building, Washington Street, Midland MI, USA, 48674. 22 Email address: [email protected] PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2580v1 | CC0 Open Access | rec: 4 Nov 2016, publ: 23 24 ABSTRACT 25 Approaches to assessing endocrine disruptors (EDs) differ across the globe, with some 26 regulatory environments using a hazard-based approach, while others employ risk-based 27 analyses. -
Dehydrogenation of Ethanol to Acetaldehyde Over Different Metals Supported on Carbon Catalysts
catalysts Article Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts Jeerati Ob-eye , Piyasan Praserthdam and Bunjerd Jongsomjit * Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] (J.O.-e.); [email protected] (P.P.) * Correspondence: [email protected]; Tel.: +66-2-218-6874 Received: 29 November 2018; Accepted: 27 December 2018; Published: 9 January 2019 Abstract: Recently, the interest in ethanol production from renewable natural sources in Thailand has been receiving much attention as an alternative form of energy. The low-cost accessibility of ethanol has been seen as an interesting topic, leading to the extensive study of the formation of distinct chemicals, such as ethylene, diethyl ether, acetaldehyde, and ethyl acetate, starting from ethanol as a raw material. In this paper, ethanol dehydrogenation to acetaldehyde in a one-step reaction was investigated by using commercial activated carbon with four different metal-doped catalysts. The reaction was conducted in a packed-bed micro-tubular reactor under a temperature range of 250–400 ◦C. The best results were found by using the copper doped on an activated carbon catalyst. Under this specified condition, ethanol conversion of 65.3% with acetaldehyde selectivity of 96.3% at 350 ◦C was achieved. This was probably due to the optimal acidity of copper doped on the activated carbon catalyst, as proven by the temperature-programmed desorption of ammonia (NH3-TPD). In addition, the other three catalyst samples (activated carbon, ceria, and cobalt doped on activated carbon) also favored high selectivity to acetaldehyde (>90%). -
Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO
Pediatric Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO Target Audience: Emergency Medicine Residents, Medical Students Primary Learning Objectives: 1. Recognize signs and symptoms of ethylene glycol toxicity 2. Order appropriate laboratory and radiology studies in ethylene glycol toxicity 3. Recognize and interpret blood gas, anion gap, and osmolal gap in setting of TA ingestion 4. Differentiate the symptoms and signs of ethylene glycol toxicity from those associated with other toxic alcohols e.g. ethanol, methanol, and isopropyl alcohol Secondary Learning Objectives: detailed technical/behavioral goals, didactic points 1. Perform a mental status evaluation of the altered patient 2. Formulate independent differential diagnosis in setting of leading information from RN 3. Describe the role of bicarbonate for severe acidosis Critical actions checklist: 1. Obtain appropriate diagnostics 2. Protect the patient’s airway 3. Start intravenous fluid resuscitation 4. Initiate serum alkalinization 5. Initiate alcohol dehydrogenase blockade 6. Consult Poison Center/Toxicology 7. Get Nephrology Consultation for hemodialysis Environment: 1. Room Set Up – ED acute care area a. Manikin Set Up – Mid or high fidelity simulator, simulated sweat if available b. Airway equipment, Sodium Bicarbonate, Nasogastric tube, Activated charcoal, IV fluid, norepinephrine, Simulated naloxone, Simulate RSI medications (etomidate, succinylcholine) 2. Distractors – ED noise For Examiner Only CASE SUMMARY SYNOPSIS OF HISTORY/ Scenario Background The setting is an urban emergency department. This is the case of a 2.5-year-old male toddler who presents to the ED with an accidental ingestion of ethylene glycol. The child was home as the father was watching him. The father was changing the oil on his car. -
Ide and Ethanol Rocket Engine
INJECTOR AND COMBUSTION CHAMBER DESIGN FOR A NITROUS OX- IDE AND ETHANOL ROCKET ENGINE Giovani Hidalgo Ceotto Escola Politécnica - Universidade de São Paulo [email protected] Guilherme Castrignano Tavares Escola Politécnica - Universidade de São Paulo [email protected] Abstract. The basic design of a rocket engine injector and combustion chamber for saturated nitrous oxide and liquid ethanol is presented. At first, an oxidant-fuel mixture is selected based on a thermochemical analysis that explores several existing options and other combinations that have not yet been studied. As a result, nitrous oxide is chosen as an oxidant and ethanol as fuel. Then a simplified methodology is proposed for the design of a pressure-swirl injector responsible for ethanol. Computational fluid dynamics is used to verify the validity of the above-mentioned analysis, using Volume of Fluid (VOF). For the nitrous oxide injector, the flash-boiling phenomenon is investigated, verifying its importance for the ongoing project. The effect is treated analytically using the Dyer model to account for non-equilibrium thermodynamics. Simplified zero-dimensional and one-dimensional combustion models are explored as tools to design the rocket combustion chamber. Furthermore, combustion instability due to acoustic phenomena is studied, with the first spinning tangential mode being computed for the herein developed motor and an ensemble of acoustic cavities being developed to suppress the aforementioned mode. Finally, a diagram of the static test bench which will be used to validate the injectors and the designed engine is also presented. Keywords: Liquid rocket motor, Injector, Combustion, Instability, Acoustic cavity. 1. INTRODUCTION The aerospace sector has been growing in the past years with the introduction of new private-owned companies explor- ing this market that was previously dominated by governments.