Campos Magnéticos Em Afterglows De Gamma-Ray Bursts

Total Page:16

File Type:pdf, Size:1020Kb

Campos Magnéticos Em Afterglows De Gamma-Ray Bursts Universidade de S˜ao Paulo Instituto de Astronomia, Geof´ısica e Ciˆencias Atmosf´ericas Departamento de Astronomia Gustavo Rocha da Silva Campos Magn´eticos em Afterglows de Gamma-Ray Bursts S˜ao Paulo 2009 Gustavo Rocha da Silva Campos Magn´eticos em Afterglows de Gamma-Ray Bursts Disserta¸c˜ao apresentada ao Departamento de Astronomia do Instituto de Astronomia, Geof´ısica e Ciˆencias Atmosf´ericas da Universidade de S˜ao Paulo como parte dos requisitos para a obten¸c˜ao do t´ıtulo de Mestre em Ciˆencias. Area´ de Concentra¸c˜ao: Astronomia Orientador(a): Prof. Dr. Reuven Opher S˜ao Paulo 2009 Para o Papai, a Mam˜ae, Tati, Clara e Ro, que me ensinaram algo que os sentidos, ainda que ampliados, n˜ao podem capturar. Agradecimentos Certamente esta ´ea p´agina mais dif´ıcil desta disserta¸c˜ao e ao mesmo tempo a mais agrad´avel. Mais dif´ıcil porque as palavras de afeto devem fazer jus ao sentimento e a lembran¸ca, e mais agrad´avel pois essa ´ea sensa¸c˜ao de lembrar das pessoas aqui citadas. Por motivos hist´oricos, agrade¸co inicialmente `as pessoas que muito me influenciaram no interesse pela pesquisa, assim como na minha escolha pelo mestrado em astronomia: Professora Vera Jatenco-Pereira, Aline Vidotto e Diego Falceta-Gon¸calves. A convivˆencia com vocˆes foi sempre animadora e me incentivou a caminhar adiante. Agrade¸co ao meu orientador Reuven Opher, por me auxiliar a enxergar a simplici- dade nos trabalhos mais indecifr´aveis. A capacidade de s´ıntese e de argumenta¸c˜ao sempre foi motivo de inspira¸c˜ao e continuar´asendo uma meta a ser alcan¸cada profissionalmente. Agrade¸co tamb´em aos amigos do grupo Ana, Ulisses, Luiz Felippe (companheiro de via- gens) e Rafael. Aos professores do IAG, que auxiliaram direta ou indiretamente na minha forma¸c˜ao e pesquisa, desde a gradua¸c˜ao. Em particular ao Jorge Horvath que sempre se mostrou particularmente interessado no meu trabalho e acess´ıvel para a troca de id´eias. Espero que ele passe a torcer pela sele¸c˜ao brasileira em breve. Aos meus pais, cujas palavras de agradecimento s˜ao insuficientes para demonstrar senti- mento de tal natureza. Gra¸cas a eles cresci aprendendo a buscar e cultivar conhecimento e valores eternos. As` minhas muito amadas irm˜as Clara e Thais com quem tudo compartilho. A` Roberta, pelo quanto a sua compreens˜ao diminuiu o peso de me privar da convivˆencia durante a elabora¸c˜ao deste trabalho. Este trabalho ´eem muito dedicado a vocˆee ao quanto n´os crescemos juntos. Entre as minhas maiores conquistas nos ´ultimos dois anos, relaciono os meus amigos no IAG que propiciaram `aminha experiˆencia na p´os-gradua¸c˜ao uma oportunidade ´unica de convivˆencia, al´em de muita cafe´ına. Inicialmente colegas e agora amigos Thiago Triumpho (futuro milion´ario), Thiago Almeida, Bruno Dias, Vin´ıcius Busti, Tatiana Lagan´a, Oscar Cavichia (R´a), Fernanda e Tatiana (chuiquititas). Ao Marcus Vin´ıcius (TF) companheiro de todas as conversas. Com carinho tamb´em agrade¸co a oportunidade de dividir sala com duas pessoas e amigos fant´asticos que foram o Alessandro e o Mairan, que tornaram o meu ambiente de trabalho t˜ao agrad´avel quanto a minha pr´opria casa. Outro que n˜ao posso deixar de citar, ainda que n˜ao no IAG ´eo Max Ujevic, amizade ilustre que veio de brinde com o mestrado. Agrade¸co a Mirr Corporation Iluminatti Society, por preencher minha mente com ima- gina¸c˜ao, vocˆes certamente s˜ao os amigos mais presentes na minha vida. Aos meus amigos F´abio, Gustavo e Thiago (Kibe), com quem a convivˆencia durante anos permitiu que a minha mente vagasse por lugares que n˜ao teria acesso sozinha. Vocˆes certamente influen- ciaram as minhas escolhas mais acertadas, incluindo a astrof´ısica. Ao Marcos e Ulisses funcion´arios do IAG, de quem sempre pude contar com muita aten¸c˜ao e boa vontade. Ao` pessoal da secretaria, principalmente `aMarina minha amiga, que com certeza me ajudou sempre mais do que o necess´ario. Agradecimentos aos amigos que mesmo sem o nome aqui participam de diversos mo- mentos importantes na minha vida. Ao CNPQ pela bolsa concedida durante toda a realiza¸c˜ao da disserta¸c˜ao, assim como a CAPES/PROEX pelo aux´ılio na participa¸c˜ao de eventos cient´ıficos. A Esta tese/disserta¸c˜ao foi escrita em LTEX com a classe IAGTESE, para teses e disserta¸c˜oes do IAG. “Para que a pesquisa continue florescendo no campo fragmentado e complexo do saber, escolho a palavra c´eu. C´eu convoca, um pouco em desordem, as almas viajantes e as tecnologias galopantes. Nos ´ultimos vinte anos aprendemos mais do c´eu do que em dois mil, e isso gra¸cas `auni˜ao da astronomia e da f´ısica. A astrof´ısica ´eo casamento da Terra e do c´eu no pensamento humano, da f´ısica, pr´atica de laborat´orio que consiste em extrair leis da mat´eria deste mundo, e da astronomia, que ´eum olhar dirigido para o inacess´ıvel. Sem a f´ısica, a astronomia n˜ao tem cabe¸ca, mas, sem a astronomia a f´ısica n˜ao tem asas.” Michel Cass´e “A verdade n˜ao faz sentido, a grandeza do mundo me encolhe. Aquilo que provavelmente pedi e finalmente tive, veio no entanto me deixar carente como uma crian¸ca que anda sozinha pela terra. T˜ao carente que s´oo amor de todo o universo por mim poderia me consolar e me cumular [...]” Clarice Lispector Resumo O objetivo da pesquisa descrita ao longo desta disserta¸c˜ao de mestrado, foi investigar o fenˆomeno e os problemas em aberto na astrof´ısica de Gamma-Ray Bursts e em particular explicar o campo magn´etico nos afterglows. O modelo de bola de fogo prediz que o espectro n˜ao t´ermico do afterglow ´edevido a radia¸c˜ao s´ıncroton, a qual requer fortes campos magn´eticos ( 1G na regi˜ao do afterglow), ∼ e part´ıculas aceleradas relativisticamente. Em modelos alternativos o campo magn´etico ´e ainda mais importante. O principal problema no que se refere ao campo magn´etico em afterglows est´arelacionado com o fato de que a regi˜ao de emiss˜ao ´emuito mais distante da fonte progenitora. Isto implica que o campo magn´etico gerado na fonte n˜ao ´esuficiente para explicar as observa¸c˜oes, sugerindo que o campo deve ser gerado na regi˜ao do choque. No entanto, o campo magn´etico no meio interestelar ´e 1µ G, o que requer forte amplifica¸c˜ao ∼ na regi˜ao do choque. Simula¸c˜oes num´ericas sugerem que a instabilidade Weibel possa amplificar o campo magn´etico, por´em instabilidades do plasma podem apenas gerar campo na ordem do skin depth, enquanto as observa¸c˜oes sugerem que o campo deve persistir em uma distˆancia de 109 skin depths. No presente trabalho sugerimos que as flutua¸c˜oes naturais do plasma preditas pelo Teorema da Flutua¸c˜ao-Dissipa¸c˜ao (FDT), podem explicar o campo semente gerado na regi˜ao do choque. Calculamos analiticamente o campo magn´etico e mostramos que com parˆametros t´ıpicos podemos gerar campo de at´e10−2 G. O campo gerado pelas flutua¸c˜oes depende essencialmente da densidade e temperatura do plasma, podendo explicar o campo. Mecanismos adicionais s˜ao necess´arios para amplificar o campo magn´etico. N´os sugerimos que a turbulˆencia pode ser este mecanismo, mas uma abordagem mais realista exigiria c´alculos computacionais eficientes. Abstract The objective of the research, summarized in this master’s thesis, is to investigate the phenomena and unsolved problems of Gamma-Ray Bursts and, in particular, to explain the magnetic fields in the Gamma-Ray Burst afterglows. The fireball model predicts that the non-thermal spectrum of the afterglow is synchroton radiation, which requires strong magnetic fields ( 1 G in the afterglow region) and relativistically accelerated ∼ particles. In alternative models the magnetic field is even more important. The main problem concerning magnetic fields in afterglow is that the emission region is located at a distance that is too far from the source. This implies that the magnetic field generated at the source is not enough to explain the observations, suggesting that the field must be generated in the shock region. However the magnetic field in the interstellar medium is 1µ G, which requires that the field is strongly amplified in the shock region. Numerical ∼ simulations suggest that Weibel instability could amplify the magnetic field, but plasma instabilities can only generate fields on the order of plasma skin depth, while observations suggests that the field must persist in a distance over 109 skin depths. In the present work we suggest that the plasma fluctuations predicted by the Fluctuation-Dissipation Theorem (FDT) can explain the seed field generated at the shock. We perform analytical calculations of the magnetic field and we show that with typical parameters we can generate a magnetic field of 10−2 G. The field generated by the FDT depends essentially of the density and the temperature of the plasma medium and can explain the large structure field. However an additional mechanism in necessary to amplify the magnetic field. We argue that turbulence can be the mechanism, but a realistic approach will require efficient numerical simulations. Lista de Figuras 1.1 Localiza¸c˜ao de todos os 2704 GRBs detectados pelo BATSE em coordenadas gal´acticas. O plano da gal´axia ´ea linha horizontal no meio dafigura. 23 1.2 Distribui¸c˜ao de 140 bursts como fun¸c˜ao do pico de contagem.
Recommended publications
  • Optical and NIR Observations of the Afterglow of GRB 020813 The
    A&A 404, L5–L9 (2003) Astronomy DOI: 10.1051/0004-6361:20030525 & c ESO 2003 Astrophysics Editor Optical and NIR observations of the afterglow of GRB 020813 the 1 1 1 2 3 2 4 1 to S. Covino , D. Malesani , F. Tavecchio , L. A. Antonelli , A. Arkharov , A. Di Paola , D. Fugazza , G. Ghisellini , V. Larionov5,6, D. Lazzati7, F. Mannucci8, N. Masetti9, R. Barrena4, S. Benetti10, A. J. Castro–Tirado11, S. Di Serego Alighieri12, F. Fiore2, F. Frontera9,13, A. Fruchter14, F. Ghinassi4, M. Gladders15, P. B. Hall16,17, G. L. Israel2, S. Klose18, A. Magazz`u4, E. Palazzi9, M. Pedani4, E. Pian19, 1 1 2 P. Romano , M. Stefanon , and L. Stella Letter 1 INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy 2 INAF, Osservatorio Astronomico di Roma, via Frascati 33, Monteporzio Catone (Roma), Italy 3 Central Astronomical Observatory at Pulkovo, Pulkovskoe shosse 65, 196140 Saint Petersburg, Russia 4 INAF, Telescopio Nazionale Galileo, Roque de Los Muchachos, PO box 565, 38700 Santa Cruz de La Palma, Spain 5 St. Petersburg University, St. Petersburg, Petrodvorets, Universitetsky pr. 28, 198504 St. Petersburg, Russia 6 Isaac Newton Institute of Chile, St. Petersburg Branch 7 Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA Cambridge, UK 8 Istituto di Radioastronomia, CNR, largo E. Fermi 5, 50125 Firenze, Italy 9 Istituto di Astrofisica Spaziale e Fisica Cosmica, via Gobetti 101, 40129 Bologna, Italy 10 INAF, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy 11 Instituto de Astrof´ısica de Andaluc´ıa, CSIC, PO Box 03004, 18080 Granada, Spain 12 INAF, Osservatorio Astrofisico di Arcetri, largo E.
    [Show full text]
  • The Short Gamma-Ray Burst Revolution
    Reports from Observers The Short Gamma-Ray Burst Revolution Jens Hjorth1 the afterglow light-curve properties and Afterglows – found! Andrew Levan ,3 possible high-redshift origin of some Nial Tanvir 4 short bursts suggests that more than Finally, in May 005 Swift discovered the Rhaana Starling 4 one progenitor type may be involved. first X-ray afterglow to a short GRB. Sylvio Klose5 This was made possible because of the Chryssa Kouveliotou6 rapid ability of Swift to slew across the Chloé Féron1 A decade ago studies of gamma-ray sky, pointing at the approximate location Patrizia Ferrero5 bursts (GRBs) were revolutionised by the of the burst only a minute after it hap- Andy Fruchter 7 discovery of long-lived afterglow emis- pened and pinpointing a very faint X-ray Johan Fynbo1 sion at X-ray, optical and radio wave- afterglow. The afterglow lies close to a Javier Gorosabel 8 lengths. The afterglows provided precise massive elliptical galaxy in a cluster of Páll Jakobsson positions on the sky, which in turn led galaxies at z = 0.225 (Gehrels et al. 005; David Alexander Kann5 to the discovery that GRBs originate at Pedersen et al. 005; Figure ). Many ex- Kristian Pedersen1 cosmological distances, and are thus the tremely deep observations, including Enrico Ramirez-Ruiz 9 most luminous events known in the Uni- those at the VLT, failed to locate either a Jesper Sollerman1 verse. These afterglows also provided fading optical afterglow, or a rising super- Christina Thöne1 essential information for our understand- nova component at later times (Hjorth Darach Watson1 ing of what creates these extraordinary et al.
    [Show full text]
  • Gamma-Ray Bursts and the Sociology of Science
    GAMMA-RAY BURSTS AND THE SOCIOLOGY OF SCIENCE ALVARO DE RUJULA´ CERN 1211 Geneva 23, Switzerland E-mail: [email protected] ABSTRACT I discuss what we have learned about Gamma-Ray Bursts (GRBs) by studying their afterglows, and how these are interpreted in the generally-accepted fireball model of GRBs, as well as in the generally-unaccepted cannonball model of the same phenomena. The interpretation of GRBs is a good example around which to frame a discussion of the different approaches to science found in various fields, such as high-energy physics (HEP), high-energy astrophysics, or even the deciphering of ancient languages. I use this example to draw conclusions on post-academic science, and on the current status of European HEP. 1. Motivation Why would one give a talk on the sociology of science at a meeting on Un altro modo di guardare il cielo, or more generally on neutrino physics, the meeting definitely not being centred on sociology? My excuse is that, when talking about GRBs, I have always detected a very considerable interest on their sociology: an extremely negative reaction to my views on the subject in meetings on GRBs, and an extremely surprised and curiosity-driven interest from HEP or general audiences. A talk or article such as this one may seem rather unusual, but it is not. A precedent with quite similar content and conclusions has been written by Charles Dermer1). arXiv:hep-ph/0306140v1 16 Jun 2003 2. Introduction Some three times a day, on average, gamma-ray bursts (GRBs) reach the upper atmosphere from isotropically distributed sky locations.
    [Show full text]
  • Rapid-Response Mode VLT/UVES Spectroscopy of GRB 060418
    A&A 468, 83–96 (2007) Astronomy DOI: 10.1051/0004-6361:20066780 & c ESO 2007 Astrophysics Rapid-response mode VLT/UVES spectroscopy of GRB 060418 Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations P. M. Vreeswijk1,2, C. Ledoux1, A. Smette1, S. L. Ellison3, A. O. Jaunsen4,M.I.Andersen5,A.S.Fruchter6, J. P. U. Fynbo7, J. Hjorth7,A.Kaufer1, P. Møller8, P. Petitjean9,10,S.Savaglio11, and R. A. M. J. Wijers12 1 European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Santiago 19, Chile e-mail: [email protected] 2 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile 3 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada 4 Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway 5 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany 6 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 7 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark 8 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany 9 Institut d’Astrophysique de Paris – UMR 7095 CNRS & Université Pierre et Marie Curie, 98bis Boulevard Arago, 75014 Paris, France 10 LERMA, Observatoire de Paris, 61 Avenue de l’Observatoire, 75014 Paris, France 11 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching bei München, Germany 12 Astronomical Institute “Anton Pannekoek”, University of Amsterdam & Center for High Energy Astrophysics, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands Received 20 November 2006 / Accepted 11 March 2007 ABSTRACT We present high-resolution spectroscopic observations of GRB 060418, obtained with VLT/UVES.
    [Show full text]
  • Gamma Ray Bursts in the Afterglow Era
    Chin. J. Astron. Astrophys. Vol. 3 (2003), Suppl., 439–448 Chinese Journal of (http://www.chjaa.org) Astronomy and Astrophysics Gamma Ray Bursts in the Afterglow Era Filippo Frontera ⋆ 1 University of Ferrara, Physics Department, Via Paradiso, 12, 44100 Ferrara, Italy 2 Istituto Astrofisica Spaziale e Fisica Cosmica, INAF, Via P. Gobetti, 101, 44129 Bologna, Italy Abstract In this review paper I will summarize some of the relevant results ob- tained with the Italian satellite BeppoSAX on the prompt and afterglow emission of Gamma Ray Bursts. I will also discuss the most relevant open issues on these events. Key words: gamma–rays: bursts – gamma–rays: observations 1 INTRODUCTION After about 30 years of mystery, the distance scale issue of Gamma Ray Bursts (GRBs) has been definitely settled thanks to the X-ray astronomy mission BeppoSAX , an Italian satellite with Dutch participation (Boella et al. 1997a). BeppoSAX not only has permitted this issue to be resolved but has also provided most of the exciting results of the last seven years in GRB astron- omy. The satellite (see Fig. 1), launched on 1996 April 30, was switched off on April 29, 2002, af- ter 6 years of operational life. The high performance of BeppoSAX for GRB studies was due to a particularly well-matched configuration of its payload, with both wide field instruments (WFIs) and narrow field telescopes (NFTs). The WFIs comprised a γ–ray (40–700 keV) all–sky mon- itor (Gamma-Ray Burst Monitor, GRBM, Frontera et al. 1997) and two Wide Field Cameras (WFCs, 2–28 keV, Jager et al.
    [Show full text]
  • Monte Carlo Simulations of GRB Afterglows
    ABSTRACT WARREN III, DONALD CAMERON. Monte Carlo Simulations of Efficient Shock Acceleration during the Afterglow Phase of Gamma-Ray Bursts. (Under the direction of Donald Ellison.) Gamma-ray bursts (GRBs) signal the violent death of massive stars, and are the brightest ex- plosions in the Universe since the Big Bang itself. Their afterglows are relics of the phenomenal amounts of energy released in the blast, and are visible from radio to X-ray wavelengths up to years after the event. The relativistic jet that is responsible for the GRB drives a strong shock into the circumburst medium that gives rise to the afterglow. The afterglows are thus intimately related to the GRB and its mechanism of origin, so studying the afterglow can offer a great deal of insight into the physics of these extraordinary objects. Afterglows are studied using their photon emission, which cannot be understood without a model for how they generate cosmic rays (CRs)—subatomic particles at energies much higher than the local plasma temperature. The current leading mechanism for converting the bulk energy of shock fronts into energetic particles is diffusive shock acceleration (DSA), in which charged particles gain energy by randomly scattering back and forth across the shock many times. DSA is well-understood in the non-relativistic case—where the shock speed is much lower than the speed of light—and thoroughly-studied (but with greater difficulty) in the relativistic case. At both limits of speed, DSA can be extremely efficient, placing significant amounts of energy into CRs. This must, in turn, affect the structure of the shock, as the presence of the CRs upstream of the shock acts to modify the incoming plasma flow.
    [Show full text]
  • Gemini Spectroscopy of the Short-Hard Gamma-Ray Burst GRB 130603B Afterglow and Host Galaxy
    Gemini Spectroscopy of the Short-Hard Gamma-ray Burst GRB 130603B Afterglow and Host Galaxy A. Cucchiara1, J. X.Prochaska1,D.Perley2,3,S.B.Cenko4,J.Werk1, A. Cardwell5,J.Turner5, Y. Cao2, J. S. Bloom6, B. E. Cobb7 [email protected] ABSTRACT We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South tele- scope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z =0.3568 0.0005 host galaxy. The combina- ± tion of a relatively bright optical afterglow (r = 21.52 at ∆t =8.4 hr), together with an observed offset of 0. 9 from the host nucleus (4.8 kpc projected distance at z =0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light . Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively 1 luminous (L 0.8LB∗ ), star-forming (SFR = 1.84 M yr− ) galaxy with almost so- ≈ ⊙ lar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario.
    [Show full text]
  • Gamma-Ray Bursts in the Swift Era
    1 Gamma-Ray Bursts in the Swift Era N. Gehrels1, E. Ramirez-Ruiz2, D. B. Fox3 [1] NASA-Goddard Space Flight Center, Greenbelt, MD 20771 [2] Dept of Astronomy and Astrophysics, UC Santa Cruz, 159 Interdisciplinary Sciences Building, 1156 High St, Santa Cruz, CA 95064 [3] Dept of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 Key Words gamma rays: bursts Abstract With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up obser- vations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the ear- liest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts. CONTENTS Introduction .......................................Annu. Rev. Astron. Astrophys. 2009 1 3 Setting the Stage ....................................... 3 A Burst of Progress ..................................... 5 What is a Gamma-Ray Burst? ............................. 9 Burst and Afterglow Observations ........................... 13 Prompt High-Energy Emission ............................... 14 Afterglow Observations .................................... 19 Interpreting Prompt and Afterglow Emission .......................
    [Show full text]
  • Estimation of Compact Binary Coalescense Rates from Short Gamma-Ray Burst Redshift Measurements
    A&A 529, A97 (2011) Astronomy DOI: 10.1051/0004-6361/201016166 & c ESO 2011 Astrophysics Estimation of compact binary coalescense rates from short gamma-ray burst redshift measurements A. Dietz LAPP, Université de Savoie, CNRS/IN2P3, Chemin de Bellevue, BP 110, 74941 Annecy-le-Vieux Cedex, France e-mail: [email protected] Received 18 November 2010 / Accepted 15 February 2011 ABSTRACT Aims. We aim to estimate the rate of compact binaries and compare these with similar estimates based on either the observation of these binaries or population synthesis models. Since the merger of these compact objects are likely to produce short gamma-ray bursts, conclusions about the opening angle of these bursts can be made. Methods. We use a set of observed redshift measurements of short gamma-ray bursts to model the rate of these merger events in the nearby universe. Various corrections are included in the calculation, such as the field-of-view of the satellite missions, the beaming factors of gamma-ray burst and other parameters. Results. The computed rate estimates are compared to other rate estimates, based on observations of binary neutron stars and popu- lation synthesis models. Given the upper limit established by LIGO/Virgo measurements, it is possible to draw conclusions about the beaming angle of gamma-ray bursts. Key words. gravitational waves – gamma-ray burst: general 1. Introduction seconds (Kouveliotou et al. 1993; Horvath 2002). Bursts with a duration shorter than two seconds are called short GRB’s, and Short gamma-ray bursts (GRB) are powerful explosions in the bursts lasting longer than two seconds are labeled long GRBs.
    [Show full text]
  • The Weak INTEGRAL Bursts GRB 040223 and GRB 040624: an Emerging Population of Dark Afterglows
    A&A 448, 971–982 (2006) Astronomy DOI: 10.1051/0004-6361:20054072 & c ESO 2006 Astrophysics The weak INTEGRAL bursts GRB 040223 and GRB 040624: an emerging population of dark afterglows P. Filliatre1,2,S.Covino3,P.D’Avanzo3,4,A.DeLuca5,D.Götz5, S. McGlynn6, S. McBreen7, D. Fugazza3, A. Antonelli8,S.Campana3, G. Chincarini3,9,A.Cucchiara3, M. Della Valle10,S.Foley6, P. Goldoni1,2,L.Hanlon6, G. Israel8, B. McBreen6,S.Mereghetti5, L. Stella8, and G. Tagliaferri3 1 Laboratoire Astroparticule et Cosmologie, UMR 7164, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France e-mail: [email protected] 2 Service d’Astrophysique, CEA/DSM/DAPNIA/SAp, CE-Saclay, Orme des Merisiers, Bât. 709, 91191 Gif-sur-Yvette Cedex, France 3 INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy 4 Universita‘ Insubria, Dipartimento di Fisica e Matematica, via Valleggio 11, 22100 Como, Italy 5 INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano, via E. Bassini 15, 20133 Milano, Italy 6 School of Physics, University College Dublin, Dublin 4, Ireland 7 Astrophysics Missions Division, Research Scientific Support Department of ESA, ESTEC, Noordwijk, The Netherlands 8 INAF, Osservatorio Astronomico di Roma, via Frascati 33, Monteporzio Catone, 00040 Rome, Italy 9 Università degli Studi di Milano-Bicocca, piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy 10 INAF, Osservatorio Astrofisico di Arcetri, largo E. Fermi 5, 50125 Firenze, Italy Received 19 August 2005 / Accepted 17 November 2005 ABSTRACT We report here γ-ray, X-ray and near-infrared observations of GRB 040223 along with γ-ray and optical observations of GRB 040624.
    [Show full text]
  • A Kilonova Associated with GRB 070809
    A kilonova associated with GRB 070809 Zhi-Ping Jin1;2, Stefano Covino3, Neng-Hui Liao4;1, Xiang Li1, Paolo D’Avanzo3, Yi- Zhong Fan1;2, and Da-Ming Wei1;2. 1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 2School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China 3INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807 Merate (LC), Italy 4Department of Physics and Astronomy, College of Physics, Guizhou University, Guiyang 550025, China For on-axis typical short gamma-ray bursts (sGRBs), the forward shock emission is usually so bright1, 2 that renders the identification of kilonovae (also known as macronovae)3–6 in the early afterglow (t < 0:5 d) phase rather challenging. This is why previously no thermal- like kilonova component has been identified at such early time7–13 except in the off-axis dim GRB 170817A14–19 associated with GW17081720. Here we report the identification of an un- usual optical radiation component in GRB 070809 at t ∼ 0:47 d, thanks plausibly to the very-weak/subdominant forward shock emission. The optical emission with a very red spec- trum is well in excess of the extrapolation of the X-ray emission that is distinguished by an unusually hard spectrum, which is at odds with the forward shock afterglow prediction but can be naturally interpreted as a kilonova. Our finding supports the speculation that kilono- vae are ubiquitous11, and demonstrates the possibility of revealing the neutron star merger origin with the early afterglow data of some typical sGRBs that take place well beyond the sensitive radius of the advanced gravitational wave detectors21, 22 and hence the opportunity of organizing dedicated follow-up observations for events of interest.
    [Show full text]
  • GRB 020813: Polarization in the Case of a Smooth Optical Decay
    A&A 422, 113–119 (2004) Astronomy DOI: 10.1051/0004-6361:20034409 & c ESO 2004 Astrophysics GRB 020813: Polarization in the case of a smooth optical decay J. Gorosabel1,2,E.Rol3,S.Covino4, A. J. Castro-Tirado1,J.M.CastroCer´on2, D. Lazzati5, J. Hjorth6, D. Malesani7, M. Della Valle8,S.diSeregoAlighieri8, F. Fiore9,A.S.Fruchter2, J. P. U. Fynbo10, G. Ghisellini4, P. Goldoni11, J. Greiner12,G.L.Israel9, L. Kaper3,N.Kawai13,S.Klose14, C. Kouveliotou15,E.LeFloc’h11,N.Masetti16, F. Mirabel11,P.Møller17, S. Ortolani18, E. Palazzi16,E.Pian19, J. Rhoads2,G.Ricker20, P. Saracco4, L. Stella9, G. Tagliaferri4,N.Tanvir21,E.vandenHeuvel3, M. Vietri22, P. M. Vreeswijk23, R. A. M. J. Wijers3,andF.M.Zerbi4 1 Instituto de Astrof´ısica de Andaluc´ıa (IAA-CSIC), PO Box 03004, 18080 Granada, Spain 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218-2463, USA 3 University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands 4 INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy 5 Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA Cambridge, UK 6 Astronomical Observatory, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark 7 International School for Advanced Studies (SISSA/ISAS), via Beirut 2-4, 34016 Trieste, Italy 8 INAF, Osservatorio Astrofisico di Arcetri, Large E. Fermi 5, 50125 Firenze, Italy 9 INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00044 Monterporzio, Italy 10 Department of Physics and Astronomy, University of Århus, Ny Munkegade, 8000 Århus C, Denmark 11 CEA/DSM/DAPNIA, L’Orme des Merisiers, Bat.
    [Show full text]