Carbon Monoxide Protects the Kidney Through the Central Circadian Clock and CD39

Total Page:16

File Type:pdf, Size:1020Kb

Carbon Monoxide Protects the Kidney Through the Central Circadian Clock and CD39 Carbon monoxide protects the kidney through the central circadian clock and CD39 Matheus Correa-Costaa, David Galloa, Eva Csizmadiaa, Edward Gompertsb, Judith-Lisa Lieberuma, Carl J. Hausera,c, Xingyue Jid,e, Binghe Wangd,e, Niels Olsen Saraiva Câmaraf, Simon C. Robsonc, and Leo E. Otterbeina,1 aTransplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; bHillhurst Biopharmaeuticals Inc., Montrose, CA 91020; cTransplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; dDepartment of Chemistry, Georgia State University, Atlanta, GA 30303; eCenter for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303; and fLaboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, 05508-900, Sao Paulo, Brazil Edited by Gregg L. Semenza, Johns Hopkins University School of Medicine, Baltimore, MD, and approved January 24, 2018 (received for review September 22, 2017) Ischemia reperfusion injury (IRI) is the predominant tissue insult tective phenotype that results. Biliverdin and CO are accepted as associated with organ transplantation. Treatment with carbon mon- the primary underlying bioactive molecules that provide potent oxide (CO) modulates the innate immune response associated with IRI protective benefits to the cell by modulating apoptosis, inflam- and accelerates tissue recovery. The mechanism has been primarily mation, and proliferation (13–15). Administration of CO or bili- descriptive and ascribed to the ability of CO to influence inflamma- verdin can, in most cases, recapitulate that observed with HO-1 tion, cell death, and repair. In a model of bilateral kidney IRI in mice, itself. Treatment with CO at low concentrations imparts potent we elucidate an intricate relationship between CO and purinergic protection in numerous models of disease, including transplantation signaling involving increased CD39 ectonucleotidase expression, de- (16–18), colitis (19), sepsis (20), and lung injury (21). CO has been creased expression of Adora1, with concomitant increased expression well-studied and characterized to prevent IRI in small and large > of Adora2a/2b. This response is linked to a 20-fold increase in ex- animal models (22–24), which in turn resulted in the first clinical pression of the circadian rhythm protein Period 2 (Per2) and a fivefold trial where CO was administered to kidney transplant recipients increase in serum erythropoietin (EPO), both of which contribute −/− intraoperatively (https://clinicaltrials.gov/). to abrogation of kidney IRI. CO is ineffective against IRI in Cd39 Per2−/− Circadian rhythms are critical determinants of organ function and mice or in the presence of a neutralizing antibody to and susceptibility to injury dictated by a family of proteins col- EPO. Collectively, these data elucidate a cellular signaling mecha- lectively known as the “clock genes.” Disruption of one or more of nism whereby CO modulates purinergic responses and circadian these genes increases susceptibility to tissue injury (25). IRI leads rhythm to protect against injury. Moreover, these effects involve CD39- and adenosinergic-dependent stabilization of Per2. As CO to impairment of the circadian clock (26) and is independent of also increases serum EPO levels in human volunteers, these findings hypoxia. Adenosine-elicited A2b-mediated Period 2 (Per2) stabi- continue to support therapeutic use of CO to treat IRI in association lization modulates adaptation to ischemic injury of the heart in with organ transplantation, stroke, and myocardial infarction. mice (27). In fact, tolerance to ischemic injury has been shown to be dependent upon the time of day that the injury occurs (28). heme oxygenase | circadian rhythm | DAMPS | innate immunity | Adenosine from the breakdown of extracellular ATP by ′ adenosine CD39 and CD73 (ecto-5 -nucleotidase) is generated during tissue schemia reperfusion injury (IRI) is obligatory and unavoidable Significance Iin patients who undergo an organ transplant. The sudden un- availability of oxygen and glucose initiate a cascade of events Tissue injury caused by lack of blood flow results in a series of including activation of tissue leukocytes and endothelium. Sim- adaptive responses of the body to ensure survival. Cellular ilarly, the reestablishment of blood flow to an ischemic organ production of carbon monoxide (CO) preserves organ function elicits a second set of events that include rapid reactive oxygen and promotes healing. How this occurs has remained elusive. species (ROS) generation, leukocyte infiltration, and additional Here we demonstrate using a model of ischemia reperfusion mechanical injury. The severity of the IRI and the relative health injury (IRI) of the kidney, mimicking kidney transplant, that of the organ is speculated to contribute to long-term graft sur- safe administration of CO protects against IRI. Remarkably, this vival (1–4). While a number of therapeutic approaches have occurs through specific modulation of a gene that regulates been tested, including a variety of preservation solutions, so- energy metabolism (CD39) and one that controls circadian phisticated organ transport apparatus, anti-inflammatory agents, rhythm (Period 2). Collectively, we define here an innovative live donors, and even ischemic preconditioning, there has been signaling pathway linking the brain and the kidney vis a vis a little change in IRI (5–7). What is perhaps even more important gas molecule. These data may have important therapeutic is that when a solution to IRI is identified, organs that are consequences for transplant recipients and victims of stroke. otherwise considered too risky to use could be rescued and as Author contributions: M.C.-C., D.G., C.J.H., B.W., S.C.R., and L.E.O. designed research; such impact the number of transplants that could be performed M.C.-C., D.G., E.C., J.-L.L., and X.J. performed research; E.C., E.G., X.J., and B.W. contrib- and decrease an otherwise continuously growing waiting list. uted new reagents/analytic tools; M.C.-C., J.-L.L., N.O.S.C., S.C.R., and L.E.O. analyzed data; Given the impossibility of transplanting an organ without some and M.C.-C., C.J.H., N.O.S.C., S.C.R., and L.E.O. wrote the paper. amount of ischemic time, a focus on interventions that may Conflict of interest statement: L.E.O. is a scientific consultant for Hillhurst Biopharmaceuticals protect the organ before harvest as well as promoting faster re- and has stock options. E.G. is a founder of Hillhurst Biopharmaceuticals and owns stock. covery and repair after reperfusion is warranted (8–12). This article is a PNAS Direct Submission. Heme oxygenase-1 (HO-1) is a member of a stress response Published under the PNAS license. gene family and is considered a protective gene. HO-1 catalyzes 1To whom correspondence should be addressed. Email: [email protected]. the breakdown of heme to bilirubin. In so doing, three products This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. are generated and include carbon monoxide (CO), biliverdin, 1073/pnas.1716747115/-/DCSupplemental. and iron. When HO-1 activity is increased, there is a potent pro- Published online February 20, 2018. E2302–E2310 | PNAS | vol. 115 | no. 10 www.pnas.org/cgi/doi/10.1073/pnas.1716747115 Downloaded by guest on September 29, 2021 hypoxia as an adaptive response. In previous work, we have shown determined by the crystal violet staining method. Briefly, surviving cells in six- PNAS PLUS that CO enhances functional expression of adenosine receptors well plates were washed twice with PBS, and then crystal violet solution and stabilization of HIF1α in macrophages (29, 30). Employing a (Sigma-Aldrich) was added to the cells. After washing with water, plates were murine model of kidney IRI, we have now tested the hypothesis left to dry overnight. On the following day, a solution of 10% acetic acid was that CO protects against kidney IRI through CD39 and adenosine added to each well, and the number of surviving cells was determined by measuring absorbance at 562 nm. A2b-mediated receptor stabilization of Per2. Additionally, eryth- ropoietin (EPO), a critical effector protein regulated in a circadian ROS Measurement. Intracellular ROS generation was assessed using 2′,7′- manner, is required for CO-induced renal protection. Collectively, dichlorofluorescin diacetate (DCF-DA; 10 mM), and microscopy was per- our findings may be related in part to the response of the cellular formed. Cells on coverslips were perfused under controlled O2 and CO O2 sensors that drives expression and stabilization of genes that conditions in a flow-through chamber at 37 °C on an inverted fluorescent regulate cellular bioenergetics. microscope. Images were acquired with an Olympus camera (excitation, 488 nm; emission, 535 nm). Materials and Methods − − Animals. Isogenic male C57BL/6 mice (WT and Per2 / ) were purchased from Gene Expression. Total RNA was extracted from homogenized tissues using − − Charles River or Jackson Labs (at 25–30 g). CD39-knockout mice (Cd39 / )were RNeasy Mini Kit (Qiagen). For cDNA synthesis, 2 μg of total RNA was used and bred at the BIDMC as described previously (31). All animals had access to water transcribed with SuperScript II Reverse Transcriptase (Invitrogen) and ran- and food ad libitum. All animal care, housing and procedures were approved by dom primers (Invitrogen).
Recommended publications
  • Ischemia-Reperfusion Injury Epithelial-Expressed Nlrp3 in Renal An
    An Inflammasome-Independent Role for Epithelial-Expressed Nlrp3 in Renal Ischemia-Reperfusion Injury This information is current as Alana A. Shigeoka, James L. Mueller, Amanpreet Kambo, of September 30, 2021. John C. Mathison, Andrew J. King, Wesley F. Hall, Jean da Silva Correia, Richard J. Ulevitch, Hal M. Hoffman and Dianne B. McKay J Immunol 2010; 185:6277-6285; Prepublished online 20 October 2010; Downloaded from doi: 10.4049/jimmunol.1002330 http://www.jimmunol.org/content/185/10/6277 References This article cites 62 articles, 15 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/185/10/6277.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 30, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts Errata An erratum has been published regarding this article. Please see next page or: /content/186/3/1880.full.pdf The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Ischemia Regulates NK Cell Recruitment in Kidney TLR2
    TLR2 Signaling in Tubular Epithelial Cells Regulates NK Cell Recruitment in Kidney Ischemia−Reperfusion Injury This information is current as Hye J. Kim, Jong S. Lee, Ahra Kim, Sumi Koo, Hee J. Cha, of September 29, 2021. Jae-A Han, Yoonkyung Do, Kyung M. Kim, Byoung S. Kwon, Robert S. Mittler, Hong R. Cho and Byungsuk Kwon J Immunol 2013; 191:2657-2664; Prepublished online 31 July 2013; doi: 10.4049/jimmunol.1300358 Downloaded from http://www.jimmunol.org/content/191/5/2657 Supplementary http://www.jimmunol.org/content/suppl/2013/07/31/jimmunol.130035 Material 8v1.DC1 http://www.jimmunol.org/ References This article cites 97 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/191/5/2657.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Inducible and Endothelial Nitric Oxide Synthase Distribution and Expression with Hind Limb Per-Conditioning of the Rat Kidney
    Experimental research Nephrology Inducible and endothelial nitric oxide synthase distribution and expression with hind limb per-conditioning of the rat kidney Zahra Sedaghat1,2, Mehri Kadkhodaee2, Behjat Seifi2, Eisa Salehi3 1Department of Physiology, School of Medicine, Bushehr University of Medical Corresponding author: Sciences, Bushehr, Iran Zahra Sedaghat 2Department of Physiology, School of Medicine, Tehran University of Medical Department Sciences, Tehran, Iran of Physiology 3Department of Immunology, School of Medicine, Tehran University of Medical School of Medicine Sciences, Tehran, Iran Bushehr University of Medical Sciences Submitted: 1 August 2016 Bushehr 7514633341 Accepted: 5 March 2017 Iran Phone: +98 9171865245 Arch Med Sci 2019; 15 (4): 1081–1091 Fax: +987733320657 DOI: https://doi.org/10.5114/aoms.2019.85651 E-mail: z.sedaghat@bpums. Copyright © 2019 Termedia & Banach ac.ir Abstract Introduction: We recently reported that a series of brief hind limb ischemia and reperfusion (IR) at the beginning of renal ischemia (remote per-condi- tioning – RPEC) significantly attenuated the ischemia/reperfusion-induced acute kidney injury. In the present study, we investigated whether the nitric oxide synthase (NOS) pathway is involved in the RPEC protection of the rat ischemic kidneys. Material and methods: Male rats were subjected to right nephrectomy and randomized as: (1) sham, no additional intervention; (2) IR, 45 min of renal ischemia followed by 24 h reperfusion; (3) RPEC, four 5 min cycles of lower limb IR administered at the beginning of renal ischemia; (4) RPEC+L-NAME (a non-specific NOS inhibitor, 10 mg/kg, i.p.) (5) RPEC + 1400W (a specific iNOS inhibitor, 1 mg/kg, i.p.).
    [Show full text]
  • Toll-Like Receptor 7 Involves the Injury in Acute Kidney Ischemia/Reperfusion of STZ- Induced Diabetic Rats1
    4 - ORIGINAL ARTICLE ISCHEMIA-REPERFUSION Toll-like receptor 7 involves the injury in acute kidney ischemia/reperfusion of STZ- induced diabetic rats1 Huang YayiI, Xiao YedaII, Wang HuaxinIII, Wu YangIII, Sun QianIII, Xia ZhongyuanIV DOI: http://dx.doi.org/10.1590/S0102-865020160070000004 IMaster, Department of Anesthesia, Renmin Hospital, Wuhan University, China. Conception and design of the study, acquisition and interpretation of data, manuscript writing. IIMaster, Department of Anesthesia, Renmin Hospital, Wuhan University, China. Acquisition of data, critical revision. IIIPhD, Department of Anesthesia, Renmin Hospital, Wuhan University, China. Acquisition of data. IVPhD, Full Professor, Department of Anesthesia, Renmin Hospital, Wuhan University, China. Design and supervised all phases of the study, critical revision. ABSTRACT PURPOSE: To determine whether Toll-like receptor 7 (TLR7) is the potential targets of prevention or progression in the renal ischemia/ reperfusion (I/R) injury of STZ-induced diabetic rats. METHODS: Thirty six Sprague-Dawley rats were randomly arranged to the nondiabetic (ND) or diabetic group (DM), with each group further divided into sham (no I/R injury), I/R (ischemia-reperfusion) and CD (given by Chloroquine) group. Preoperatively, Chloroquine (40 mg/kg, intraperitoneal injection.) was administrated 6 days for treatment group. I/R animals were subjected to 25 min of bilateral renal ischemia. Renal function, histology, apoptosis, cytokines, expression of TLR7, MyD88 and NF-κB were detected. RESULTS: The serum levels of blood urea nitrogen, creatinine, IL-6 and TNF-α, apoptotic tubular epithelial cells, expression of TLR7, MyD88 and NF-κB were significantly increased in DM+I/R group, compared with ND+I/R group (p<0.05).
    [Show full text]
  • Ischemia Reperfusion Injury—A Translational Perspective in Organ Transplantation
    International Journal of Molecular Sciences Review Review: Ischemia Reperfusion Injury—A Translational Perspective in Organ Transplantation André Renaldo Fernández 1, Rodrigo Sánchez-Tarjuelo 2,3, Paolo Cravedi 4 , Jordi Ochando 2,3 and Marcos López-Hoyos 1,5,* 1 Immunology, Universitary Hospital Marqués de Valdecilla- Research Institute IDIVAL Santander, 390008 Santander, Spain; [email protected] 2 Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] (R.S.-T.); [email protected] (J.O.) 3 Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain 4 Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] 5 Red de Investigación Renal (REDINREN), 28040 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-942-292759 Received: 30 September 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: Thanks to the development of new, more potent and selective immunosuppressive drugs together with advances in surgical techniques, organ transplantation has emerged from an experimental surgery over fifty years ago to being the treatment of choice for many end-stage organ diseases, with over 139,000 organ transplants performed worldwide in 2019. Inherent to the transplantation procedure is the fact that the donor organ is subjected to blood flow cessation and ischemia during harvesting, which is followed by preservation and reperfusion of the organ once transplanted into the recipient. Consequently, ischemia/reperfusion induces a significant injury to the graft with activation of the immune response in the recipient and deleterious effect on the graft.
    [Show full text]
  • Acute Kidney Injury Leads to Inflammation and Functional Changes in the Brain
    BASIC RESEARCH www.jasn.org Acute Kidney Injury Leads to Inflammation and Functional Changes in the Brain Manchang Liu,* Yideng Liang,† Srinivasulu Chigurupati,‡ Justin D. Lathia,‡ Mikhail Pletnikov,† Zhaoli Sun,§ Michael Crow,* Christopher A. Ross,† Mark P. Mattson,‡ and Hamid Rabb* Departments of *Medicine, †Psychiatry and Behavioral Sciences, and §Surgery, Johns Hopkins University School of Medicine, and ‡Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland ABSTRACT Although neurologic sequelae of acute kidney injury (AKI) are well described, the pathogenesis of acute uremic encephalopathy is poorly understood. This study examined the short-term effect of ischemic AKI on inflammatory and functional changes of the brain in mice by inducing bilateral renal ischemia for 60 min and studying the brains 24 h later. Compared with sham mice, mice with AKI had increased neuronal pyknosis and microgliosis in the brain. AKI also led to increased levels of the proinflammatory chemo- kines keratinocyte-derived chemoattractant and G-CSF in the cerebral cortex and hippocampus and increased expression of glial fibrillary acidic protein in astrocytes in the cortex and corpus callosum. In addition, extravasation of Evans blue dye into the brain suggested that the blood-brain barrier was disrupted in mice with AKI. Because liver failure also leads to encephalopathy, ischemic liver injury was induced in mice with normal renal function; neuronal pyknosis and glial fibrillary acidic protein expression were not increased, suggesting differential effects on the brain depending on the organ injured. For evaluation of the effects of AKI on brain function, locomotor activity was studied using an open field test.
    [Show full text]
  • Article Acute Respiratory Distress Syndrome and Risk of AKI Among
    Article Acute Respiratory Distress Syndrome and Risk of AKI among Critically Ill Patients Michael Darmon, Christophe Clec’h, Christophe Adrie, Laurent Argaud, Bernard Allaouchiche, Elie Azoulay, Lila Bouadma, Maı¨te´ Garrouste-Orgeas, Hakim Haouache, Carole Schwebel, Dany Goldgran-Toledano, Hatem Khallel, Anne-Sylvie Dumenil, Samir Jamali, Bertrand Souweine, Fabrice Zeni, Yves Cohen, and Jean-Franc¸ois Timsit Abstract Background and objectives Increasing experimental evidence suggests that acute respiratory distress syndrome Due to the number of contributing authors, (ARDS) may promote AKI. The primary objective of this study was to assess ARDS as a risk factor for AKI in the affiliations are critically ill patients. provided in the Supplemental Design, setting, participants, & measurements This was an observational study on a prospective database fed by Material. 18 intensive care units (ICUs). Patients with ICU stays .24 hours were enrolled over a 14-year period. ARDS was defined using the Berlin criteria and AKI was defined using the Risk, Injury, Failure, Loss of kidney function, and Correspondence: Dr. Michael Darmon, End-stage kidney disease criteria. Patients with AKI before ARDS onset were excluded. Medical-Surgical Intensive Care Unit, Results This study enrolled 8029 patients, including 1879 patients with ARDS. AKI occurred in 31.3% of Saint Etienne patients and was more common in patients with ARDS (44.3% versus 27.4% in patients without ARDS; University Hospital, P,0.001). After adjustment for confounders, both mechanical ventilation without ARDS (odds ratio [OR], Avenue Albert fi Raimond, 42270 Saint 4.34; 95% con dence interval [95% CI], 3.71 to 5.10) and ARDS (OR, 11.01; 95% CI, 6.83 to 17.73) were in- Priest in Jarez, France.
    [Show full text]
  • Update and Review of Renal Artery Stenosis
    Disease-a-Month 67 (2021) 101118 Contents lists available at ScienceDirect Disease-a-Month journal homepage: www.elsevier.com/locate/disamonth Update and review of renal artery stenosis ∗ Gates B. Colbert, MD, FASN a, , Graham Abra, MD b,c, Edgar V. Lerma, MD, FACP, FASN, FPSN (Hon) d a Baylor University Medical Center at Dallas, 3417 Gaston Ave, Suite 875, Dallas, TX 75246, USA b Stanford University, Palo Alto, CA, USA c Satellite Healthcare, San Jose, CA, USA d UIC/ Advocate Christ Medical Center, Oak Lawn, IL USA Introduction According to Carey et al., “resistant hypertension (RH) is defined as above-goal elevated blood pressure (BP) in a patient despite the concurrent use of 3 antihypertensive drug classes, com- monly including a long-acting calcium channel blocker, a blocker of the renin-angiotensin sys- tem (RAAS) (angiotensin-converting enzyme inhibitor or angiotensin receptor blocker), and a diuretic”. 1 The causes of RH are: non-adherence with dietary salt restriction, drugs (prescription and non-prescription), obstructive sleep apnea, and secondary hypertension. Secondary hypertension accounts for about 5–10% of all cases of hypertension, whereas pri- mary or essential hypertension accounts for 90%. In a series of 4494 patients referred to hyper- tension specialty clinics, 12.7% had secondary causes overall, of which 35% were associated with occlusive renovascular disease. 2 A more recent series showed that 24% of older subjects (mean age, 71 years) with RH were shown to have significant renal arterial disease, with most cases being caused by atheroscle- rotic disease. 3 However, the syndrome of renovascular hypertension can also result from other less common obstructive lesions (fibromuscular dysplasias, renal artery dissection or infarction, Takayasu arteritis, radiation fibrosis, and renal artery obstruction from aortic endovascular stent grafts).
    [Show full text]
  • Regulated Cell Death in AKI
    BRIEF REVIEW www.jasn.org Regulated Cell Death in AKI † ‡ Andreas Linkermann,* Guochun Chen, Guie Dong, Ulrich Kunzendorf,* Stefan Krautwald,* †‡ and Zheng Dong *Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany; †Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and ‡Department of Cellular Biology and Anatomy, Charlie Norwood Veterans Affairs Medical Center and Medical College of Georgia at Georgia Regents University, Augusta, Georgia ABSTRACT AKI is pathologically characterized by sublethal and lethal damage of renal tubules. various forms of cell death are noticeable: Under these conditions, renal tubular cell death may occur by regulated necrosis necrosis and apoptosis. This review sum- (RN) or apoptosis. In the last two decades, tubular apoptosis has been shown in marizes the evidence for the various forms preclinical models and some clinical samples from patients with AKI. Mechanistically, of regulated cell death in AKI, delineates apoptotic cell death in AKI may result from well described extrinsic and intrinsic their underlying mechanisms with an em- pathways as well as ER stress. Central converging nodes of these pathways are phasis on the new insights, and puts forth mitochondria, which become fragmented and sensitized to membrane permeabilization the perspectives of targeting cell death for in response to cellular stress, resulting in the release of cell death–inducing factors. the prevention and therapy of kidney injury. Whereas apoptosis is known to be regulated, tubular necrosis was thought to occur by accident until recent work unveiled several RN subroutines, most prominently receptor- interacting protein kinase–dependent necroptosis and RN induced by mitochondrial APOPTOSIS—THE CLASSIC VIEW permeability transition.
    [Show full text]
  • Tumor Necrosis Factor Superfamily Ligand Mrna Expression Profiles
    Devarapu et al. Journal of Biomedical Science (2017) 24:77 DOI 10.1186/s12929-017-0383-3 RESEARCH Open Access Tumor necrosis factor superfamily ligand mRNA expression profiles differ between humans and mice during homeostasis and between various murine kidney injuries Satish Kumar Devarapu1, Julia Felicitas Grill1, Junhui Xie1,2, Marc Weidenbusch1, Mohsen Honarpisheh1, Volker Vielhauer1, Hans-Joachim Anders1 and Shrikant R. Mulay1,3* Abstract Background: Several tumour necrosis factor (TNF) based therapeutics have already been approved for human use and several others are emerging. Therefore, we determined the mRNA expression levels of the TNF superfamily ligands (TNFSF) – e.g. TNF-α, lymphotoxin (LT)-α, LT-β, Fas-L (CD95-L), TNF-related apoptosis-inducing ligand (TRAIL), TNF-related weak inducer of apoptosis (TWEAK), 4-1BBL, OX40-L (CD252) and amyloid precursor protein (APP) in healthy human and mouse solid organs. Methods: We used quantitative real time-PCR to analyse mRNA expression levels of TNFSF ligands. Murine models of acute ischemic renal injury, chronic oxalate nephropathy, and immune complex glomerulonephritis were used. Renal injury was assessed by PAS staining, and infiltrating immune cells were analysed by immunohistochemistry. Data was analysed using non-parametric ANOVA (non-parametric; Kruskal-Wallis test). Results: We observed significant differences in the mRNA expression levels of TNFSF ligands in human and mouse solid organs. Furthermore, we determined their mRNA expressions during acute and chronic kidney injuries in mice. Our data demonstrate that the mRNA expression levels of TNFSF vary depending on the type of tissue injury – for example, acute ischemic renal injury, chronic crystalline nephropathy, and immune complex glomerulonephritis.
    [Show full text]
  • “Point of No Return” in Unilateral Renal Ischemia Reperfusion Injury in Mice
    Holderied et al. Journal of Biomedical Science (2020) 27:34 https://doi.org/10.1186/s12929-020-0623-9 RESEARCH Open Access “Point of no return” in unilateral renal ischemia reperfusion injury in mice Alexander Holderied1* , Franziska Kraft2, Julian Aurelio Marschner2, Marc Weidenbusch2 and Hans-Joachim Anders2 Abstract Background: In the past years evidence has been growing about the interconnection of chronic kidney disease and acute kidney injury. The underlying pathophysiological mechanisms remain unclear. We hypothesized, that a threshold ischemia time in unilateral ischemia/reperfusion injury sets an extent of ischemic tubule necrosis, which as “point of no return” leads to progressive injury. This progress is temporarily associated by increased markers of inflammation and results in fibrosis and atrophy of the ischemic kidney. Methods: Acute tubule necrosis was induced by unilateral ischemia/reperfusion injury in male C57BL/6 N mice with different ischemia times (15, 25, 35, and 45 min). At multiple time points between 15 min and 5 weeks we assessed gene expression of markers for injury, inflammation, and fibrosis, histologically the injury of tubules, cell death (TUNEL), macrophages, neutrophil influx and kidney atrophy. Results: Unilateral ischemia for 15 and 25 min induced upregulation of markers for injury after reperfusion for 24 h but no upregulation after 5 weeks. None of the markers for inflammation or fibrosis were upregulated after ischemia for 15 and 25 min at 24 h or 5 weeks on a gene expression level, except for Il-6. Ischemia for 35 and 45 min consistently induced upregulation of markers for inflammation, injury, and partially of fibrosis (Tgf-β1 and Col1a1) at 24 h and 5 weeks.
    [Show full text]
  • Microrna-489 Induction by Hypoxia–Inducible Factor–1 Protects Against Ischemic Kidney Injury
    BASIC RESEARCH www.jasn.org MicroRNA-489 Induction by Hypoxia–Inducible Factor–1 Protects against Ischemic Kidney Injury † † ‡ † ‡ Qingqing Wei,* Yong Liu, Pengyuan Liu, Jielu Hao,* Mingyu Liang, Qing-sheng Mi, § | Jian-Kang Chen,* and Zheng Dong* *Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; †Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; ‡Kidney Institute, Changzheng Hospital of Second Military Medical University, Shanghai, China; §Departments of Dermatology and Internal Medicine, Henry Ford Health System, Detroit, Michigan; and |The Second Xiangya Hospital, Central South University, Changsha, China ABSTRACT MicroRNAs have been implicated in ischemic AKI. However, the specific microRNA species that regulates ischemic kidney injury remains unidentified. Our previous microarray analysis revealed microRNA-489 induction in kidneys of mice subjected to renal ischemia-reperfusion. In this study, we verified the induction of microRNA-489 during ischemic AKI in mice and further examined the underlying mechanisms. Hypoxia– inducible factor–1a deficiency associated with diminished microRNA-489 induction in cultured rat proximal tubular cells subjected to hypoxia and kidney tissues of mice after renal ischemia-reperfusion injury. Moreover, genomic analysis revealed that microRNA-489 is intronic in the calcitonin receptor gene, and chromatin immunoprecipitation assays showed increased binding of hypoxia–inducible factor–1 to a specificsitein the calcitonin receptor gene promoter after hypoxia. Inhibition of microRNA-489 increased apoptosis in renal tubular cells after ATP depletion injury in vitro, whereas microRNA-489 mimics mediated protection. In mice, inhibition of microRNA-489 enhanced tubular cell death and ischemic AKI without significantly affecting tubular cell proliferation.
    [Show full text]