Establishment of Public Norovirus Genome Database in Hong Kong
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Five Years of VLF Worldwide Comparison of Atomic Frequency Standards
RADIO SCIENCE, Vol. 2 (New Series), No. 6, June 1967 Five Years of VLF Worldwide Comparison of Atomic Frequency Standards B. E. Blair,' E. 1. Crow,2 and A. H. Morgan (Received January 19, 1967) The VLF radio broadcasts of GBR(16.0 kHz), NBA(18.0 or 24.0 kHz), and NSS(21.4 kHz) have enabled worldwide comparisons of atomic frequency standards to parts in 1O'O when received over varied paths and at distances up to 9000 or more kilometers. This paper summarizes a statistical analysis of such comparison data from laboratories in England, France, Switzerland, Sweden, Russia, Japan, Canada, and the United States during the 5-year period 1961-1965. The basic data are dif- ferences in 24-hr average frequencies between the local atomic standard and the received VLF radio signal expressed as parts in 10"'. The analysis of the more recent data finds the receiving laboratory standard deviations, &, and the transmission standard deviation, ?, to be a few parts in 10". Averag- ing frequencies over an increasing number of days has the effect of reducing iUi and ? to some extent. The variation of the & with propagation distance is studied. The VLF-LF long-term mean differences between standards are compared with the recent portable clock tests, and they agree to parts in IO". 1. Introduction points via satellites (Steele, Markowitz, and Lidback, 1964; Markowitz, Lidback, Uyeda, and Muramatsu, Six years ago in London, the XIIIth General Assem- 1966); improvements in the transmission of VLF and bly of URSI adopted a resolution (No. 2) which strongly LF radio signals (Milton, Fey, and Morgan, 1962; recommended continuous very-low-frequency (VLF) Barnes, Andrews, and Allan, 1965; Bonanomi, 1966; and low-frequency (LF) transmission monitoring US. -
Unclassified NEA/RWM/RF(2004)6 RWMC Regulators' Forum (RWMC
Unclassified NEA/RWM/RF(2004)6 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 30-Sep-2004 ___________________________________________________________________________________________ English - Or. English NUCLEAR ENERGY AGENCY RADIOACTIVE WASTE MANAGEMENT COMMITTEE Unclassified NEA/RWM/RF(2004)6 RWMC Regulators' Forum (RWMC-RF) REMOVAL OF REGULATORY CONTROLS FOR MATERIALS AND SITES National Regulatory Positions Issues with the removal of regulatory controls are very important on the agenda of the regulatory authorities dealing with radioactve waste managemnt (RWM). These issues arise prominently in decommissioning and in site remediation, and decisions can be very wide ranging having potentiallly important economic impacts and reaching outside the RWM area. The RWMC Regulators Forum started to address these issues by holding a topical discussion at its meeting in March 2003. Ths present document collates the national regulatory positions in the area of removal of regulatory controls. A summary of the national positions is also provided. The document is up to date to April 2004. English - Or. English JT00170359 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format NEA/RWM/RF(2004)6 FOREWORD Issues with the removal of regulatory controls are very important on the agenda of the regulatory authorities dealing with radioactive waste management (RWM). These issues arise prominently in decommissioning and in site remediation, and decisions can be very wide ranging having potentially important economic impacts and reaching outside the RWM area. The relevant issues must be addressed and clearly understood by all stakeholders. There is a large interest in these issues outside the regulatory arena. -
The RWM Benefit Cost Analysis Compendium
The Road Weather Management Benefit Cost Analysis Compendium Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The Road Weather Management Benefit Cost Analysis Compendium TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-HOP-14-033 4. Title and Subtitle 5. Report Date Road Weather Management Benefit Cost Analysis Compendium August 2014 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Michael Lawrence, Paul Nguyen, Jonathan Skolnick, Jim Hunt, Roemer Alfelor N/A 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Leidos 11251 Roger Bacon Drive Reston, Virginia 20190 11. Contract or Grant No. Jack Faucett Associates 4915 St. Elmo Ave, Suite 205 DTFH61-12-D-00050 Bethesda, Maryland 20814 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered U.S. Department of Transportation Federal Highway Administration Office of Freight Management and Operations 14. Sponsoring Agency Code 1200 New Jersey Avenue, SE Washington, DC 20590 HOP 15. Supplementary Notes Far right image on cover source: Idaho Transportation Department Bottom image on cover source: Paul Pisano, Federal Highway Administration 16. -
KHF 950/990 HF Communications Transceiver PILOT’S GUIDE and DIRECTORY of HF SERVICES
KHF 950/990 HF Communications Transceiver PILOT’S GUIDE AND DIRECTORY OF HF SERVICES A Table of Contents INTRODUCTION KHF 950/990 COMMUNICATIONS TRANSCEIVER . .I SECTION I CHARACTERISTICS OF HF SSB WITH ALE . .1-1 ACRONYMS AND DEFINITIONS . .1-1 REFERENCES . .1-1 HF SSB COMMUNICATIONS . .1-1 FREQUENCY . .1-2 SKYWAVE PROPAGATION . .1-3 WHY SINGLE SIDEBAND IS IMPORTANT . .1-9 AMPLITUDE MODULATION (AM) . .1-9 SINGLE SIDEBAND OPERATION . .1-10 SINGLE SIDEBAND (SSB) . .1-10 SUPPRESSED CARRIER VS. REDUCED CARRIER . .1-10 SIMPLEX & SEMI-DUPLEX OPERATION . .1-11 AUTOMATIC LINK ESTABLISHMENT (ALE) . .1-11 FUNCTIONS OF HF RADIO AUTOMATION . .1-11 ALE ASSURES BEST COMM LINK AUTOMATICALLY . .1-12 SECTION II KHF 950/990 SYSTEM DESCRIPTION. .2-1 KCU 1051 CONTROL DISPLAY UNIT . .2-1 KFS 594 CONTROL DISPLAY UNIT . .2-3 KCU 951 CONTROL DISPLAY UNIT . .2-5 KHF 950 REMOTE UNITS . .2-6 KAC 952 POWER AMPLIFIER/ANT COUPLER .2-6 KTR 953 RECEIVER/EXITER . .2-7 ADDITIONAL KHF 950 INSTALLATION OPTIONS .2-8 SINGLE KHF 950 SYSTEM CONFIGURATION .2-9 KHF 990 REMOTE UNITS . .2-10 KAC 992 PROBE/ANTENNA COUPLER . .2-10 KTR 993 RECEIVER/EXITER . .2-11 SINGLE KHF 990 SYSTEM CONFIGURATION . .2-12 Rev. 0 Dec/96 KHF 950/990 Pilots Guide Toc-1 Table of Contents SECTION III OPERATING THE KHF 950/990 . .3-1 KHF 950/990 GENERAL OPERATING INFORMATION . .3-1 PREFLIGHT INSPECTION . .3-1 ANTENNA TUNING . .3-2 FAULT INDICATION . .3-2 TUNING FAULTS . .3-3 KHF 950/990 CONTROLS-GENERAL . .3-3 KCU 1051 CONTROL DISPLAY UNIT OPERATION . -
Time Signal Stations 1By Michael A
122 Time Signal Stations 1By Michael A. Lombardi I occasionally talk to people who can’t believe that some radio stations exist solely to transmit accurate time. While they wouldn’t poke fun at the Weather Channel or even a radio station that plays nothing but Garth Brooks records (imagine that), people often make jokes about time signal stations. They’ll ask “Doesn’t the programming get a little boring?” or “How does the announcer stay awake?” There have even been parodies of time signal stations. A recent Internet spoof of WWV contained zingers like “we’ll be back with the time on WWV in just a minute, but first, here’s another minute”. An episode of the animated Power Puff Girls joined in the fun with a skit featuring a TV announcer named Sonny Dial who does promos for upcoming time announcements -- “Welcome to the Time Channel where we give you up-to- the-minute time, twenty-four hours a day. Up next, the current time!” Of course, after the laughter dies down, we all realize the importance of keeping accurate time. We live in the era of Internet FAQs [frequently asked questions], but the most frequently asked question in the real world is still “What time is it?” You might be surprised to learn that time signal stations have been answering this question for more than 100 years, making the transmission of time one of radio’s first applications, and still one of the most important. Today, you can buy inexpensive radio controlled clocks that never need to be set, and some of us wear them on our wrists. -
Response of Parameters of HF Signals at the Long Radio Paths on Solar Activity
URS I AP -RASC 2019, New Delhi, India, 09 - 15 March 2019 Response of parameters of HF signals at the long radio paths on solar activity Andriy Zalizovski (1, 2) *, Yuri Yampolski (1) , Alexander Koloskov (1, 2), Sergey Kashcheyev (1) , Bogdan Gavrylyik (1) (1) Institute of Radio Astronomy, NASU, Kharkiv, Ukraine; e-mail: [email protected] (2) National Antarctic Scientific Center, Kyiv, Ukraine A technique for multiposition Doppler HF sounding of the ionosphere that use the emission of broadcasting radio-stations as probing signals is developed in the Institute of Radio Astronomy of National Academy of Sciences of Ukraine (IRA NASU) during some last decades. At present the Internet-controlled receiving sites designed by IRA NASU are located in Arctic, Scandinavia, Europe, Africa, and Antarctica. The analysis of HF signal propagation on the super long radio paths is one of the major tasks of this network. This paper discusses the results of the analysis of signal propagation from Europe and Northern America to Antarctica. The signals of time and frequency services were used as probe because of the excellent stability of their parameters. The radiation of RWM (Moscow, carrier frequencies 4996, 9996, and 14996 kHz) and CHU (Ottawa, frequencies 3330, and 7850 kHz) stations are recorded round-the-clock at the Ukrainian Antarctic Station (UAS, 65.25S, 64.27W) Akademik Vernadsky since 2010. Time and spectral analysis of the RWM pulse signals allowed to detect experimentally four different pathways: the direct and reverse paths lying on the great circle, and trajectories outside the great circle formed by focusing along the solar terminator and scattering on the ionospheric irregularities of auroral ovals. -
STANDARD FREQUENCIES and TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec
Rec. ITU-R TF.768-2 1 SYSTEMS FOR DISSEMINATION AND COMPARISON RECOMMENDATION ITU-R TF.768-2 STANDARD FREQUENCIES AND TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec. ITU-R TF.768-2 The ITU Radiocommunication Assembly, considering a) the continuing need in all parts of the world for readily available standard frequency and time reference signals that are internationally coordinated; b) the advantages offered by radio broadcasts of standard time and frequency signals in terms of wide coverage, ease and reliability of reception, achievable level of accuracy as received, and the wide availability of relatively inexpensive receiving equipment; c) that Article 33 of the Radio Regulations (RR) is considering the coordination of the establishment and operation of services of standard-frequency and time-signal dissemination on a worldwide basis; d) that a number of stations are now regularly emitting standard frequencies and time signals in the bands allocated by this Conference and that additional stations provide similar services using other frequency bands; e) that these services operate in accordance with Recommendation ITU-R TF.460 which establishes the internationally coordinated UTC time system; f) that other broadcasts exist which, although designed primarily for other functions such as navigation or communications, emit highly stabilized carrier frequencies and/or precise time signals that can be very useful in time and frequency applications, recommends 1 that, for applications requiring stable and accurate time and frequency reference signals that are traceable to the internationally coordinated UTC system, serious consideration be given to the use of one or more of the broadcast services listed and described in Annex 1; 2 that administrations responsible for the various broadcast services included in Annex 2 make every effort to update the information given whenever changes occur. -
What Time I T
Does Anybody Really What Time It Is? 24/7/365, Here's How Time Got On Your Best Side By Michael A. Lombardi ccasionally I'll talk to people who known to most radio buffs. He used a can't believe that some radio sta- spark-gap transmitter to successfully 0tions exist solely to transmit accu- send radio signals over a distance of more rate time. While they wouldn't poke fun than one mile in 1895. By 1899 he had at the Weather Channel or even a radio transmitted signals across the English station that plays nothing but Garth Channel, and sent signals across the Brooks records (imagine that), people Atlantic Ocean in 1901. often make jokes about time signal sta- Surprisingly, in the midst of Marconi's tions. They'll ask "Doesn't the program- early work, before any radio stations exist- ming get a little boring?'or "How does ed, or before the public even completely the announcer stay awake?'There have believed his results, a proposal was made even been parodies of time signal sta- to use the new wireless medium to broad- tions. A recent Internet spoof of WWV cast time. In November 1898. an optical containedzingers like "we'll be back with instrument maker and inventor named Sir the time on WWV in just a minute, but Howard Grubb addressed the Royal first, here's another minute." Dublin Society and proposed the concept An episode of the animated Powerpuff of a radio controlled clock. After many Girls joined in the fun with a skit featur- years of working with astronomical obser- ing a TV announcer named Sonnv Dial L, vatories. -
Time and Frequency Users' Manual
,>'.)*• r>rJfl HKra mitt* >\ « i If I * I IT I . Ip I * .aference nbs Publi- cations / % ^m \ NBS TECHNICAL NOTE 695 U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Time and Frequency Users' Manual 100 .U5753 No. 695 1977 NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, a technical (3) basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics -
LSI for Radio Clocks
LSI for Radio Clocks Takayuki Kondo Katsuya Maruyama Tsunao Oike Radio clocks sustain accurate time at all times, as The broadcasting of time information is conducted in they are equipped with functions for receiving low Japan by the National Institute of Information and frequency signals (the standard-time and frequency- Communications Technology, an incorprated signal emission) that carry time information and administrative agency, with the standard frequency automatically correct time and calendars. Products fitted transmitting offices established at two locations including with a radio clock function are on the increase, since the Ohtakado-yama standard frequency station in Fukushima broadcast range of the standard frequency was extended Prefecture (1997) and Hagane-yama standard frequency to cover all Japan in 2001, which resulted in radio clocks station in Saga Prefecture (2001). Each transmitting getting into the limelight. station covers a radius of 1,200km and the two Conventional radio clocks were used as ordinary transmitting stations combined cover almost the entire clocks (table clocks, watches, wall clocks, etc.) but with area of Japan (Figure 2). Further, mutual interference is the recent improvement of LSIs for radio receiver and avoided with different frequencies assigned, 40KHz from antennas combined with a reduction in power Ohtakado-yama station (Fukushima-Pref.) and 60KHz consumption, raised sensitivity and miniaturization, from Hagane-yama station (Saga-Pref.). application of the device in various products is anticipated, such as consumer appliances, mobile devices and home electric appliances. This paper will provide a general summary of the “ML6191”, a real-time clock LSI with an automatic time correction function that is a combination of the RF for the Approx. -
Vialitehd-EDFA-Datasheet-HRA-X-DS-1
www.vialite.com +44 (0)1793 784389 [email protected] +1 (855) 4-VIALITE [email protected] ® ViaLiteHD – EDFA Erbium-Doped Fiber Amplifiers (EDFA) Next generation variable gain EDFA Single or multi-channel EDFA available 8 dB to 36 dB gain variants SNMP and RS232 control Fast start-up time EDFA AGC (Automatic gain control) Bi directional Option Standard 5-year warranty The ViaLiteHD Eribium Doped Fiber Amplifier (EDFA) is available in either a single channel or multi-channel format depending on where it is utilized in the system. The EDFAs have low noise figures and variable gain ensuring the optimization of link noise figure and performance. They are available as part of a Ka-Band diversity antenna system, ultra-long distance system (up to 600 km) or as a stand-alone product. Options Low noise figure SNMP and RS232 control Fixed gain, auto power control, auto gain control software selectable Low switching time 8 dB, 18 dB, 20 dB, 23 dB, 24 dB, 33 dB or 36 dB gain (other gain variants available) Single channel or multiple channel Applications Formats 1U Chassis Ka-Band diversity rain fade application Fixed satcom earth stations and teleports Related Products Gateway reduction within a satellite footprint 50 km 1550 nm L-Band HTS Government installations 50 Ohm DWDM L-Band HTS Remote monitoring stations >50 km systems Remote oil and gas locations DWDM Multiplexers Remote wind farm locations Optical Switches Optical Delay Lines Popular products HRA-3-0B-8T-AF-D001 – ViaLiteHD EDFA, 24 dB Optical Amplifier, single channel HRA-4-0B-8T-AB-D008 -
Dispersion Compensation Module
www.vialite.com +44 (0)1793 784389 [email protected] +1 (855) 4-VIALITE [email protected] ViaLiteHD – Dispersion Compensation Module Dispersion Compensation Module (DCM) 1U Rack chassis Standard lengths and customer specific Compatible with any RF frequency SC/APC as standard DCM Standard 5-year warranty A DCM/Dispersion Compensation Fiber (DCF) provides fixed chromatic dispersion compensation for diverse and disaster recovery DWDM networks. ViaLiteHD DCMs are purely passive modules based on the ITU G.652 standard to provide negative dispersion for DWDM transmission systems, increasing transmission range and decreasing BER of optical links. It can be used to address dispersion on standard single mode optical fiber (SMF) across the entire C-Band and L-Band range. The DCMs are available as part of ViaLite’s Ka-Band diversity antenna system. Each DCM can be supplied in 5 km increments, supporting medium to long distance fiber optic systems ranging from 30 km to 600 km. Advantages Formats Low Insertion loss 1U Chassis 19” rack mountable Passive device Related Products Low polarization mode dispersion DWDM Mux/De-Mux Excellent performance price ratio DWDM EDFA’s and Boosters Signal performance improvements Delay Lines L-Band HTS 700-2450 MHz Applications Fixed satcom earth stations and teleports Ka-Band diversity systems L-Band long distance links G.652 100% C-Band compensation fiber Long distance DWDM optimization CATV Systems ViaLite System Designer For complex designs where multiple DWDM products are required the System Designer tool is essential for predicting and validating performance results. The software uses a drag and drop approach from a pallet of products.