Oligocene–Miocene Basin Evolution in the Northern Altiplano, Bolivia: Implications for Evolution of the Central Andean Backthrust Belt and High Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Oligocene–Miocene Basin Evolution in the Northern Altiplano, Bolivia: Implications for Evolution of the Central Andean Backthrust Belt and High Plateau Downloaded from gsabulletin.gsapubs.org on July 6, 2010 Oligocene–Miocene basin evolution in the northern Altiplano, Bolivia: Implications for evolution of the central Andean backthrust belt and high plateau Bryan P. Murray1,†, Brian K. Horton2 , Ramiro Matos3, and Matthew T. Heizler4 1Department of Earth Science, University of California, Santa Barbara, Webb Hall, Santa Barbara, California 93106-9630, USA 2Institute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA 3Instituto de Investigaciones Geológicas y Medio Ambiente, Universidad Mayor de San Andrés, Casilla Postal 4787, La Paz, Bolivia 4New Mexico Bureau of Geology and Mineral Resources, Socorro, New Mexico 87801, USA ABSTRACT sedimentation and fold-thrust deformation patterns in the central Andes (e.g., Horton et al., in the frontal (west-southwestern) zone of the 2001; McQuarrie, 2002; DeCelles and Horton, The upper Oligocene to lower Miocene central Andean backthrust belt was concen- 2003; McQuarrie et al., 2005; McQuarrie et al., Peñas and Aranjuez formations are exposed trated during late Oligocene–early Miocene 2008). Other studies have proposed that plateau in north-northwest–trending outcrop belts of time. These age results are consistent with uplift resulted from deeper processes such as the central Andean backthrust belt situated previous studies of east-derived sedimenta- thickening of thermally weakened lower crust within the central Andean plateau along the tion in the Altiplano and indicate regional by ductile horizontal shortening and magmatic boundary between the northern Altiplano uplift of the Eastern Cordillera at this time. addition (e.g., Isacks, 1988; Allmendinger et al., and the Eastern Cordillera of Bolivia. Sedi- Upsection trends in provenance data further 1997) or from rapid removal of a dense lower mentary lithofacies analyses indicate that suggest a progressively greater contribu- lithospheric root (e.g., Garzione et al., 2006; these coarse-grained siliciclastic formations tion from younger Paleozoic strata, possibly Ghosh et al., 2006; Garzione et al., 2008; Hoke were deposited primarily in alluvial fan to due to activation of new thrust faults dur- and Garzione, 2008). braided fl uvial environments. An upsection ing west-southwestward propagation of the The timing of crustal shortening in the change from principally fi ne-grained sand- backthrust belt toward the Altiplano. Such a central Andes remains relatively poorly con- stone to cobble conglomerate is consistent progression of late Oligocene–early Miocene strained. Previous workers have suggested with increased proximity to the sediment shortening along the Altiplano–Eastern Cor- initial deformation and possible early plateau source with time. Paleocurrent analyses re- dillera boundary likely refl ects signifi cant uplift between 30 and 25 Ma on the basis of a veal that fl ow was predominantly directed crustal thickening, potential isostatic uplift, late Oligocene to early Miocene infl ux of syn- toward the west-southwest away from and initial topographic expression of the east- orogenic sediment to the Altiplano and Andean Cordillera Real, the elevated core of the East- ern margin of the central Andean plateau. foreland basin (Isacks, 1988; Sempere et al., ern Cordillera. Provenance data from con- 1990; Gubbels et al., 1993; All mendinger glomerate clast compositions and sandstone INTRODUCTION et al., 1997). In contrast, paleoelevation studies petrofacies suggest derivation from recycled utilizing stable oxygen isotope data from Neo- quartz-rich metasedimentary and sedimen- Located in the central portion of the gene basin fi ll have suggested rapid plateau up- tary rocks from the Paleozoic section in the ~8000-km-long Andean orogenic belt, the Alti- lift in late Miocene time (Garzione et al., 2006; Eastern Cordillera. The paleofl ow orienta- plano is one of the largest continental plateaus Ghosh et al., 2006; Garzione et al., 2008; Hoke tions, sediment provenance, and increased on Earth. The Andes are the topographic ex- and Garzione, 2008). Other studies focusing proximity of the sediment source suggest that pression of Cenozoic contractional stain associ- on thermochronological data (Benjamin et al., deposition of the Peñas and Aranjuez for- ated with subduction along the western margin 1987; McBride et al., 1987; Farrar et al., 1988; mations was related to surface uplift of the of South America (Fig. 1; Isacks, 1988), yet Masek et al., 1994; Barnes et al., 2006; Gillis Eastern Cordillera relative to the Altiplano. the mechanisms for uplifting the central Andes et al., 2006; Ege et al., 2007; Barnes et al., Growth strata observed in the Aranjuez For- and Altiplano are not well understood. The high 2008; McQuarrie et al., 2008) and relict fore- mation further indicate that shortening was elevation of the central Andean plateau is iso- land basin deposits (Kennan et al., 1995; Lamb synchronous with deposition, probably in a statically supported by up to 70-km-thick crust and Hoke, 1997; Horton et al., 2001; DeCelles hinterland basin. New 40Ar/39Ar ages from (e.g., Beck et al., 1996). Some have suggested and Horton, 2003) have proposed initial Andean a lowermost exposed igneous unit and inter- that continuous eastward propagation of a fold- deformation as early as Late Cretaceous to bedded ash-fall tuff beds in the Aranjuez thrust belt, including a west-directed backthrust middle Eocene time. and Peñas formations show that synorogenic belt and east-directed basement-involved mega- Despite their differences, these varied thrust sheets, was the cause of crustal thicken- inter pretations for the mechanisms and tim- †E-mail: [email protected] ing, deformation, and observed topographic ing of shortening and plateau uplift share a GSA Bulletin; September/October 2010; v. 122; no. 9/10; p. 1443–1462; doi: 10.1130/B30129.1; 14 fi gures; 4 tables; Data Repository item 2010105. For permission to copy, contact [email protected] 1443 © 2010 Geological Society of America Downloaded from gsabulletin.gsapubs.org on July 6, 2010 Murray et al. Cordillera or Eastern Cordillera. The stratigra- phy of the Altiplano can be summarized as fol- Beni lows: (1) a 250–900-m-thick lower succession Plain 16° S of Maastrichtian to mid-Paleocene carbonate (El Molino Formation) and east-derived, distal- Fig. 2 fl uvial siltstone and sandstone (Santa Lucia Subandean Formation); (2) a 3000–6500-m-thick middle Western Cordillera Eastern CordillCordillera succession of upper Eocene to Oligocene west- AltiplanoAltiplano derived fl uvial sandstone (Potoco Formation); (3) a 1000–4000-m-thick upper succession of ZZone Chaco one Plain poorly dated, partially Potoco-age–equivalent 20° S e (Oligocene to middle Miocene), east-derived ra fl uvial and alluvial fan conglomerate (Coniri Formation) and numerous upper Oligocene to Quaternary volcaniclastic units (Swanson et al., 1987; Sempere et al., 1990; Kennan et al., 1995; Lamb and Hoke, 1997; Horton et al., 2001; Horton et al., 2002; DeCelles and Hor- 22° S ton, 2003). Previous studies have related the 70° W 65° W 60° W observed stratigraphy to an eastward migration Figure 1. Map showing regional topography of the central Andes. of the Andean foreland basin system, with the Major physiographic divisions are separated by dashed lines (after El Molino and Santa Lucia formations depos- Isacks, 1988; McQuarrie et al., 2005). Darker colors (orange, red, ited in a backbulge depozone, the main body gray, black) defi ne regions of higher topography (>3.5 km). Box of the Potoco Formation recording foredeep shows location of Figure 2. deposition, and the upper Potoco, Coniri, and younger volcaniclastic formations representing intermontane (hinterland) basin deposition in the Altiplano (DeCelles and Giles, 1996; Hor- common basis in the consideration of sediment the Altiplano adjacent to the Eastern Cordillera ton et al., 2001; Horton et al., 2002; DeCelles accu mulation patterns within and adjacent to in order to determine the relationship of these and Horton, 2003). the central Andean plateau. For this reason, the deposits to upper-crustal deformation and topo- In the northeastern Altiplano, the Peñas and spatial and temporal trends in the confi guration graphic development along the margins of the Aranjuez formations form discontinuous out- of individual sedimentary basins, including the central Andean plateau. crops of coarse-grained siliciclastic deposits age, provenance, burial history, and relation- that trend north-northwest, roughly parallel to ships to upper-crustal structures, are important GEOLOGIC SETTING tectonic strike in the adjacent Eastern Cordillera to any models of deformation and uplift in the (Fig. 2). The basal contacts of these formations central Andes. The central Andes in Bolivia can be sub- are in angular unconformity above Devonian The present study of the middle Cenozoic divided into fi ve physiographically distinct strata. The Peñas Formation is up to ~1100 m Peñas and Aranjuez formations, siliciclastic provinces (from west to east): the Western Cor- thick and is best exposed near the town of Peñas deposits exposed in the northeastern Altiplano dillera, the Altiplano, the Eastern Cor dillera, (Fig. 3A) and at Cerro Santa Ana, north of the of Bolivia, helps constrain the history of ini- the Subandean Zone, and the Beni-Chaco Plain La Paz and El Alto metropolitan areas (Fig. 3B). tial hinter land basin development in the central (Fig. 1; Isacks, 1988). The Altiplano is an in- Numerous smaller outcrops of the Peñas For- Andean plateau and relative surface uplift along ternally drained, ~200-km-wide region of low mation with limited exposure are also present the plateau margin. Although previous stud- topographic relief located in the hinterland of in the region northwest of La Paz (Fig. 2). The ies have focused on synorogenic sedimentary the central Andean fold-thrust belt with an aver- Aranjuez Formation is >340 m thick and is ex- deposits exposed in the Altiplano and Eastern age elevation of 3.8 km. Bounding the Altiplano posed south of La Paz near Zona Sur, Pedregal Cordillera (e.g., Sempere et al., 1990; Kennan are the Eastern Cordillera, which represents the (Fig.
Recommended publications
  • Dc Nº 360-2018.Pdf
    . ,T, • ,-:;:/f; I/ .17' ?I' //1/{-11/..1/Ir• // 4/ (;;-,71/ ,./V /1://"Ve DECLARACIÓN CAMARAL N° 360/2018-2019 EL PLENO DE LA CÁMARA DE SENADORES, CONSIDERANDO: Que, la Provincia Aroma es una de las veinte provincias del Departamento de La Paz, limita al norte con las provincias Ingavi y Murillo, al este con la Provincia José Ramón Loayza, al sur con la Provincia Gualberto Villarroel y el Departamento de Oruro y al oeste con la Provincia Pacajes; cuenta con una superficie de 4.510 kilómetros y una población de 98.205 habitantes, según el Censo de Población y Vivienda del año 2012. La provincia está dividida en 7 municipios, su capital provincial es Sica Sica. La Provincia Aroma está compuesta por los municipios de Sica Sica, Umala, Ayo Ayo, Calamarca, Patacamaya, Colquencha y Collana. Que, la Provincia Aroma fue creada el 23 de noviembre de 1945, durante la presidencia de Gualberto Villarroel. La historia refiere que la apropiación de tierras comunitarias llevó al surgimiento de caudillos como Tupac Katari y Bartolina Sisa, en homenaje a ellos erigieron un monumento de granito en la plaza principal de Sica Sica, lugar en el que también descansan los restos de quienes protagonizaron la Batalla de Aroma, una de las batallas que permitió la independencia de Bolivia. Que, las principales actividades económicas en la Provincia Aroma, son la ganadería ovina y vacuna y la producción lechera; asimismo, su potencial agrícola se basa en el cultivo de la quinua y la cebada. Que, entre los atractivos turísticos de la Provincia Aroma, destacan el circuito de las iglesias coloniales, las ferias realizadas en cada sección y las aguas termales del balneario de Viscachani.
    [Show full text]
  • Plateau-Style Accumulation of Deformation: Southern Altiplano
    TECTONICS, VOL. 24, TC4020, doi:10.1029/2004TC001675, 2005 Plateau-style accumulation of deformation: Southern Altiplano Kirsten Elger, Onno Oncken, and Johannes Glodny GeoForschungsZentrum Potsdam, Potsdam, Germany Received 5 May 2004; revised 17 December 2004; accepted 23 March 2005; published 31 August 2005. [1] Employing surface mapping of syntectonic during the Paleogene, initially reactivating crustal sediments, interpretation of industry reflection- weak zones and by thermal weakening of the crust seismic profiles, gravity data, and isotopic age dating, with active magmatism mainly in the Neogene stage. we reconstruct the tectonic evolution of the southern Citation: Elger, K., O. Oncken, and J. Glodny (2005), Plateau- Altiplano (20–22°S) between the cordilleras style accumulation of deformation: Southern Altiplano, Tectonics, defining its margins. The southern Altiplano crust 24, TC4020, doi:10.1029/2004TC001675. was deformed between the late Oligocene and the late Miocene with two main shortening stages in the Oligocene (33–27 Ma) and middle/late Miocene 1. Introduction (19–8 Ma) that succeeded Eocene onset of shortening at the protoplateau margins. Shortening [2] Although considerable advance has been made in recent years in understanding the processes involved in rates in the southern Altiplano ranged between 1 and the formation of orogenic plateaus, the precise temporal 4.7 mm/yr with maximum rates in the late Miocene. and spatial patterns of uplift and lateral progradation of Summing rates for the southern Altiplano and the
    [Show full text]
  • Coro-Coro2012-2016.Pdf
    INDICE 1. Introducción 1 1.1. Presentación 1 2. Aspectos Espaciales 3 2.1. Ubicación Geográfica 3 2.1.1. Latitud y Longitud 4 2.1.2. Límites Territoriales 4 2.1.3. Extensión 5 2.2. División Política Administrativa 6 2.2.1. Distritos y Cantones 7 2.2.2. Comunidades y Centros Poblados 8 2.2.3. Centros Poblados 10 2.3. Manejo Espacial 12 2.3.1. Uso y Ocupación Del Espacio 12 2.3.2. Estructura del Territorio Municipal 14 2.3.2.1. Centros Primarios 15 2.3.2.2. Centros Secundarios 16 2.3.2.3. Centros Terciarios 20 3. ASPECTOS FISICO NATURALES 21 3.1. Descripción Fisiográfica 21 3.1.1. Altitud 21 3.1.2. Relieve 22 3.1.3. Topografía 24 3.1.4. Geología 25 3.2. Características Físico Biológicas 26 3.2.1. Pisos Ecológicos 26 3.2.1.1. Zonas Agroecológicas 26 3.2.2. Clima 28 3.2.2.1. Precipitaciones Pluviales, Periodos 29 3.2.2.2. Riesgos Climáticos 37 3.2.3. Suelos 39 3.2.3.1. Zonas y Grados de Erosión 41 3.2.3.2. Prácticas y Superficies Recuperadas 41 3.2.4. Flora 42 3.2.4.1. Principales Especies 42 3.2.4.2. Principales Especies Forestales 44 3.2.5. Fauna 46 3.2.5.1. Principales Especies 48 3.2.6. Recursos Hídricos 50 3.2.6.1. Fuentes de Agua, Disponibilidad y Características 50 3.2.6.2. Cuencas, Sub Cuencas y Ríos Existentes 53 3.2.7.
    [Show full text]
  • I.V. V. Bolivia
    I.V. v. Bolivia ABSTRACT1 This case is about the sterilization, by tubal ligation, of a woman without her prior consent. The Court found violations of both the American Convention and the Inter-American Convention on the Prevention, Punishment, and Eradication of Violence Against Women (“Convention of Belém do Para”). It did not discuss, however, the violation of the Right to Health (Art. 26 of the Convention) implicated in the case. I. FACTS A. Chronology of Events 1982: I.V., a Peruvian citizen, gives birth to her first daughter.2 Late 1980’s–Early 1990s: I.V. is the victim of physical, sexual and psychological harassment perpetrated by the National Directorate Against Terrorism of Peru (DINCOTE).3 1989: I.V. meets J.E., and they begin a romantic relationship.4 1991: Their daughter N.V. is born.5 1993: J.E. migrates to La Paz, Bolivia, from Peru where he is granted refugee status.6 1. Sebastian Richards, Staffer; Edgar Navarette, Editor; Erin Gonzalez, Chief IACHR Editor; Cesare Romano, Faculty Advisor. 2. I.V. v. Bolivia, Preliminary Objections, Merits, Reparations and Costs, Judgment, Inter- Am. Ct. H.R. (ser. C) No. 336, ¶ 61 (Nov. 30, 2016). (Available only in Spanish). 3. Id. 4. Id. 5. Id. 6. Id. 1351 1352 Loy. L.A. Int‟l & Comp. L. Rev. Vol. 41:4 1994: N.V. and I.V. join him in La Paz in 1994 and receive refugee status two months later.7 While in La Paz, I.V. obtains a hotel administration degree.8 February 2000: I.V., now age 35, is pregnant with her third daughter.9 She applies for Bolivia’s universal maternal and child health insurance, and basic health insurance and begins to receive pre-natal health care from the La Paz Women’s Hospital.10 July 1, 2000: I.V.
    [Show full text]
  • Genesis and Kinematic of the Northern Bolivian Altiplano
    Third ISAG, Sr Malo (France), 17-19/9/1996 GENESIS AND KINEMATIC OF THE NORTHERN BOLIVIAN ALTIPLANO Philippe ROCHAT (l), Patrice BABY (2), Gtrard HERAIL (3), Georges MASCLE (l), Oscar ARANIF3AR (4), Bernard COLLETTA (5) (l) UPRES-A. 5025, Instut Dolomieu, 15 rue M. Gignoux, 38031 Grenoble - France (2) ORSTOM Ecuador, cc 17 1 1 6596, Quito - Ecuador (3) ORSTOM Chile, cc 53390, Santiago 1 - Chile (4) YPFB. cc 1659 Santa Cruz - Bolivia (5) IFP. 1 avenue de Bois-Prtau, BP 3 1 1,92506 Rueil Malmaison cedex - France KEY WORDS: Altiplano, thrusts, inversion, syntectonic sedimentation, erosion. INTRODUCTION The Altiplano is an enigmatic high plateau of the Central Andes, characterized by a thick crust about 70 Km (Wigger et al., 1994, Beck et al. 1996). Recent seismologic data show that magmatic accretion did not cause this crustal thickening (Dorbath et al., 1992), and numerous authors have emphasized the importance of horizontal shortening in the Altiplano structuration (Roeder 1988; Baby et al., 1992; Htrail et al., 1993). New seismic data available in YPFB as well as recent field works allow us to present a new geometrical model of the northern Altiplano, and to discuss its sedimentary evolution characterized by thick accumulations of Tertiary continental sediments (10.000 m). STRUCTURAL SE'ITJNG Recent field's works and analyses of seismic perfiles reflexions available in YPFB permit us to propose a new tectonic setting. The northern Bolivian Altiplano can be divided in three structural domains (fig. 1 5 2) - domain 1: At the eastern edge, the La Joya-Toledo plain forms the northern extremity of the Poopo basin, where late Tertairy and Quaternary deposits overlay the SW verging thrusts system of the Cordillera Oriental (Coniri Fault system).
    [Show full text]
  • Descargar Descargar
    - %MARA DE DIPUTADOS PREC~~ENCIA1' ~q REG. 2 1 LnAP jqtn NOF~JAS 4I ..... ....- ....2 j ...... .-- La Paz, 20 de Marzo de 2018 CITE: CEPPE.FRFC. No076/2018-2019 11 ~~EFo~GW~E ~a paz ,...,.. ........ 2.!.F... t?k?!?-~.............................. zv 18 CAMARASECRETARIA DE DIPUTADOGE~ERAL Señora: . Dip. Lilly Gabriela Montaño Viaña. PRESIDENTA DE LA CAMARA DE DIPUTADOS ASAMBLEA LEGISLATIVA PLURINACIONAL A 1 N* REGISTRO NP FOIAS Presente.- L L// Ref.: SOLICITA REPOSICION DE PROYECTO DE LEY De mi mayor consideración: A tiempo de hacerle llegar un saludo cordial mediante la presente y en virtud a la continuidad legislativa de los proyectos presentados con anterioridad, solicito a su Autoridad que de conformidad a la Disposición Transitoria Segunda del Reglamento de la Cámara de Diputados, sirva reponer el siguiente Proyecto de Ley: PL AMBITO RESUMEN 329 LA PAZ SE DECLARA PATRIMONIO CULTURAL DEL ESTADO PLURINACIONAL DE BOLIVIA A LA FESTIVIDAD VIRGEN DEL ROSARIO DEL MUNICIPIO DE SICA SICA. Debido a que es de suma importancia para el departamento de La Paz y Nacional. Con este motivo me despido de usted, con hS consideraciones más distinguidas. Atentamente, i1 M \ Dip. Franklin Flores ~o&ova PRESIOF-NT& COM~SIONDE ECOWMIAPLURAL. PRODUCCION E INDUSTRIA ...1 c~MARADE DIPUTAD)PC .~: - . ~=. --..-..:y-, . ;? 3 --< .:, --L. .. - \; A--,Li .. - -7 . ... --+- í'l,\ZA m\\:'!ll 10 lFlt.:~i~ll2~22Oll!t' AS,\k\I~lF:\ l I ~;I\I\IlV\ ¡-.AY:1 ic)l .b ?2OI(>(>: CAMARA[,E DI PUTADOS --- - .- .. - .- .-,.,,, .......... \\...,,,,,,\.,.,. I'L\JKIY,\C ¡O\\: 111 IiOI l\'l ', Pli WWW DI r4DOSi\O .?O1 7 - 201s 1.1 l'\/ ii.li 1\14 f- - -- - A';- _- ---__ LEGISLATIVA- PLURINACIONAL DE BOLIVIA 1 CA:UI 4 ;<.A r,l.
    [Show full text]
  • Sedimentary Record of Andean Mountain Building
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321814349 Sedimentary record of Andean mountain building Article in Earth-Science Reviews · March 2018 DOI: 10.1016/j.earscirev.2017.11.025 CITATIONS READS 12 2,367 1 author: Brian K. Horton University of Texas at Austin 188 PUBLICATIONS 5,174 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Petroleum Tectonic of Fold and Thrust Belts View project Collisional tectonics View project All content following this page was uploaded by Brian K. Horton on 15 December 2018. The user has requested enhancement of the downloaded file. Earth-Science Reviews 178 (2018) 279–309 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Sedimentary record of Andean mountain building T Brian K. Horton Department of Geological Sciences and Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, United States ARTICLE INFO ABSTRACT Keywords: Integration of regional stratigraphic relationships with data on sediment accumulation, provenance, Andes paleodrainage, and deformation timing enables a reconstruction of Mesozoic-Cenozoic subduction-related Fold-thrust belts mountain building along the western margin of South America. Sedimentary basins evolved in a wide range of Foreland basins structural settings on both flanks of the Andean magmatic arc, with strong signatures of retroarc crustal Orogeny shortening, flexure, and rapid accumulation in long-lived foreland and hinterland basins. Extensional basins also Sediment provenance formed during pre-Andean backarc extension and locally in selected forearc, arc, and retroarc zones during Late Stratigraphy Subduction Cretaceous-Cenozoic Andean orogenesis.
    [Show full text]
  • Consultoría Por Producto: “Metodologías Y Métodos
    TÉRMINOS DE REFERENCIA Consultoría por producto: “Metodologías y métodos mejorados para el pronóstico y monitoreo de escenarios de sequía en los municipios Sica Sica, Achacachi y Calacoto, basados en índices” 1. Antecedentes El Altiplano boliviano - peruano es una de las zonas más vulnerables a la sequía, en Bolivia, entre finales de 2016 e inicios de 2017, se produjo la peor sequía en 25 años, que afectó particularmente a zonas del departamento de La Paz, obligando al Gobierno de Bolivia a declarar estado de emergencia. En este contexto, es cada vez más urgente mejorar la compresión de los procesos del comportamiento climático, los pronósticos climáticos y el uso de la información para responder mejor a las necesidades de la sociedad, por ello el reto del consorcio de instituciones es de fortalecer la gestión de riesgos ante sequías en un contexto del cambio climático y su impacto socio económico a nivel municipal. Un primer reto planteado es comprender mejor la amenaza, vulnerabilidad y el riesgo de sequías a nivel municipal (Marco de Sendai, Prioridad 1), que tiene manifestaciones lentas e impactos progresivos. Los sectores (agropecuario y agua) tienen comprensiones distintas sobre cuándo una situación puede ser catalogada como sequía (meteorológicas, hidrológicas, agrícolas o socioeconómicas), dependiendo de su duración, intensidad y frecuencia. Un segundo reto es, fortalecer la gobernanza en torno a la gestión del riesgo de sequías (Marco de Sendai, Prioridad 2), prioritariamente en el sector agropecuario. Actualmente, la acción
    [Show full text]
  • Mapa La Paz 2019
    EL SENA PEÑA AMARILLA EL CHORO EXTREMA 13 BOYUYO 120 PUENTEPUENTE BENIBENI IIII A LIMA LA PAZ / RED VIAL FUNDAMENTAL 2019 153 SAN SILVESTRE 16 EL PERÚ FLORIDA 169 CHIVÉ 8 AUSTRALIA 169 226 REFERENCIAS DE LA RED VIAL FUNDAMENTAL CAPITAL DE DEPARTAMENTO POBLACIONES DE LA RED VIAL FUNDAMENTAL YATA Nº DE RUTA DE LA RED VIAL FUNDAMENTAL LÍMITE NACIONAL LÍMITE DEPARTAMENTAL ALTO MADIDI PUENTE DE GRANDES DIMENSIONES PUENTE (GRANDES DIM.) EN CONSTRUCCIÓN PUENTE DE MENORES DIMENSIONES IXIAMAS CARRETERA ASFALTADA EL TRIUNFO 8 DOBLE VÍA ASFALTADA 16 CARRETERA EN CONSTRUCCIÓN 61 DOBLE VÍA EN CONSTRUCCIÓN CARRETERA RIPIADA SANTA ROSA CARRETERA EN DEFINICIÓN 96 VLÍMITE DE DISTANCIA ENTRE POBLACIONES TUMUPASA LONGITUD REFERENCIAL ENTRE POBLACIONES 1-2-3 (números rojos) REYES DESTINO INTERNACIONAL REFERENCIAL 16 53 125 SAN BUENAVENTURA RURRENABAQUE PUENTEPUENTE BENIBENI II 16 101 APOLO 8 SAN BORJA 3 134 123 48 PERÚ EMBOCADA 142 CHARAZANI YUCUMOYUCUMO MAPIRI 39 PUMAZANI CAMATA 26 QUIQUIBEY 76 87 16 GUANAY ITALAQUE 99 3 HUALPACALLO MONTE GRANDE 70 DEL APERE ESCOMA BELLA VISTA CARABUCO 173 75 CARANAVI HUMACHA ANCORAIMES ACHACACHI 3 HUATAJATA 18 SANTA COPACABANA BÁRBARA 38 HUARINA 9 COTAPATA COROICO TIQUINA 38 50 40 UNDUAVI 59T SAN ANTONIO KASANI 2 PATAMANTA 49 A ILO BATALLASBATALLAS 28 3 25 KM 7 24 CHULUMANI RÍO 41 YANACACHI 56 SECO 25 LA FLORIDA PUENTE LA CUMBRE VILLA IRUPANA LAJA 22 TIAHUANACU DESAGUADERO 1 21 LA PAZ LA PLAZUELA 203 13 ACHICA GUAQUI 95 CAPIRI ARRIBA A ILO 25 VIACHAVIACHA 25 CENTRAL CHAMA 29 CALAMARCA SANTO DOMINGO DE MACHACA BOTIJLAJA
    [Show full text]
  • Evidence for the Subduction and Underplating of an Oceanic Plateau Beneath the South Peruvian Margin During the Late Cretaceous: Structural Implications
    Tectonophysics, 163 (1989) 13-24 13 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands B Evidence for the subduction and underplating of an oceanic ‘i 1 plateau beneath the south Peruvian margin < I‘ r during the late Cretaceous: structural implications I l P. G. CAW-ÏER1>4and R. MAROCCO 1s - _- _- - ’ Institut Français de Recherche Scientifque pour le Développement en Coopération-ORSTOM. UR F6, 213 rue Lafayette, 7501O Paris (France) ’ UA CNRS 384 “Métallogénie et Pétrologie’: Université Pierre et Marie Curie, Tour 26, 5 et., 4place Jussieu, 75005 Paris (France) Laboratoire de Géochimie Comparée et Systématique, Université Pierre et Marie Curie, Paris (France) Mission ORSTOM, Casilla 18-1209, Linla (Peru) ’Mission ORSTOM, Apartado Postal 6596 CCI, Quito (Ecuador) (Received March 28,1988; revised version accepted September 26,1988) Abstract Soler, P., Carlier, G. and Marocco, R., 1989. Evidence for the subduction and underplating of an oceanic plateau beneath the south Peruvian margin during the late Cretaceous: structural implications. Tectonopliysics, 163: 13-24. During late Cretaceous times (Santonian to Maastrichtian), the southern Peruvian and northernmost Chilean Andes . show a series of tectonic, magmatic and sedimentological features, which appear to be specific to this area when compared with northern and southern parts of the Andes: a gap in the magmatic activity in the Coastal Range and the Western Cordillera between 84 and 70 Ma; huge overthrusting faults involving the Precambrian basement in the Arequipa region; and the syntectonic filling of the Cuzco and Sicuani foreland continental basins. These particular features may be regarded as consequences of the subduction and underplating of a paleo-oceanic plateau (the “Mollendo ridge”) which would have occurred in this area between +85 and k70 Ma B.P.
    [Show full text]
  • Characterization of Some Nonmetallic Resources in Bolivia: an Overview of Their Potentiality and Their Application in Specialized Formulations
    Environ Earth Sci (2017) 76:754 https://doi.org/10.1007/s12665-017-7094-7 ORIGINAL ARTICLE Characterization of some nonmetallic resources in Bolivia: an overview of their potentiality and their application in specialized formulations 1,2 1 2 2 Ariana Zeballos • Pa¨r Weihed • Mario Blanco • Vladimir Machaca Received: 21 May 2016 / Accepted: 23 October 2017 / Published online: 10 November 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Bolivia has several nonmetallic occurrences nonmetallic potentiality have been only carried out in a widespread in the country. Unfortunately, they are poorly small number of occurrences, and the literature commonly studied and slightly characterized. In the present work, refers those nonmetallic minerals as gangue minerals or several nonmetallic occurrences located in La Paz, Oruro, alteration products from hydrothermal processes that are Potosı´ and Santa Cruz were studied. The results of the commonly associated with metallic mineralizations. The chemical and mineralogical characterization of the mate- construction industry is one of the largest industries in rials will be presented, in order to approach their applica- Bolivia. The red brick producers at Llojeta in La Paz bility in specialized industrial formulations. A preliminary (Fig. 1) send the majority of the production to the border test of the final products besides an overview of their towns near Chile and Peru´. The kaolin materials from La potentiality will be exposed and a current view of the Bella in Santa Cruz are well known for the white tile commercialization as well. manufacturing which captures the internal consumption. For several years, the bentonites from Coro Coro and Rı´o Keywords Bolivian raw materials Á Zeolites Á Diatomite Á Mulatos were mined to produce cat litters and drilling Mullite Á Clays Á Kaolins muds, respectively.
    [Show full text]
  • Tectonic Evolution of the Andes of Ecuador, Peru, Bolivia and Northern
    CORDANI, LJ.G./ MILANI, E.J. I THOMAZ flLHO. A.ICAMPOS. D.A. TECTON IeEVOLUTION OF SOUTH AMERICA. P. 481·559 j RIO DE JANEIRO, 2000 TECTONIC EVOLUTION OF THE ANDES OF ECUADOR, PERU, BOLIVIA E. Jaillard, G. Herail, T. Monfret, E. Dfaz-Martfnez, P. Baby, A, Lavenu, and J.F. Dumont This chapterwasprepared underthe co-ordination chainisvery narrow. Thehighest average altitudeisreached ofE.[aillard. Together withG.Herail andT. Monfret,hewrote between 15°5 and 23°S, where the Altiplano ofBolivia and the Introduction. Enrique Dfaz-Martinez prepared the southernPerureaches anearly 4000 mofaverage elevation, section on the Pre-Andean evolution ofthe Central Andes. andcorresponds tothewidest partofthechain. TheAndean Again Iaillard, onthe Pre-orogenic evolution ofthe North­ Chain is usually highly asymmetric, witha steep western Central Andes. E.[aillard, P. Baby, G. Herail.A, Lavenu, and slope. and a large and complex eastern side. In Peru,the J.E Dumont wrote the texton theorogenic evolution of the distance between the trench and the hydrographic divide North-Central Andes, And, finally, [aillard dosed the variesfrom 240 to }OO km.whereas. the distancebetween manuscript with theconclusions. thehydrographic divide and the200m contourlineranges between 280 km(5°N) and about1000 kIn (Lima Transect, 8·S - 12°5). In northern Chile and Argentina (23·5),these distances become 300 krn and 500 km, respectively. Tn INTRODUCTION: southern Peru,as littleas 240 km separates the Coropuna THE PRESENT-DAY NORTH-CENTRAL Volcano (6425 m) from the Chile-Peru Trench (- 6865 m). This, together with the western location of the Andes ANDES (jON - 23°5) _ relative to theSouth American Con tinent,explains whythe riversflowing toward the Pacific Ocean do not exceed 300 TheAndean Chain isthemajormorphological feature of kmlong, whereas thoseflowing to theAtlantic Ocean reach theSouth American Continent.
    [Show full text]